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Abstract 

In this paper, we present a theoretic framework for 
admission controls and bandwidth allocations at 
network links to achieve guaranteed bandwidth 
allocations, which guarantee to allocate admitted flows 
data rates that are above their required minimum 
bandwidths. The admission control and bandwidth 
allocation are devised from the optimal solution of 
maximizing aggregate social welfare of the network. 
We define a utility function to capture network user’s 
demand for guaranteed bandwidth requirements with a 
price charged by a network service provider at the edge 
of the network. A fairness criterion is introduced for 
network links to allocate bandwidths. We first consider 
global admission conditions, which are deduced from 
the social welfare maximization problem, and then 
present distributed admission conditions, which can be 
used by each network link to make admission decisions 
locally. The bandwidth allocation resulted from the 
distributed admission conditions is asymptotically 
optimal with respect to the bandwidth allocation 
resulted from the global admission conditions. We 
show that the admission control framework can provide 
guidance for network service providers to charge users 
that require guaranteed bandwidths for data 
transmissions. 

1. Introduction 

During last several years, Quality of Service (QoS) 
issues in the Internet has attracted significant research 
interests. QoS provisioning requires the next-generation 
Internet to have the capability to provide differentiated 
services and accommodate differentiated classes of 
service to support various types of applications and 
business requirements. Fair bandwidth allocation and 
pricing of QoS services are becoming increasingly 
important. It provides sufficient incentives: (i) for users 
to use the network resources efficiently and (ii) for 
service providers to provide guaranteed QoS services in 
a healthy market environment. 

In this paper, we consider a communication network 
with fixed routing that accommodates multiple service 
classes. Each service class has different bandwidth 
requirements for guaranteed QoS. A link in the network 
has a given finite bandwidth capacity and the total data 
rates of all flows using the link cannot exceed the link’s 
bandwidth capacity. Each link should assign a flow 
using the link a share of its bandwidth capacity in 
compliance with a fairness criterion, and guarantee data 
rate of the flow is above a minimum bandwidth. We 
propose a model that can devise a fairness criterion for 
links to assign a flow a fair share of their bandwidth 
capacities with a guaranteed minimum bandwidth. The 
model also allow us to investigate insight properties of 
prices among various service classes, and allocate 
bandwidth fairly such that QoS requirements are 
guaranteed while total social welfare is maximized, or 
asymptotically maximized. These properties give 
guidance for service providers to price differentiated 
service classes, which have different bandwidth 
requirements. 

Several models have been put forth for service 
providers to sell bandwidth capacities. Paschalidis et al 
[5, 6] presented a revenue maximization problem for a 
service provider to charge each bandwidth requirement 
a static price. In [2], optimal prices and admission 
control policy are given from a global revenue 
maximization problem. Savagaonkar et al [7] 
investigated revenue maximization problem of dynamic 
pricing for bandwidth provisioning with an assumption 
that user demands are known stochastic processes. 
Semret et al [10] considered a bandwidth capacity 
provisioning framework to allocate bandwidths in a 
dynamic market. In these researches, bandwidth 
capacities are offered at the edge of a network. The 
problem about how to deliver the sold bandwidth 
capacities in the core of the network is still open. We 
consider a solution to the problem of delivering the 
services that have already been sold to users with 
service level agreements. Note that the network users 
can be end-users or next-level service providers that 
may sell their bandwidth capacities bought to other 
users. 



A network user is charged for a finite bandwidth 
capacity offered from a service provider under a service 
level agreement. The bandwidth capacity bought is 
actually the maximum data rate that the network user 
can transmit data through the network. The service 
level agreement between network user and service 
provider, either explicitly or implicitly, requires the 
network to allow the user to transmit data above a 
minimum data rate, so that the bandwidth perceived by 
the user will not be too much lower than the bandwidth 
capacity bought by the user. This also implies that 
expected bandwidths for data transmissions are always 
in an interval between the minimum bandwidth and the 
maximum bandwidth (i.e., bandwidth capacity bought 
by the user). Clark [16] has pointed out that users 
should be charged by the expected bandwidths. The 
higher minimum bandwidth a user is able to transmit 
his/her data, the higher expected bandwidth the user 
perceives. Therefore users’ QoS requirements will be 
guaranteed to be satisfied with respect to a guaranteed 
minimum bandwidth. 

