
Dynamic Response in Distributed Firewall Systems

Mohamed Taibah, Ehab Al-Shaer and Hazem Hamed

Multimedia Networking Research Laboratory
School of Computer Science, Telecommunications and Information Systems

DePaul University, Chicago, USA
Email: mtaibah@cs.depaul.edu

Abstract— Firewalls are currently the prominent defense
against network attacks. These devices can play a crucial role
in preserving the wellbeing of commercial as well as personal
networks. However, the correct configuration of firewalls is hardly
a trivial task, especially in distributed environments. A variety
of anomalies can affect the proper functioning of firewalls. This
paper discusses possible firewall anomalies in the single and
distributed firewall cases. A formalization of the rule anomaly
discovery problem is presented. As an application of the anomaly
discovery algorithm, we overview an autonomous defense system
to counter Internet worms. General components of such system
are presented in a general envisioned design. Several research
problems are presented in the context of such system.

I. I NTRODUCTION

The mitigation of network security threats has become a
vital necessity for networks of all sizes today. The continu-
ously increasing trend of targeted and random network attacks
shows no sign of slowing down. Company private networks
are especially at risk, partially because of the catastrophic
consequences a malicious breach of network security may
cause from a business perspective. Traditionally, network
designers have responded to that threat with a diverse array of
network security architectures. Firewalls, however, remain the
single most important element at the backbone of any network
security system. Correctly placing and configuring firewalls is
at the essence of providing security to private networks.

This task, however, can be as complex as it is crucial,
particularly when rule changes are made under tight time
constraints, and by different administrators. Distinct firewall
rules may interact in a manner that yields unexpected and
undesired results. These rule anomalies can hinder network
performance or may even create holes in the defense against
attacks. The complexity of the firewall anomaly problem
prompted researchers to seek a formal solution that can be
automated. It is important here to realize two different cases,
the case of a single firewall, and that of a distributed firewall
system. Although both cases share similarities, the latter is by
far the more complex.

The ability to correctly configure firewall systems based
on a formal solution for the anomaly problem, may clear the
way for researchers to develop safe algorithms to dynamically
reconfigure firewalls based on emerging attacks. The goal is
to design algorithms that can dynamically reconfigure or ”re-
posture” a network security system to withstand or even avert
an emerging automated worm attack for example.

This report will overview solutions being developed at the
Multimedia Networking Lab (MNLab) at DePaul University
for the firewall anomaly problem. It will also attempt to
overview a possible application for this formal solution in the
area of dynamically re-posturing a security system based on
sensed worm attacks.

II. F IREWALL RULE ANOMALY EXAMPLES

Firewalls control network traffic -at the secured domain
boundary- based on a set of filtering rules. In their simplest
form, these rules are based on the packets 5-tuple (i.e. protocol,
source address, source port, destination address, and destina-
tion port fields). A firewall either denies or allows a packet
based on the values in these fields. An example of a firewall
rule is: {tcp, 140.192.37.*, Any, *.*.*.*, 80, Accept}. In this
rule, all TCP traffic coming from any port in sub-domain
140.192.37.*, and going to port 80 (http) on any IP address
will be allowed to pass through the firewall. An ordered list
of such rules constitutes the firewall policy. When processing
a packet, a firewall sequentially goes through its list of rules
until it finds a rule that matches the packets’ 5-tuple and then
it performs the action associated with that rule. If none of the
rules is matched by the packets 5-tuple, the policy’s default
is automatically activated. In most cases, a ”deny” default is
recommended. An example of a possible firewall policy is
shown in figure 1.

Rule anomalies can arise in a variety of cases. For ex-
ample, consider rules 3 and 6 in the firewall policy in
figure 1. A packet with the 5-tuple{tcp, 140.192.37.61,
1234, 161.120.33.40, 80} matches rule 3 as well as rule
4. This causes ambiguity about which rule was meant to
handle this packet. Obviously, the preceding rule is the one
that will always be triggered in any such case. In the case
of a distributed firewall system -or inter-firewall anomaly- ,
consider the firewall policies shown in figure 2. Assume that
a packet is coming from the Internet to domainD1.1 . The
packet is part of a TCP stream going from port 4000 on host
189.124.32.60 to port 25 on host 140.192.22.10. OnFW0, this
stream is allowed based on rule 3, however,FW1 will deny
this packet -in fact the whole stream- because of its ”deny all”
default. This is an anomaly because eitherFW0 is allowing
through a stream that it should deny, orFW1 is denying a
stream that it should allow through.