To satisfy various maximum and minimum 
bandwidth requirements of concurrent flows, networks 
should use all available bandwidth to the fullest while 
maintaining certain fairness in allocations to these 
flows. Yaïche et al [19] proposed a fair bandwidth 
allocation from the solution of Nash bargaining 
problem [20, 21]. Kelly et al [8] introduced a notion of 
proportional fairness for “elastic” network (i.e., best-
effort service network), where user total utility is 
maximized when the bandwidth allocation fairness is 
achieved. The fair bandwidth sharing is further 
generalized to be weighted α-bandwidth allocation in 
[3, 13]. The allocation corresponds to the maximum 
throughput fairness [13] when 0→α , the max-min 
fairness [12] when ∞→α , the proportional fairness [8] 
when 1→α , and the minimum potential delay fairness 
[11] when 2→α . A class of utility functions of data 
rate on the interval ),0( ∞  is used in fluid model in their 

analysis of α-bandwidth allocation. Similar fluid 
models are also used in [4, 9, 15, 17, 22] for bandwidth 
allocation analysis in elastic networks. Alpcan and 
Basşar [14] proposed a broad class of utility functions 
that are non-decreasing and strictly concave on data 
rates over the interval ),0( ∞ . All these utility functions 
are used to capture user demand for bandwidth in 
elastic networks. They are not applicable for inelastic 
networks, in which users have been charged for finite 
bandwidth capacities with guaranteed minimum 
bandwidth. 

We propose a utility function that captures user 
demand for bandwidth in inelastic networks and deduce 

key characteristics for fair bandwidth allocation from 
fluid model. These characteristics give guidance for 
devising admission control policies and pricing 
different service classes. Although a fluid model is used 
in our analysis, it is worth emphasizing that our per-
flow model does not preclude Differentiated Services 
architecture (DiffServ) [1]. On the contrary, it can 
provide guidance on how to price different service 
classes in DiffServ. Flows in DiffServ are marked into a 
small number of service classes. A link is expected to 
treat flows in a same service class equally and flows 
belonging to different classes differently. Each flow in 
Integrated Services (IntServ) architecture [18] is treated 
as one service class by a link and therefore each flow is 
processed differently in InterServ. 

The paper is organized as follows: In Section 2, we 
present the network model used in the paper and the 
bandwidth allocation optimization problem for flows 
which are constrained with both their bandwidth 
capacities and minimum bandwidths, and a utility 
function is introduced in this section as well. Section 3 
presents a notion of fairness for the optimal bandwidth 
allocation. In section 4, we discuss the utility function 
that is used in the network model of this paper. Section 
5 considers the global admission conditions and the 
optimal bandwidth allocation for admitted flows. 
Section 6 presents distributed admission conditions and 
distributed bandwidth allocation. Finally, Section 7 
draws conclusions. 

2. Network Model 

We consider a network as a set of links L where each 
link L∈j has a capacity 0>jC , and let L=L  be the 
number of the links in the set. There is a set of users N 
with the cardinality N=N . The users compete for the 
use of the network. Each flow is associated with a route 
consisting of a subset of L. Without loss of generality, 
we assume that each user N∈i  is associated with one 
flow (connection) in the network. The user has been 
charged a price 0>ip  by a network service provider 
for using the network. The user is provided a bandwidth 
capacity iR with a guaranteed minimum bandwidth ir , 
so that the user can transmit data with a data rate of ix , 
where .0≥≥≥ iii rxR  We define the matrix 

),,( LNA ∈∈= jiAij  where 1=ijA  if flow i uses 

link j and 0=ijA , otherwise. Let also }1|{ == iji AjJ  

be the set of links that flow i uses and }1|{ == ijj AiI  
be the set of flows that use link j.  



We consider a fluid model of the network where the 
packets are infinitely divisible and small. After a user 
has bought a bandwidth capacity from a service 
provider, the user’s objective is to maximize the 
following utility function with respect to ix  over 

],[ ii Rr : 

  1))(1(
)( −−−

= αα ii

i
ii xR

wxU ,    Ni  , 1,L=  (1) 

where 1>α  corresponds to a class of utility functions. 
We call the parameter α intensity factor. The parameter 

)(⋅iw  is a positive number, which is the weight of 
user’s utility. The parameter )(⋅iw  is a function of the 
price charged by a service provider and the QoS 
purchased by the user. We will explain the parameter α 
and introduce )(⋅iw  formally later in the next section. 
Apparently, this utility function reflects user’s 
prospective. After the user has bought bandwidth 
capacity iR , the maximum bandwidth the user expected 
is iR  because ∞→)( ii xU  when ii Rx → . 

To best satisfy all the users of the network, the 
network’s objective is to maximize the social welfare of 
the network. Therefore, the optimal bandwidth 
allocation x&  that maximize the social welfare are the 
solution of the optimization problem P: 

 ∑
∈

=
N

x
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subject to 

 CxA ≤T  (2) 
 Rx ≤  (3)  
 rx ≥  (4) 

where 

 T
Nxx ),,( 1 L=x  

 T
LCC ),,( 1 L=C  

 T
NRR ),,( 1 L=R  

 T
Nrr ),,( 1 L=r . 

The inequality (2) expresses the link capacity 
constraints, that is, the aggregate of data rates of flows 
that use a link cannot exceed the capacity of the link. 
Bandwidth requirements of each flow are represented 
by inequality (3) and (4). 

We assume that the sum of minimum bandwidths of 
flows that go through a link cannot exceed the capacity 
of the link (i.e. CrA ≤T ), otherwise the solution set 
defined by inequalities (2), (3), and (4) is empty and 
thus there is no solution for Problem P. 

Assumption 1: The bandwidth requirements of flows are 
feasible for the network, that is, CrA ≤T . 

We further relax the constraint (4) to be 0≥x , and 
will apply it later in global admission conditions. Hence 
the optimization problem P is defined on the set that is 
nonempty, convex, and compact. It implies that the 
solution to optimization problem P exists on the set 
defined on the relaxed constraints. 

Apparently, when the bandwidth capacities of the 
links of the network are over-provisioned, meaning that 

CRA ≤T ; the optimal solution to the Problem P is 
).,,( 1 NRR L& =x  It implies that there are no 

congestions in the network. We believe that bandwidth 
capacities of network links are scarce resources, and 
over-provisioning of bandwidth capacities is an 
unlikely situation. We are interested to solve the 
problem that congestions do occur in the network. 
Therefore, we make the following assumption. 

Assumption 2: There exists an ij J∈  for flow i, 

Ni  , 1,L= , such that jk CR
jk ≥∑ ∈I . 

Assumption 2 implies that there is at least one 
bottleneck link j on the route of flow i, for all 

Ni  , 1,L= . 

Let ),,( λµxL  denote the Lagrangian where 0≥jµ , 

Lj  , 1,L=  and 0≥iλ , Ni  ,1,L=  are the Lagrange 
multipliers associated with the constraint (2) and (3), 
respectively. Then 

)()()(),,( RxλCxAµxλµx −−−−= TTTUL  

The first-order Kuhn-Tucker conditions [23] are: 
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0)( =− iii Rxλ ,            0≥iλ , Ni  , 1,L= , 

0)( =−∑
∈

j
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kj Cx
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µ ,      0≥jµ ,  Lj  , 1,L= , 

0≥ix ,        Ni  , 1,L= . 

Under the assumption 1 and assumption 2, we see 
that the constraint Rx ≤  is inactive and hence 0=iλ  
for all Ni  , 1,L= ; and there exists an ij J∈  for flow i, 

Ni  , 1,L=  such that 0)( =−∑ ∈ jk k Cx
jI  and 0>jµ . 