����

��

���	�
�	�
	�

��������

��

���	���	��	�

�����������	
���

�
�	��������������
�
�
�����	��������

������������	
���

�
���������������
�
�
�����	��������

�
��������������
�
�
�����������
��	



�	����	��������

������������	
���

�
�����������
��	



�	����	��������

�����������	
���

�

	��������������
�
�
��������������

������������	
���

�
���������������
�
�
��������������

������������	
���

�
�����������
��	



�	�������������

����������������
�
�
���������������
�
�
��������������

������������	
���

�
�����������
��	



�	����
��������

�	��������������
�
�
�����������
��	



�	����
��������

������������	
���

�
������������
��	

�
��������������

����������������
�
�
���������������
�
�
��������������

Figure 1. An example of a firewall policy

������

������ ������

��	�

�
�	���	��	�

�
���
��

��	�

���	���	�
	�

��	�

�
�	���	��	�

��	�

���	���	��	�

������������	�
�	�	����
����������	�	�	���������
�����


�����������	��
	�	����
����������	�	�	�����
���
�����

��������������	�	�	����
��������	��
	�	�����
���
�����

������������	��
	�	����
��������	�
�	�	���������������

�����������	�
�	��	����
�������	��
	��	�����
���������

������������	�
�	�	����
��������	��
	�	�����

��������

������������	�
�	�	����
��������	��
	�	����
����
�����

������������	��
	�	����
��������	�
�	�	����
����
�����

��������������	�	�	����
����������	�	�	����
����������

������������	�
�	�	����
��������	��
	�	���������
�����


�����������	��
	�	����
��������	�
�	�	���������
�����

������������	�
�	�	����
�������	��
	

	�����
���
�����

�����������	�
�	��	����
�������	��
	��	�����
���������

������������	�
�	�	����
��������	��
	�	�����
���
�����

�����������	�
�	
�	����
�������	��
	��	�����
���������

�����������	�
�	
�	����
��������	��
	�	�����
���
�����

��������������	�	�	����
����������	�	�	����
����������

������������	�
�	�	����
��������	��
	�	���������
�����


�����������	�
�	�	����
�������	��
	

	�����
���������

������������	�
�	�	����
��������	��
	�	�����
���
�����

������������	��
	�	����
�������	�
�	��	�����
���
�����

�����������	�
�	��	����
��������	��
	�	�����
���
�����

�����������	�
�	
�	����
�������	��
	��	�����
���������

�����������	�
�	
�	����
�������	��
	

	�����
���������

������������	�
�	�	����
�������	��
	��	�����
���
�����

��������������	�	�	����
����������	�	�	����
����������

Figure 2. An example of distributed firewall policies

The examples given for firewall rule anomalies are instances
of a more general set of possible anomalies. The formalization
of this concept is discussed in the next three sections.

III. F IREWALL POLICY MODELLING

Modelling of firewall rule relations is necessary for analyz-
ing the firewall policy and designing management techniques
such as anomaly discovery and policy editing. In this section,
we formally describe a model of firewall rule relations.

A. Formalization of Firewall Rule Relations

A useful model must cover all the relations that can relate
packet filtering rules. In this section we define all the possible
relations that may exist between filtering rules, and we show
that no other relations can exist. We determine the relations
based on comparing the network fields of filtering rules as
follows.

Definition 1: Rules Rx and Ry are completely disjointif
every field inRx is not a subset nor a superset nor equal to
the corresponding field inRy. Formally,Rx<CDRy iff

∀i : Rx[i] 6./ Ry[i]
where ./ ∈ {⊂,⊃, =},

i ∈ {protocol, sip, s port, d ip, d port}

Definition 2: Rules Rx and Ry are exactly matchingif
every field inRx is equal to the corresponding field inRy.
Formally, Rx<EMRy iff

∀i : Rx[i] = Ry[i]
wherei ∈ {protocol, sip, s port, d ip, d port}

Definition 3: RulesRx andRy are inclusively matchingif
they do not exactly match and if every field inRx is a subset
or equal to the corresponding field inRy. Rx is called the
subset matchwhile Ry is called thesuperset match. Formally,
Rx<IMRy iff

∀i :Rx[i] ⊆ Ry[i]
and∃j such that:Rx[j] 6= Ry[j]

wherei, j ∈{protocol, sip, s port, d ip, d port}
Definition 4: Rules Rx and Ry are partially disjoint (or

partially matching) if there is at least one field inRx that is
a subset or a superset or equal to the corresponding field in
Ry, and there is at least one field inRx that is not a subset
and not a superset and not equal to the corresponding field in



Ry. Formally,Rx<PDRy iff

∃i, j such thatRx[i] ./ Ry[i] andRx[j] 6./ Ry[j]
where ./ ∈ {⊂,⊃, =},

i, j ∈ {protocol, sip, s port, d ip, d port}, i 6= j
Definition 5: RulesRx andRy arecorrelatedif some fields

in Rx are subsets or equal to the corresponding fields in
Ry, and the rest of the fields inRx are supersets of the
corresponding fields inRy. Formally,Rx<CRy iff

∀i :Rx[i] ./ Ry[i] and

∃j, k such that:Rx[j] ⊂ Ry[j] andRx[k] ⊃ Ry[k]
where ./ ∈ {⊂,⊃,=},

j, k ∈ {protocol, sip, s port, d ip, d port}, j 6= k
The following theorems show that these relations are

distinct, i.e. only one relation can relateRx and Ry, and
complete, i.e. no other relation betweenRx and Ry could
exist. The complete proofs for the theorems are presented
in [2].

Theorem 1:Any two k-tuple filters in a firewall policy are
related by one and only one of the defined relations.

Theorem 2:The union of these relations represents the
universal set of relations between any twok-tuple filters in
a firewall policy.

B. Firewall Policy Representation

We represent the firewall policy by a single-rooted tree
called thepolicy tree [2]. The tree model provides a simple
representation of the filtering rules and at the same time allows
for easy discovery of relations and anomalies among these
rules. Each node in a policy tree represents a network field,
and each branch at this node represents a possible value of
the associated field. Every tree path starting at the root and
ending at a leaf represents a rule in the policy and vice versa.
Rules that have the same field value at a specific node will
share the same branch representing that value.

Figure 3 illustrates the policy tree model of the filtering
policy given in Figure 1. Notice that every rule should have
an action leaf in the tree. The dotted box below each leaf
indicates the rule represented by that branch in addition to
other rules that are in anomaly with it as described later in the
following section.

IV. I NTRA-FIREWALL ANOMALIES

The ordering of filtering rules in a centralized firewall policy
is crucial in determining the filtering policy, because of the
sequential manner in which packets are matched against rules.
If filtering rules are disjoint, the ordering of the rules is in-
significant. However, it is very common to have filtering rules
that are inter-related. In this case, if the relative rule ordering is
not carefully assigned, some rules may be always screened by
other rules producing an incorrect policy. Moreover, when the
policy contains a large number of filtering rules, the possibility
of writing conflicting or redundant rules is relatively high.

An intra-firewall policy anomaly is defined as the existence
of two or more filtering rules that may match the same packet
or the existence of a rule that can never match any packet on
the network paths that cross the firewall [2]. In this section,
we classify different anomalies that may exist among filtering
rules in one firewall.

A. Intra-Firewall Anomaly Classification

We can formally describe the type of anomalies that may
exist in a firewall policy as follows:

1) Shadowing anomaly:A rule is shadowed when a previ-
ous rule matches all the packets that match this rule, such that
the shadowed rule will never be activated. Formally, ruleRy

is shadowed by ruleRx if:

Rx[order] < Ry[order], Rx<EMRy, Rx[action] 6= Ry[action]
Rx[order] < Ry[order], Ry<IMRx, Rx[action] 6= Ry[action]

For example, Rule 4 in shadowed by Rule 3 in Figure 1.
Shadowing is a critical error in the policy, as the shadowed
rule never takes effect. This might cause accepted traffic to
be blocked or denied traffic to be permitted.