Hence, we have a solution of Problem P: 
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and 
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∈
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kj Cx
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&µ ,   0≥jµ ,   Lj  , 1,L= , (6) 

From the network model, we have shown that when 
there is no congestion in the network, each flow is 
allocated the maximum bandwidth that is the bandwidth 
capacity purchased by the user. When there is at least 
one bottleneck link on the route of a flow, the 
bandwidth allocation is given from the relation (5) and 
(6). We will show in the next section that this 
bandwidth allocation is fair with respect to the 
bandwidth capacities purchased by users.  

3. Bandwidth Capacity Fairness 

In this section we present the bandwidth capacity 
fairness for the bandwidth allocation resulting from the 
solution of Problem P. Bandwidth α-fairness [3, 13] 
have been proposed to be the criterion for elastic 
network. In the elastic networks, there are no 
constraints of bandwidth capacity for each user. The 
bandwidth allocation is only constrained by the 
capacities of the network links. The bandwidth capacity 
fairness is used for a market where bandwidth 
capacities are sold to users at the edge of networks, for 
example, revenue optimization problems for service 
providers described in [4, 6, 11]. The fairness captures 
the essence that fair bandwidth allocation should be 
aggregately close to the bandwidth capacities that have 
been purchased by the users. 

Definition bandwidth capacity α-fair: Let 
T

Nww ),,( 1 L=w  be positive numbers, α is the 
intensity factor and a number on the interval ),1( ∞ . A 

vector of data rates T
Nxx ),,( 1 &L&& =x  is bandwidth 

capacity α-fair if it is feasible, that is, CxA ≤&T , 
Rx ≤& , and 0≥x& , and if for any other feasible vector x  

 ∑
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We give the following proposition to show the 
relationship between the solution of Problem P and the 
definition. 

Proposition 1: Under the assumption 1 and 2, the 
solution to Problem P is bandwidth capacity α-fair. 

Proof: Let x& be the solution of Problem P under the 
assumption 1 and 2. We rewrite identity (5) to be 

 ∑
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Multiplying identity (8) by )( ii xx &−  and summing 
over i, we obtain  
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Summing identity (6) over j and rearrange the terms, 
we have CµxAµ TTT =& . Multiplying inequality (2) by 

Tµ , we get CµxAµ TTT ≤ . Combining these relations, 
we obtain  

xAµCµxAµ &TTTTT =≤ . 

Hence, 0)( ≤− xxAµ &TT , and combining this 
inequality with identity (9). We establish that 

0
)(

≤
−

−∑
∈Ni ii

ii
i xR

xx
w α&

&
. 

We have shown that the solution of Problem P is 
bandwidth capacity α-fair. ■ 



When we define the user’s utility function, the 
weight of the utility function have not been given yet. 
We will determine the weight and formally define the 
utility function in the next section.  

4. The utility function 

We have shown that if there is no congestion on the 
route of flow i, the bandwidth allocated to the flow is 

iR , which is the maximum bandwidth for flow i. When 
congestion does occur at link j, the Lagrange multiplier 

0>jµ  is a positive number in the solution of Problem 
P. From microeconomic theory, we know that the 
Lagrange multipliers in identity (5) and (6) can be 
interpreted to be the marginal costs for capacity 
expansion at each link [23, 24]. Therefore we interpret 
the price ip  paid by user i to be the average aggregate 
of marginal costs for flow i, that is, 

 ∑
∈

=
ij

j
i

i m
p

J
µ1 ,   0>jµ ,   Ni  , 1,L= , (10) 

where iim J=  is the number of links that flow i goes 
through. The price paid by a user requires the network 
to guarantee that the user is allocated the minimum 
bandwidth ir  even when congestion occurs at every 
link that flow i goes through (i.e., 0>jµ , for all 

ij J∈ ). Hence, combining identity (5) and (10), and let 

ii rx =& , we have 
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Then, we obtain  

α)( iiiii rRpmw −= ,    Ni  , 1,L= . 

Hence, we formally define the utility function as 
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In the next section, we will clarify that parameter α 
is the intensity factor, which represents the intensity of 
the effect that network congestion status and prices are 
on the bandwidth allocations. 