2) Correlation anomaly:Two rules are correlated if they
have different filtering actions, and the first rule matches some
packets that match the second rule and the second rule matches
some packets that match the first rule. Formally, ruleRx and
rule Ry have a correlation anomaly if:

Rx<CRy, Rx[action] 6= Ry[action]

Rule 1 is in correlation with Rule 3 in Figure 1. Note that
if the order of these rules is reversed, the policy in effect
changes.

3) Generalization anomaly:A rule is a generalization of a
preceding rule if they have different actions, and if the first
rule can match all the packets that match the second rule.
Formally, ruleRy is a generalization of ruleRx if:

Rx[order] < Ry[order], Rx<IMRy, Rx[action] 6= Ry[action]

Rule 2 is a generalization of Rule 1 in Figure 1. These
two rules imply that all HTTP traffic that is coming from
the address 140.192.37.* will be accepted, except the traffic
coming from 140.192.37.20. This anomaly should be treated
as only a warning to confirm that the administratormeansto
exclude this specific traffic from the general rule.

4) Redundancy anomaly:A redundant rule performs the
same action on the same packets as another rule such that if
the redundant rule is removed, the security policy will not be
affected. Formally, ruleRy is redundant to ruleRx if:

Rx[order] < Ry[order], Rx<EMRy, Rx[action] = Ry[action]
Rx[order] < Ry[order], Ry<IMRx, Rx[action] = Ry[action]



���

∗.∗.∗.∗

���

�
�
�
	�


�
	�


	∗

∗ ∗ ∗

�
�
�
	�
�
�
	�
�
	�
�

��

������

������

∗.∗.∗.∗

�� ��

������ ������

������������

∗.∗.∗.∗

∗

�
�
�
	�
�
�
	�
�
	�
�

∗.∗.∗.∗

��

������

�������

����

�������

∗

��

������

�����


������

�������� ��������

������

����������������

������������

��������

�������� ��������

������ ������������

���
	�

�	�

	�
�

∗
∗.∗.∗.∗

��

����

������

����

������

��������

������

��������

������ ������

��
�	�

�
	�

	��

∗
∗.∗.∗.∗

��

��������

������

��������

∗.∗.∗.∗

����

������

∗

��������

������

������

�
�
�
	�
�
�
	�
�
	�
�

������

��������

��
�	
��
�	
��
	�
�

��

���� ������

�����
������

������

������

��������

�
�
�
	�


�
	�


	∗

������

������

��������

��

������

��������

� � � 


���������

 ���������

!����������

"�������#�����

� � � 
 � � � �� ��


Figure 3. The policy tree for the firewall policy in Figure 1.

Whereas ruleRx is redundant to ruleRy if:

Rx[order] < Ry[order], Rx<IMRy, Rx[action] = Ry[action]
and 6 ∃Rz whereRx[order] < Rz[order] < Ry[order],

Rx{<IM,<C}Rz, Rx[action] 6= Rz[action]

Referring to Figure 1, Rule 7 is redundant to Rule 6.
Redundancy is considered an error in the firewall policy
because a redundant rule adds to the size of the filtering
rule list, and therefore increases the search time and space
requirements of the packet filtering process [5].

5) Irrelevance anomaly:A filtering rule in a firewall is
irrelevant if this rule cannot match any traffic that might flow
through this firewall. This exists when both the source address
and the destination address fields of the rule do not match any
domain reachable through this firewall. In other words, the
path between the source and destination addresses of this rule
does not pass through the firewall. Thus, this rule has no effect
on the filtering outcome of this firewall. Formally, ruleRx in
firewall F is irrelevant if:

F 6∈ {n : n is a node on a path fromRx[src] to Rx[dst]}
Referring to Figure 1, Rule 11 is irrelevant because the

traffic that goes between the source (140.192.38.*) and the
destination (161.120.35.*) does not pass through this firewall.
As in irrelevancy, this unnecessarily adds to the size of the
policy.

B. Implementation of the Intra-Firewall Anomaly Discovery
Algorithm

The state diagram in Figure 4 illustrates intra-firewall anom-
aly discovery states for any two rules,Rx andRy, where the

two rules are in the same firewall andRy follows Rx. For
simplicity, the address and port fields are integrated in one field
for both the source and destination. This reduces the number
of states and simplifies the explanation of the diagram.

Initially no relationship is assumed. Each field inRy is
compared to the corresponding field inRx starting with the
protocol, then source address and port, and finally destination
address and port. The relationship between the two rules is
determined based on the result of subsequent comparisons. If
every field ofRy is a subset or equal to the corresponding field
in Rx and both rules have the same action,Ry is redundant
to Rx, while if the actions are different,Ry is shadowed
by Rx. If every field of Ry is a superset or equal to the
corresponding field inRx and both rules have the same action,
Rx is potentially redundant toRy, while if the actions are
different,Ry is a generalization ofRx. If some fields ofRx are
subsets or equal to the corresponding fields inRy, and some
fields of Rx are supersets to the corresponding fields inRy,
and their actions are different, thenRx is in correlation with
Ry. Identifying irrelevant rules requires the knowledge of the
network connectivity. Discovering this intra-firewall anomaly
is discussed later in Section V-C along with the inter-firewall
anomaly discovery algorithm. If none of the preceding cases
occur, then the two rules do not involve any anomalies.

The basic idea for discovering anomalies is to determine
if any two rules coincide in their policy tree paths. If the
path of a rule coincides with the path of another rule, there is
a potential anomaly that can be determined based on intra-
firewall anomaly definitions in Section IV-A. If rule paths
do not coincide, then these rules are disjoint and they have
no anomalies. The detailed description of the intra-firewall
anomaly discovery algorithm is available in [1]. Applying the



�����

�

������

�

������

�

�	
������

�

�
�

ℜ

��

�
�

�

�	
��

��

��

��

��	


��

�	�	�
�

��

����	�
�	


��
���	

��

��
��
� �
��
��
��
�� �

���
�� �
�⊂��

���� �

�����
� �⊃������

� �	
������

�

�����
������

���
��⊇����

�


����⊆�
���


�����
� ���
�����

�


�������
≠�
������


�� �
�⊆�


�� �


����⊇�
���

���
��⊂����

�

���
� �⊃

����
�

�	�����

�

�	�����

�

���
�
�⊆����

�

�����������

�

���
� �⊃
����

�

���
� �⊂
����

�


����⊆�

���


����⊃�

���


��
� �⊃�
��

�


��
� �⊃�
��

�



�
� �
�⊂
�

�
� �

��
� �
�≠
��
��
�

��
� �
�≠
��
��
�

�
��

�
�≠
��
��

�



��
�
�≠
�

�
� �



��
�
�≠
�

��
�


�
� ��

≠�

�� �


����≠�

���

�����
� �≠������

�

�
�

ℜ

��

�
�

 


��
��� �

���

����

� �


�����
��≠�
�����

�

�
�

ℜ

!