We set the price for an individual flow to be the 
average aggregate of the marginal costs, instead of 
aggregate of marginal costs, for the flow to be allocated 
the required minimum bandwidth, since we believe this 
price is rational. To explain this, we consider a linear 
network depicted in  
Figure 1. In the figure, the circles represent links and 
lines represent the routes. The linear network consists 
of m links with the same capacity C. The flow 0x  
crosses every link, and flow kx  uses link k alone, for 
all mk  , 1,L= . All the flows request the same 
bandwidth capacity R and minimum bandwidth r.  

 
Figure 1.  Linear network 

The price we considered is charged by a network 
service provider at the edge of the network. Each flow 
concerns only the data rate allocated to it under the 
conditions of its bandwidth requirements and the price 
charged. Since all the flows require the same bandwidth 
capacity and minimum bandwidth, each flow should be 
charge the same price p for all the flows. It is also 
rational to expect that the bandwidth allocated to each 
flow should be the same. 

Suppose that RCr 22 ≤≤ , so that congestion occurs 
at every link and a feasible bandwidth allocation exists. 
When we let the price be the aggregate of marginal 
costs for a flow to be allocated minimum bandwidth, 
the weight of the utility function should be set to 

prRw α)( −= , for all the flows. The bandwidth 
allocation from the solution of Problem P is: 
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 Cxx k =+ &&0 ,                      mk  , 1,L= , 
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Thus, eliminating the Langrage multiplier, the 
bandwidth for flow 0 is  

α10 1
1)2(
m

CRRx
+

−−=& , 



and bandwidth for all other flows  

α

α

1

1

1
)2(

m
mCRRxk
+

−−=& ,     mk  , 1,L= . 

Apparently, the flow 0 is allocated more bandwidth 
than that of each other flow. It contradicts our 
expectation that the bandwidths should be the same, 
since all the flows require the same bandwidth capacity 
and minimum bandwidth, and the prices charged are 
also the same. 

When we let the price be the average aggregate of 
marginal costs for a flow to be allocated minimum 
bandwidth, the weight of the utility function should be 
set to prRmw α)(0 −=  for flow 0, and 

prRwk
α)( −=  for flows mk  , 1,L= . Thus, all the 

flows are allocated the same bandwidth, that is, the half 
of the link capacity, 2Cxk =& , for all the flows, 

mk  , 1, ,0 L= . It is the rational bandwidth allocation 
we expect. Therefore, a flow’s price charged at the edge 
of the network should be the average aggregate of 
marginal costs when congestions occur at every link on 
the route of the flow.  

5. Global admission conditions 

To obtain the solution of Problem P, in section 1 we 
relaxed the minimum bandwidth constraints for all the 
flows. When we apply the minimum bandwidth 
constraint (4) to the solution of Problem P and if the 
solution still satisfies the minimum bandwidth 
constraint (4), apparently the network is able to admit 
all the flows and each flow is allocated a data rate that 
is above its minimum bandwidth. Thus, we can obtain a 
global admission conditions from the solution of 
Problem P. 

Combining identity (5) and (11), we have  
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ij jiii pm J µρ denote the price congestion ratio. 

The bandwidth ix&  allocated to flow i is guaranteed to 
be between bandwidth capacity iR  and minimum 
bandwidth ir  when the price congestion ratio satisfies 
the relation: 10 ≤≤ iρ , Ni  , 1,L= .  Apparently, the 
price congestion ratios are determined by the prices that 
users paid and the current congestion status of the 
network. 

Proposition 2. Global admission conditions: Flows, 
which are willing to pay price ip  and require 
bandwidth capacity iR  and minimum bandwidth ir  for 
all Ni  , 1,L= , are able to be admitted into the network, 
if the global admission conditions are satisfied: 

 10 ≤≤ iρ ,     Ni  , 1,L=  (12) 

where  
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and the bandwidth allocation x&  for all flows is 
bandwidth capacity α-fair, and are given by: 

 iiiii rRx ββ +−= )1(& ,    Ni  , 1,L= , (13) 
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j
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ii = ,    Ni  , 1,L= . (15) 