�

�

��


�����
�
�≠�
�����

�


�
���
� ��
��

�
���
� �

Figure 4. State diagram for detecting intra-firewall anomalies for rulesRx andRy , whereRy comes afterRx.

algorithm on the rules in Figure 1, the discovered anomalies
are marked in the dotted boxes at the bottom of the policy
tree in Figure 3. Shadowed rules are marked with a triangle,
redundant rules with a square, correlated rules with a pentagon
and generalization rules with a circle.

V. I NTER-FIREWALL ANOMALIES

A. Inter-Firewall Anomaly Definition

In general, an inter-firewall anomaly may exist if any two
firewalls on a network path take different filtering actions on
the same traffic. We first illustrate the simple case of multiple
cascaded firewalls isolating two network sub-domains where
the firewalls are installed at the routing points in the network.

�
�
���
�
�
�
���
�

�
�
�
�

��	

�→�

���

Figure 5. Cascaded firewalls isolating domainsDx andDy .

Referring to Figure 5, we assume a traffic stream flowing
from sub-domainDx to sub-domainDy across multiple cas-
caded firewalls installed on the network path between the two
sub-domains. At any point on this path in the direction of flow,
a preceding firewall is called anupstream firewallwhereas a
following firewall is called adownstream firewall. The closest
firewall to the flow source sub-domain (FWx) is called the
most-upstream firewall, while The closest firewall to the flow
destination sub-domain (FWy) is called themost-downstream
firewall.

Using the above network model, we can say that for any
traffic flowing from sub-domainDx to sub-domainDy an
anomaly exists if one of the following conditions holds:

1) The most-downstream firewall accepts a traffic that is
blocked by any of the upstream firewalls.

2) The most-upstream firewall permits a traffic that is
blocked by any of the downstream firewalls.

3) A downstream firewall denies a traffic that is already
blocked by the most-upstream firewall.

On the other hand, all upstream firewalls should permit any
traffic that is permitted by the most-downstream firewall in
order that the flow can reach the destination.

B. Inter-Firewall Anomaly Classification

In this section, we consider anomalies in multi-firewall
environments. Our classification rules are based on the basic
case of cascaded firewalls illustrated in Figure 5, assuming
the network traffic is flowing from domainDx to domainDy.
Rule Ru belongs to the policy of the most-upstream firewall
FWx, while rule Rd belongs to the policy of the most-
downstream firewallFWy. We assume that no intra-firewall
shadowing or redundancy exists in any individual firewall.
As illustrated in Section IV-A, this implies that every “deny”
rule should be followed by a more general “accept” rule, and
the default action of unspecified traffic is “deny”.

1) Shadowing Anomaly:A shadowing anomaly occurs if
an upstream firewall blocks the network traffic accepted by a
downstream firewall. Formally, ruleRd is shadowed by rule
Ru if one of the following conditions holds:

Rd<EMRu, Ru[action]=deny, Rd[action]=accept (1)

Rd<IMRu, Ru[action]=deny, Rd[action]=accept (2)

Ru<IMRd, Ru[action]=deny, Rd[action]=accept (3)

Ru<IMRd, Ru[action]=accept, Rd[action]=accept (4)

Intuitively, in cases (1) and (2), the upstream firewall
completely blocks the traffic permitted by the downstream
firewall. Rules (2/FW2, 3/FW1), and Rules (8/FW1, 4/FW2)
in Figure 2 are examples of cases (1) and (2) respectively.
In cases (3) and (4) the upstream firewall partially blocks
the traffic permitted by the downstream firewall. Rules
(7/FW2, 7/FW1), and Rules (5/FW2, 5/FW1) in Figure 2



are examples of cases (3) and (4) respectively.

2) Spuriousness Anomaly:A spuriousness anomaly occurs
if an upstream firewall permits the network traffic denied by a
downstream firewall. Formally, ruleRu allows spurious traffic
to rule Rd if one of the following conditions holds:

Ru<EMRd, Ru[action]=accept, Rd[action]=deny (5)

Ru<IMRd, Ru[action]=accept, Rd[action]=deny (6)

Rd<IMRu, Ru[action]=accept, Rd[action]=deny (7)

Rd<IMRu, Ru[action]=accept, Rd[action]=accept (8)

Ru<IMRd, Ru[action]=deny, Rd[action]=deny (9)

In cases (5) and (6), the ruleRu in the upstream firewall
permits unwanted traffic because it is completely blocked
by Rd in the downstream firewall. Examples of these
cases are Rules (2/FW1, 4/FW0), and Rules (2/FW1,
9/FW2) in Figure 2 respectively. In cases (7) and (8) part
of the traffic allowed by ruleRu in upstream firewall is
undesired spurious traffic since it is blocked by ruleRd in
the downstream firewall. Examples of these cases are also
found in Rules (5/FW2, 4/FW1), and (3/FW2, 3/FW1)
in Figure 2 respectively. Case (9) is not as obvious as the
previous cases and it needs further analysis. Since we assume
there is no intra-firewall redundancy in the upstream firewall,
the fact thatRu has a “deny” action implies that there exists
a superset rule in the upstream firewall that followsRu and
accepts some traffic blocked byRd. This occurs when the
implied “accept” rule in the upstream firewall is an exact,
superset or subset match (but not correlated) ofRd. Rules
(5/FW0, 4/FW1) in Figure 2 are an example of this case.

3) Redundancy Anomaly:A redundancy anomaly occurs
if a downstream firewall denies the network traffic already
blocked by an upstream firewall. Formally, ruleRd is redun-
dant to ruleRu if, on every path to whichRu and Rd are
relevant, one of the following conditions holds:

Rd<EMRu, Ru[action]=deny, Rd[action]=deny (10)

Rd<IMRu, Ru[action]=deny, Rd[action]=deny (11)

In both of these cases, the deny action in the downstream
firewall is unnecessary because all the traffic denied byRd is
already blocked byRu in the upstream firewall. In Figure 2,
Rules (6/FW2, 6/FW1), and Rules (9/FW2, 6/FW0) are
examples of cases (10) and (11) respectively.