Proof: Apparently, identity (13) and (14) are the 
solution of problem P. Hence, the bandwidth allocation 
is bandwidth capacity α-fair. Combining the global 
admission conditions (12), identity (13), (14), and (15), 
it shows that the bandwidth allocation meets the 
bandwidth requirement, Rxr ≤≤ & , and link capacity 
constraint, CxA ≤&T ,  for all flows. Therefore, 
admitting the flows does not violate any bandwidth 
requirements and the flows are able to be admitted into 
the network. ■ 

Price congestion ratios in the global admission 
conditions reflect the congestion status of the network. 
After the flows are admitted, the allocated data rates are 
effected by iβ  for all Ni  , 1,L= . From identity (15), 
we know that 0=iβ  when the intensity factor is 
infinite (i.e., ∞→α ). This implies that the congestion 



status of the network has no impact on the bandwidth 
allocation for all flows. And each flow is allocated the 
maximum required bandwidth, the bandwidth capacity. 
The global admission conditions degenerate to be the 
link capacity constraints only, that is, jk k CR

j
≤∑ ∈I , 

Lj  , 1,L= . Note that this bandwidth allocation is the 
same as that when there is no congestion in the network. 
It implies that when bandwidth requirements of flows 
will cause congestion in the network, the network 
cannot admit the flows. We have ii ρβ = , Ni  , 1,L=  
when 1→α , such that the congestion status has the 
most strong impact on the bandwidth allocation after 
the flows are admitted. Therefore, we show that the 
parameter α is the intensity factor of user’s utility 
function. 

When the congestion status has no impact on the 
bandwidth allocation, each link is able to make 
admission decision based on its local information of 
flows, and consequently this leads to a distributed 
admission algorithm. Hence, the admission conditions 
are distributed admission conditions when ∞→α . 
Each admitted flow is strictly allocated a data rate that 
is its required bandwidth capacity. The network loses 
the flexibility to service more flows with data rates that 
are lower than their bandwidth capacities. Therefore 
setting the intensity factor be infinite is a unlike 
situation for the network. 

For a given a set of flows with feasible bandwidth 
requirements, prices of the flows are the decision 
variables of the global admission condition (12). It 
reflects the global price competitions among feasible 
bandwidth requirements when congestions exist in the 
network. When there is no congestion in the network, 
all flows can be admitted into network, and each flow is 
assigned a data rate of its bandwidth capacity. Prices do 
not play any role for admission decision and bandwidth 
allocation. The prices are charged for the network to 
guarantee admitted flows to be allocated data rates that 
are greater than or equal to their minimum bandwidths. 

To explain the admission conditions and show the 
price competitions among feasible flows, we consider a 
simple network of a single link and two flows. Suppose 
that the link capacity is C, the first flow pays a price 1p  
and requests bandwidth capacity 1R  and minimum 
bandwidth 1r , and the second flow pays a price 2p , 
and requests bandwidth capacity 2R  and minimum 
bandwidth 2r . Of course, we should also assume that 

CRi ≤ , 2 ,1=i , and Crr ≤+ 21  such that it is feasible 
for the two flows to compete for sharing the link. When 

the link is only used by one of the flows, the flows is 
assigned the bandwidth ii Rx =& , 2 ,1=i . When the two 
flows attempt to share the link, congestion occurs at the 
link, assuming CRR ≥+ 21 . Thus, the global 
admission conditions are: 
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Combining equation (17), (18) and (19), we obtain 
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Bringing 1ρ  and 2ρ  into the relation (16), and 
rearranging the terms, we obtain that the two flows is 
able to share the link if the following relations are 
satisfied: 
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These inequalities show that the prices are 
constrained by bandwidth requirements, and the price 
ratio determines whether the two flows are able to share 
the link, In other words, the network is able to admit the 
two flows if the price ratio satisfies the relation (20) and 
(21).  



To use the link efficiently, it is rational for us to 
suppose that CRR == 21 . Hence, the price ratio is 
constrained with the relation: 
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When Crr <+ 21 ,  the relation (22) reflects the price 
competition between the two flows. When the price 
ratio )()( 12

1
21 rCrpp −=α , the bandwidth 

allocation favors flow 1, 21 rCx −=&  and 22 rx =& . When 

the price ratio 12
1

21 )()( rrCpp −=α , flow 2 is 
allocated better data rate 12 rCx −=& , and 11 rx =& . 

When Crr =+ 21 , the relation (22) requires that the 
two flows must be charged the same price for them to 
share the link, and each flow is allocated the minimum 
bandwidth, 11 rx =&  and 22 rx =& . It shows that the prices 
are for the network to allocate flows the guaranteed 
minimum bandwidths. 

6. Distributed admission conditions 

When networks admit flows and allocate bandwidths 
to admitted flows as given in global admission 
conditions, a global algorithm has to be used to 
implement the admission control and bandwidth 
allocation. Unfortunately, global algorithm is, if not 
impossible, very difficult to be implemented for large 
networks. All the flows need to have perfect 
information of the network to make decision on their 
prices and bandwidth requirements. We have to 
consider a distributed algorithm for admission control, 
which is also related to distributed bandwidth allocation. 
In this section, we present distributed admission 
conditions and bandwidth allocation, which is 
asymptotically optimal. 

The network’s objective is to maximize the social 
welfare for the network. We rewrite the total utility of 
the network with respect to the utility function (11): 
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The vector jx  is the flows that go through link j. 
Thus, the total utility of the network is represented as 
the aggregate utilities of all the links. When a link 
consider maximizing its social welfare independently, 
we form the optimization Problem jP : 
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where Lj  , 1,L= . In the same way we resolve 
Problem P, we first relax the lower bound constraint of 
flows to be just positive. The Lagrangian is given by 
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The first-order Kuhn-Tucker conditions [23] are: 
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The bandwidth allocated to flow i at link j is given by 
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where ji I∈  and Lj  , 1,L= . Suppose that the 

bandwidth ix  allocated by the network to flow i is the 
minimum bandwidth allocated among the links that the 
flow goes through. We obtain the bandwidth ix  of flow 
i: 

 }|ˆmin{ i
j

ii jxx J== ,    Ni  , 1,L= , (24) 

and j
ix̂  is the solution from identity (23). The network 

utility for the bandwidth allocation x  is less than or 
equal to that of the optimal bandwidth allocation x& : 

 )()()( xxx L
&UUU j
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where T
Nxxx ),,,( 21 L=x , and x&  is the optimal 

bandwidth allocation of Problem P. Obviously, when a 
flow or more flows in the network are allocated 
bandwidths that are the flows’ bandwidth capacities 
(i.e., ii Rx = , for some N∈i ), the relation (25) reaches 
the equality, ∞== )()( xx &UU . When the network is 
fully loaded with all the flows being allocated the 
minimum bandwidths, rxx ==& , the relation (25) 
reaches the equality again. Thus, the bandwidth 
allocation x  is asymptotical optimal with respect to the 
optimal solution of Problem P. 

The advantage of the bandwidth allocation x  is that 
a distributed algorithm can be developed for the 
bandwidth allocation, which also leads to a distributed 
admission control. Note that the algorithm given in (23) 
needs only the local information of link j. Thus, each 
link is able to allocate bandwidth to the flows that go 
through the link with the local information of the link. 
The network allocates flow i the bandwidth ix  that is 
given in (24), which is able to be determined by a round 
trip probe along the route of the flow. 

Proposition 3. Distributed admission conditions: The 
flows at link j are willing to pay price ip , and require 
bandwidth capacity iR  and minimum bandwidth ir , for 
all ji I∈ ,  

(a) if jk CR
jk <∑ ∈I  , link j is not a congestion link. 

Link j is able to admit the flows and allocate flow i 
bandwidth  i

j
i Rx =ˆ , for all ji I∈ . 