4) Correlation Anomaly: A correlation anomaly occurs
as a result of having two correlated rules in the upstream
and downstream firewalls. We defined correlated rules in
Section III-A. Intra-firewall correlated rules have an anomaly
only if these rules have different filtering actions. However,
correlated rules having any action are always a source of
anomaly in distributed firewalls because of the implied rule
resulting from the conjunction of the correlated rules. This
creates not only ambiguity in the inter-firewall policy, but also

spurious, and shadowing anomalies. Formally, the correlation
anomaly for rulesRu andRd occurs if one of the following
conditions holds:

Ru<CRd, Ru[action]=accept, Rd[action]=accept (12)

Ru<CRd, Ru[action]=deny, Rd[action]=deny (13)

Ru<CRd, Ru[action]=accept, Rd[action]=deny (14)

Ru<CRd, Ru[action]=deny, Rd[action]=accept (15)

An example for case (12) is
Ru : tcp, 140.192. ∗ .∗, any, 161.120.33.∗, 80, accept
Rd : tcp, 140.192.37.∗, any, 161.120. ∗ .∗, 80, accept

In this example, effectively, the correlative conjunction of
these two rules implies that only the traffic coming from
140.192.37.* and destined to 161.120.33.*. will be accepted
as indicated in the following implied ruleRi

Ri : tcp, 140.192.37.∗, any, 161.120.33.∗, 80, accept
This means that other traffic destined to 161.120.*.* will
be shadowed at the upstream firewall, while spurious traffic
originating from 140.192.*.* will reach the downstream
firewall.

For case (13) the example is
Ru : tcp, 140.192. ∗ .∗, any, 161.120.33.∗, 80, deny
Rd : tcp, 140.192.37.∗, any, 161.120. ∗ .∗, 80, deny

In this case, the resulting action at the downstream firewall
will deny the traffic coming from 140.192.37.* and destined
to 161.120.33.*. The implied filtering ruleRi will be

Ri : tcp, 140.192.37.∗, any, 161.120.33.∗, 80, deny
This means that other traffic originating from 140.192.*.*
will be shadowed at the upstream firewall, while spurious
traffic destined to 161.120.*.* may reach the downstream
firewall. A possible resolution for cases (12) and (13) is to
replace each of the correlated rules with the implied filtering
rule Ri.

The example for case (14) is
Ru : tcp, 140.192. ∗ .∗, any, 161.120.33.∗, 80, accept
Rd : tcp, 140.192.37.∗, any, 161.120. ∗ .∗, 80, deny

This example shows that the resulting filtering action at
the upstream firewall permits the traffic that is coming from
140.192.37.* and destined to 161.120.33.*. However, the
same traffic is blocked at the downstream firewall, resulting
in spurious traffic flow. To resolve this anomaly, an extra rule
Ri should be added in the upstream firewall prior toRu such
that it blocks the spurious traffic as follows

Ri : tcp, 140.192.37.∗, any, 161.120.33.∗, 80, deny

As for case (15), the example is
Ru : tcp, 140.192. ∗ .∗, any, 161.120.33.∗, 80, deny
Rd : tcp, 140.192.37.∗, any, 161.120. ∗ .∗, 80, accept

This example shows a different situation where the re-
sulting filtering action at the upstream firewall will block
the traffic that is coming from 140.192.37.* and destined to
161.120.33.*. However, because this traffic is accepted at the



�����

�

����	


�

����	


�


����
�	


�

�
�ℜ��
�
�
�

��������	

��


�������

��

�������	��

��

����

��

 !
"#
"$
%
 !
"#
"&

'()*)
+⊃'()*)
,
����
�	


�

-./0
1-.
/2

3456⊇3457

89:
;⊂89:
<

=>?@
A
B=>?@
C

DE
F
GH
I
JK
KE
LMN

OPQ
R⊆OPQ
S

TUV
W⊇TUV
X

YZ[
\⊂YZ[]

_̂̀
a⊃
_̂̀
b


�c
�	


d


�c
�	


�

efgh⊆efgi

jk��lm��ln

o

pqr
s⊃

pqr
t

uvw
x⊂

uvw
y

z{|
}⊆z{|
~z{|
}⊃z{|
~

���
�⊃

���
�

���
�⊃

���
�

�
��
�⊂

�
��
�

��
��≠

��
��

�
�
��

≠

��
��

��
��

≠

��
��

��
��

≠

��
��

��
� ≠

��
�¡

¢£
¤¥≠
¢£
¤¦

§̈©ª≠
§̈©«

¬
­®̄
®
°≠¬­®̄
®
±

�
�ℜ�� ��
��


���²��


�d

�
�ℜ³���
´

µ¶·=̧
µ¶·¹

º»»¼½¾¿
ÀÁ¼ÂÃÄ

ÅÆÇ
ÈÉ
ÊË
ÌÌ
ÆÍ
ÎÏ

ÐÑÒÓ
ÔÕÐÑÒÓ
Ö

×ØØÙ
ÚÛÜ
Ý×ØÛ
Þßàá
â
ã
ã
ä
åæ
ç
è
â
ã
ã
ä
åæ
é

êë
ìíî
ïð
ñ
òó
ïôõ

ö
÷ø
ùú
ûü
ý
ö
÷
÷þ
ÿø�

���
©�ª⊂
���
©�«

Figure 6. State diagram for inter-firewall anomaly discovery for rulesRu and Rd, whereRu belongs to the upstream firewall andRd belongs to the
downstream firewall.

downstream firewall,Rd is shadowed byRu. To resolve this
anomaly, an extra ruleRi should be added in the upstream
firewall beforeRu to avoid the shadowing anomaly as follows

Ri : tcp, 140.192.37.∗, any, 161.120.33.∗, 80, accept
In the following theorem, we show that the anomaly cases

we presented above are covering all the possible inter-firewall
anomalies. A complete proof of the theorem is provided in [2].

Theorem 3:This set of anomalies represent all filtering
anomalies that might exist between any two rules rules each
in a different firewall.

C. Implementation of the Inter-Firewall Anomaly Discovery
Algorithm

This algorithm finds the rule relations described in Sec-
tion V-B and discovers the anomalies between filtering rules in
two or more connected firewalls. In Figure 6 we show the state
diagram of the inter-firewall anomaly discovery algorithm.
The figure shows the anomaly discovery for any two rules,
Ru and Rd, where Ru is a rule in the upstream firewall
policy, andRd is a rule in the downstream firewall policy. For
simplicity, the address and port fields are integrated in one
field for both the source and destination. At the start state, we
assume no relationship between the two rules. Each field in
Rd is compared to the corresponding field inRu starting with
the protocol then source and destination addresses and ports.
Based on these comparisons, the relation between the two rules
is determined, as well as the anomaly if it exists. For example,
if Ru is found to inclusively matchRd (State 10), thenRd is
partially shadowed if its action is “accept” (State 11), orRu

is spurious if the action ofRd is “deny” (State 12).
Since more than two firewalls may exist between sub-

domains in an enterprise network, the inter-firewall anomaly
discovery process should be performed on all firewalls in
the path connecting any two sub-domains in the network.
For example, in Figure 2, inter-firewall anomaly analysis is

performed on (FW1, FW0) for all traffic that goes between
D1.2 and the Internet, on (FW2, FW0) for all traffic that goes
betweenD2.2 and the Internet, and on (FW1, FW0, FW2)
for all traffic that goes betweenD1.2 andD2.2. Although we
use a hierarchical network topology example, this analysis can
be performed on any network topology as long as there is a
fixed route between source and destination sub-domains.

Intuitively, inter-firewall anomaly discovery is performed by
aggregating the policy trees presented in Section III-B for all
the firewalls isolating every two sub-domains in the network.
The algorithm takes as an input the list of network paths
between sub-domains. For each path, we determine all the
firewalls in the traffic flow. Then for every firewall in the path,
we first run the intra-firewall anomaly discovery algorithm
described in Section IV-B to ensure that every individual
firewall is free from intra-firewall anomalies. Next, we build
the policy tree of the most upstream firewall and then add
into this tree the rules of all the consecutive firewalls in the
path. During this process, only the rules that apply to this
path (have the same source and destination) are selected and
marked. Eventually, as a result of applying the algorithm on all
the network paths, the rules that potentially create anomalies
are reported. In addition, any rule left unmarked is reported
as an irrelevant rule anomaly as it does not apply to any path
in the network. The complete description of the inter-firewall
anomaly discovery algorithm is provided in [1].

As an example, we apply the inter-firewall anomaly discov-
ery algorithm on the example network in Figure 2. We start
by identifying the participating sub-domains in the network
given the network topology and routing tables. The domains
in the figure areD1.1, D1.2, D2.1, D2.2 in addition to the
global Internet domain. The Internet domain is basically any
address that does not belong to one of the network sub-
domains. Afterwards, we identify all the possible directed
paths between any two sub-domains in the network and



determine the firewalls that control the traffic on that path, and
we run the algorithm on each one of these paths. According to
the figure, the algorithm analyzes 20 distinct paths for inter-
firewall anomalies and produces the anomalies indicated in
Section V-B.

VI. DYNAMIC CONFIGURATION OFFIREWALL RULES

Algorithms have been given in [2] to automate the detection
of both types of anomalies. Based on these algorithms it is
possible to safely automate the reconfiguration of firewall
policies based on emerging perceived threats. In particular,
it would be of great value to develop a security system that
can re-posture itself in response to the detection of a worm
attack. The target of the re-posturing is to minimize, if not
stop the worm infection. At a high level, this is a typical
control problem. The technique devised above -the detection
of firewall rule anomalies- will constitute the essence of safe
actuating of control actions. In addition to actuators, a control
system requires sensors, to estimate the state of the system;
and a controller, to select which action to apply in response to a
perceived state. A conceptual realization is shown in figure 7.
In the following sections, we will discuss our current vision for
the realization of each function. The goal is to show examples
of the existing solutions, or developments in that area, and
how they are related to our envisioned autonomous system.

VII. STATE ESTIMATION

To correctly respond to a worm threat, the system must first
correctly sense the threat. From a control perspective, this is
analogous to the function of a sensor. An element that monitors
the activity of all hosts on the network is needed in order to
be able to closely estimate the networks’ state. There must
also be a mathematical basis for quantifying the threat level
associated with every host and/or connection.

As for the sensing function, a wide range of research
papers have been published featuring proposed techniques to
sense a network attack. Some of this research focuses on
detecting attacks from the perspective of a single host, while
other research focuses on sensing attacks from the network
perspective. The network resource that detects illicit activity
is normally falls under the category of Intrusion Detection
Systems (IDS). IDS’s typically come in two types: anomaly-
based, and signature-based. Signature-based IDS’s are only
effective against well known worms, while anomaly-based
IDS’s are somewhat effective against new worm threats.

A. Signature-based Intrusion Detection

A signature is a set of strings that a worm uses in its
code. Once a worms signature is known, it is fairly easy to
detect a worm in transit using a signature-based IDS. The
shortcoming of this approach is that it is incapable of detecting
new worm infections. Another problem lies in the existence of
polymorphic worms. These are worms that use a polymorphic
engine to generate a new looking string each time in order to
elude IDS’s.

A basic limitation of signature-based systems is that sig-
natures are generated manually. This means that the speed by
which a signature can be generated is limited by human limits.
Finding and distributing a signature for a new worm normally
consumes enough time for the worm to have infected most
of its target population. As will be mentioned later, there are
emerging technologies that hold some promise in automating
this process.

B. Anomaly-based Intrusion Detection

Anomaly-based intrusion detection is intended to discover
new unknown attacks. In the context of worm attacks,
anomaly-based detection is designed to detect new worm
infections for which no signature is known yet. Anomaly-
based systems rely on forming a profile of normal activity
in a particular network during a ”training” period. Then the
instantaneous traffic profile is compared against that normal
profile to detect any abnormality. A kin of anomaly-based
detection is misuse-based detection. The difference between
the two is in the reference of comparison. While anomaly-
based systems compare traffic to the normal profile, misuse-
based systems compare traffic to the profile of an attack.
In other words, anomaly-based systems trigger an alarm if
the traffic profile moves away from that of normal behavior,
while misuse-based systems trigger an alarm if the traffic
profile moves closer to an attack profile. The performance of
these systems normally depend on setting a threshold for the
”distance” that traffic is allowed to deviate/come within from
normal/attack behavior.