(b) if jk CR
jk ≥∑ ∈I  , link j is a congestion link. Link 

j is able to admit the flows and the bandwidth allocation 
satisfies bandwidth requirements of the flows if the 
following conditions are satisfied:   
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And link j is able to allocate flow i bandwidth   
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Proof: When link j is not a congestion link, it is obvious 
as it stands in (a). We only need to show that when 
condition (26) and (27) are satisfied, the bandwidth 
allocation meets the bandwidth requirements of the 
flows. The bandwidth allocation has a feasible solution 
to Problem jP  when condition (26) is satisfied. 
Suppose condition (26) is satisfied, eliminating jµ  
from identity (23), we obtain a bandwidth allocation 
given in (28). Applying the minimum bandwidth 
constraints to bandwidth allocation (28) to let i

j
i rx ≥ˆ , 

for all ji I∈ , we obtain the condition (27). Hence, 
when condition (27) is satisfied, the bandwidth 
allocation meets the bandwidth requirements of flows, 
i.e., i

j
ii Rxr ≤≤ ˆ , for all ji I∈ . Therefore, the link is 

able to admit the flows and the bandwidth allocation is 
given in (28).  ■ 



In the admission condition (27), the prices are the 
decision variables for given bandwidth requirements of 
flows. This reflects the price competition among flows 
at each link. While each link makes admission decision 
independently with its local information, a flow is 
admitted into the network when the flow is admitted by 
all the links that the flow goes through, and the 
bandwidth allocated to the flow by the network is given 
in (24).  

The distributed admission control is particularly 
useful for Diffserv since each link make bandwidth 
allocation decisions locally.  Flows in DiffServ are 
marked into a small number of service classes. Each 
service class has the same bandwidth requirements. We 
consider a network that accommodates two service 
classes with different bandwidth requirements. Each 
class requires bandwidth capacity 1R , 2R  and 
minimum bandwidth 1r , 2r , respectively. Flows are 
charged 1p  for flows in class 1, and 2p  for flows in 
class 2. Suppose that link j is a congestion link and 
admission condition (26) is satisfied at the link. Thus, 
admission condition (27) becomes: 
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 01 ≥n ,    02 ≥n . (31) 

where 1n  and 2n  are the numbers of flows in class 1 
and class 2, respectively. Admission condition (29), 
(30), and (31) defines a feasible set of ),( 21 nn  depicted 
in Figure 2. The shaded areas are sets of ),( 21 nn  that 
are numbers of flows in class 1 and class 2, respectively. 
When the flow numbers ),( 21 nn  is in the shaded areas, 
link j is able to admit the flows and allocate bandwidth 
given by 
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where 2 ,1=i , and j
ix̂  is guaranteed to meet the 

bandwidth requirements of the admitted flows in class 1 
and class 2. 
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Figure 2. The feasible set of flow numbers with 
different price ratios. 

In Figure 2, it also shows that price ratio can affect 
the feasible set of flow numbers in each class. The 
shaded area in picture (a) is the feasible set of flow 
numbers when the price ratio satisfies the relation, 
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picture (b) gives the feasible set of flow numbers when 
the price ratio satisfies the relation,   
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picture (c) gives the feasible set of flow numbers when 
the price ratio satisfies the relation, 
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Therefore, given the prices and bandwidth 
requirements of each class, network links can determine 
the numbers of flows that the link can admit. The 
admitted flows are guaranteed to be allocated data rates 
that are greater than or equal to their minimum 
bandwidth requirements.  



7. Conclusion 

In this paper we have presented a theoretic 
framework for admission control and bandwidth 
allocation at network links to meet network users’ 
bandwidth requirements with a price charged by a 
network service provider at the edge of the network. A 
utility function was defined to capture the bandwidth 
demands of network users when users are charged 
prices for finite network capacities at the edge of the 
network. An optimization framework leads to fair 
bandwidth allocation and global admission condition, in 
which the prices are the decision variables for given 
sets of feasible bandwidth requirements. We have also 
provided a distributed admission condition and 
bandwidth allocation, which is asymptotically optimal 
with respect to the global optimal bandwidth allocation. 
We have shown that when the network only needs to 
accommodate a small number of service classes, a 
bounded set of the numbers of flows that are able to be 
admitted into the network can be easily deduced from 
the distributed admission condition, and the bounds of 
the set is determined by bandwidth requirements and 
the price ratios of the service classes. 
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