The training of anomaly/misuse-based systems, threshold
setting techniques, distribution of the detection function, in
addition to other related issues are all open research issues.
Advancements in these areas will bring us closer to an
autonomous defense system to counter worms.

C. Other Related Technologies

Other research has been done in developing network re-
sources that do not precisely fall under the category of IDS’s.
These developments use heuristics to detect intrusions, and
some of them even work to slow down or stop them, but
they do not formally fall under the categorizations of IDS’s.
Some of the research that focused on host-based detection
(detect whether or not this host is infected) include [9] and [6].
In [9], a simple throttling technique is used for all outgoing
connections on a host. The throttling process monitors the rate
r at which the host initiates new connections. To determine the
”newness” of the connection, a history of the last n connections
is kept. If a process on that host tries to initiate a connection
to a new destination, that request is queued to insure that the
rate of new connections does not exceed r. Given that a worm
tries to connect to as manynew hosts as possible in as little
time as possible, the rate at which the queue grows can be
used as an indicator of a worm infection. Both n and r are
configurable to suit different hosts, services and applications.
In [6], the fact that most infecting mechanisms depend on
forcing the processor to return from a function call to the



����������	��
���

���
�������������������

����������

�����������

�����������

�������

���������

����

�����������������

������������

������

�������� ����

 ���
�����
���

���� �������

������������������������

!"��#

Figure 7. General worm control system architecture

address of injected code is utilized. All return addresses are
computed statically before run time, then compared to the
return addresses at run time to insure they are the same. A
difference in return addresses indicates a suspicious operation,
and triggers termination of the violating process. Several other
host-based detection and control techniques exist, and may be
utilized in a general worm control framework. The output of
such host-based detectors can be incorporated into the input
given to the controller of the autonomous defense system.

Other research has focused on network-based sensing of
attacks. This category includes a very important emerging
network resource, namely honeypots. The idea of honeypots
is to provide an attacker with a decoy machine and learn
about the method of attack. In the context of worms, there
is a potential to learn many things about how a worm gains
access to the network, what services it uses, the rate at which
it propagates, as well as a lot of other information about
the worm. A honeypot is assigned all the unused addresses
in a network. A typical worm tries to infect computers by
connecting to randomly generated IP addresses. Thus, there is
normally a good possibility that it will try to infect a honeypot.
By definition, all communication to a honeypot is suspicious.

As honeypots are a quickly emerging technology, consider-
able research wirk is being done on finding new applications,
and improvements for them. An example that ties into our
objective is given in [3]. The authors propose a technique by
which the generation of worm signatures can be automated.
In the context of our autonomous control system, this can
constitute an important ”learning” function for the system.
If the system can efficiently and automatically learn the
signatures ofnewworms, the signature pool in signature-based
IDS’s can be swiftly updated, and attacks can be stopped with
minimal damage. Another example of the potential of this
emerging technology is demonstrated in [7]. In this paper,
rather than generating worm signatures, software patches are

automatically generated in response to an attack. The system
learns about the exploit that the worm uses from the honeypot,
then automatically generates a patch that is applied to the
vulnerable system. In this way the system is automatically
immunized to the worm attack. The success rate achieved in
[7] is 82%, with a maximum patch generation time of 8.5
seconds.

D. Estimate Generation and the Correlation Function

As will be discussed in section VIII, the controller must
have an accurate estimate of which hosts are healthy and
which hosts are infected. Input from different systems (IDS’s,
throttling, DOME, honeypots...etc.) must be represneted nu-
merically, and given proper weight based on the fidelity of
the specific source system. The goal is to find a statistical
model by which we can minimize the probability of a false
positive or a false negative from the combined input of all the
sensing techniques employed. This model should provide us
with a risk factor associated with a host/network, based on
the collective inputs. A step in that direction was made in [8].
In that paper, the function threatlevel() is proposed such that
threatlevel(IP) evaluates to a numerical value that corresponds
to the threat level posed by that IP address.

A basic function that will be included in this module is
the correlation function. To detect a certain intrusion with a
level of confidence, separate events occurring on all hosts
will have to be correlated. For example, assume that host
A is suspected of being infected (say it was involved in a
communication with a honeypot). Let us now assume that
host A communicates with host B. Immediately after that,
host B starts acting suspiciously. In that case, this series of
events should be correlated and information must be deduced
based on that. In other words, the threat level of host A must
be modified based on its apparent infection of host B. This
correlation function is essential to accurate state estimation.



VIII. C ONTROLLER

The controller function is extremely dependent on having
a clear view of the system state. The obvious analogy is that
of a car driver being dependent on having a clear view the
cars position on the road. Assuming that the state estimator is
capable of supplying such an accurate image to the controller,
the controller must steer the system to a desired state. If an
intrusion (worm activity in specific) is detected, the controller
will need to calculate the best response available. The most
basic and crucial response will be in the form of dynamic
firewall rule modification. To implement this, the system will
have to decide where to apply the rule modification (which
firewall?), what kind of modification is needed(which rule to
insert or delete or edit?), and whether other actions may be
needed. A flexible controller design must be able to choose
between several actions based on a set of parameters. For
example, the response should be different for different levels
of risk returned by the state estimation module. The response
may also change if the system does not respond to a previous
action ordered by the controller.

Examples of actions that a controller may choose from
include:

• Dynamically quarantine a host that acts suspiciously for
a short period of time T. When T has elapsed, release
the host and monitor its activity. If the activity is still
suspicious, the controller may choose to quarantine it for
a longer period of time, or to take a harsher action -
depending on the threat level- [10].

• Statically quarantine a suspicious host by inserting fire-
wall rules that deny any traffic coming from it.

• In case there was suspicion that other hosts that came in
contact with the infected host have become infected, it
is possible for the controller to take precautionary action
by quarantining these hosts as well.

• A suspicious host with a low threat level can be pre-
vented from accessing vital network servers as an extra
precaution.

• In addition to firewall rule modification, a technique such
as throttling can be used to dynamically modify the
allowed connection rate in response to perceived elevated
risk associated with a given host.

• In all cases, administrators should be alerted to the threat
so that proper manual action can be taken.

At this stage the choice of activity should be selected such
that the problem is manageable. A wide selection of actions
will complicate the controller function and make it too slow
to respond. Thus, the dynamic modification of firewall rules
constitutes the most reasonable starting point.

An interesting statistical control technique is the Markov
Decision Process (MDP). In [4] it was used in a host-based
worm control system. Our current vision is to generalize this
technique to control network-based autonomous defense.

A brief overview of MDPs will be presented next. Some
understanding of this powerful control mechanism is necessary
to understand its role in our autonomous defense system. The

MDP is a statistical control model that is composed of the
following:

1) Decision epochs: The instances of time at which the
controller makes decisions. In a discrete environment,
decisions are made at all decision epochs. A decision
by the controller is a choice of action from a set of
available actions. In our case, the decision may involve
quarantining a host, or a whole subnet for example.

2) States: A set of possible states in which the system can
be. These states are one of the factors that a controller
considers when making a decision. In our case, the state
might consist of a threat level vector in which each host
is represented as an element. To make the number of
states finite, we might need to limit the granularity of
the threat level measure.

3) Actions: A set of actions that the controller can perform
to influence the system. This set may be state dependent,
in which case the set of actions changes from one state
to the other, or may be state independent. As mentioned
above, the actions in our case include quarantining a host
or a subnet for a specific amount of time or permanently
(until the problem is resolved).

4) Rewards: At any state, the choice of action by the
controller accrues a specific reward. This measure is
used to model the decision process as an optimization
problem. The goal in that optimization problem is to find
the set of actions that will maximize the total reward.
Here again, the reward function may be state dependent.
The reward in our case might be measured as an index
that balances the drop in threat level with the loss of
functionality. A good measure of immediate rewards is
essential for MDPs.

5) Transition probabilities: At each state, the controller has
to have a sense of which state the system will end up in
if an action A is chosen. This information is provided
by the transition probability. As with the rewards and
actions, the transition probability can be state dependent.
In other words, the transition probabilities answer the
questions: If I’m in stateS1, and I take actionAm, what
is the probability that I end up in stateSn, where n
and m range over the set of available states and actions
respectively.

The ultimate goal of the MDP powered controller is to
arrive at a policy (a sequential set of actions)by which the
total reward is maximized. If the reward function is modelled
correctly, this should correspond to minimizing risk, while
preserving functionality of the system. Arriving at such a
controller is another objective of this research effort.

IX. SAFE ACTUATORS

As mentioned before, our actuation will consist of modules
that allow the controller to modify firewall rules. And interface
can be defined for these modules for the controller to interact
with. One of the core components in these modules must be
an implementation of the anomaly discovery algorithm. If we
allow the controller to edit firewall rules without checking for



������� �������

�	�
���� �	�
����


����
�
���

������
�
������

������������ ������������

��	
�
������	���� ��	
�
������	����



��


����
�
���

������
�
������


���������������

���
��
���� �

���	���!

Figure 8. Markov decision process model

anomalies, the system will end up having security holes and/or
run inefficiently. In order to fully automate this, an algorithm
for anomaly resolution will have to be designed. This will
allow the actuators to automatically resolve any anomalies
discovered.

X. SUMMERY AND FUTURE WORK

To summarize, this paper discussed the evolution of our
research effort at the MNLab. After succeeding in finding
firewall rule anomaly discovery algorithms, our efforts are
aimed towards extending our research to viable applications
that utilize this algorithm. The current vision is to work
towards developing an autonomous defense system to counter
Internet worm attacks. To achieve that goal, many research
issues must be addressed. As was mentioned throughout the
paper, these research issues include:

• Developing suitable intrusion detection systems for the
accurate detection of worms. This is directly related to
the state estimation problem.

• Research in the area of threat level assessment to numer-
ically combine and represent the outcome of intrusion
detection devices. This is also part of the state estimation
problem.

• Efficient modelling of the worm control problem as an
MDP.

• Developing algorithms to resolve anomalies in firewall
rules to allow for automatic modifications.

As our research develops, a subset of these problems might
prove challenging and valuable enough to warrant limiting our
research to that subset. In any case, advancement in any of
the aforementioned areas will be a significant advancement
towards autonomous worm defense systems.

REFERENCES

[1] E. Al-Shaer and H. Hamed. ”design and implementation of firewall
policy advisor tools”. Technical Report CTI-TR-02-006, DePaul CTI,
August 2002.

[2] E. Al-Shaer and H. Hamed. ”discovery of policy anomalies in distributed
firewalls”. In Proceedings of IEEE INFOCOM’04, March 2004.

[3] Christian Kreibich and Jon Crowcroft. ”honeycomb: Creating intrusion
detection signatures using honeypots”. InCCR Paper Comment, Dis-
cussion, and Update Forum, volume 34. ACM Press, 2004.

[4] O. Patrick Kreidl and Tiffany M. Frazier. ”feedback control applied
to survivability: A host-based autonomic defense system”.IEEE
TRANSACTIONS ON RELIABILITY, 53(1):148–166, March 2004.

[5] R. Panko. Corporate Computer and Network Security. Prentice Hall,
2003.

[6] Jesse C. Rabek, Roger I. Khazan, Scott M. Lewandowski, and Robert K.
Cunningham. ”detection of injected, dynamically generated, and ob-
fuscated malicious code”. InACM CCS Workshop on Rapid Malcode
(WORM’03), Washington, DC, October 2003.

[7] Stelios Sidiroglou and Angelos D. Keromytis. ”countering network-
worms through automatic patch generation”.IEEE security and privacy,
2004.

[8] Lawrence Teo, GailJoon Ahn, and Yuliang Zheng. ”dynamic and
riskaware network access management”. InProceedings of the ninth
ACM symposium on Access control models and technologies. ACM
Press, 2003.

[9] M. Williamson. ”throttling viruses: Restricting propagation to defeat
malicious mobile code”. Technical Report HPL-2002-172, Information
Infrastructure Laboratory, HP Laboratories Bristol, June 2002.

[10] Cliff C. Zou, Weibo Gong, and Don Towsley. ”worm propagation
modeling and analysis under dynamic quarantine defense”. InACM CCS
Workshop on Rapid Malcode (WORM’03), Washington, DC, October
2003.


