
Design and Implementation of Firewall Policy Advisor Tools

Ehab S. Al-Shaer and Hazem H. Hamed
Multimedia Networking Research Laboratory

School of Computer Science, Telecommunications and Information Systems
DePaul University, 243 S Wabash Ave, Chicago, IL 60604

Tel: (312)362-5137
{ehab, hhamed}@cs.depaul.edu

Abstract
Firewalls are core elements in network security. However, managing firewall rules, especially
for enterprise networks, has become complex and error-prone. Firewall filtering rules have to be
carefully written and organized in order to correctly implement the security policy. In addition,
inserting or modifying a filtering rule requires thorough analysis of the relationship between this
rule and other rules in order to determine the proper order of this rule and commit the updates. In
this paper, we present a set of techniques and algorithms that provide (1) automatic anomaly
detection for discovering rule conflicts and potential problems in legacy firewalls, (2) anomaly-
free policy editing for rule insertion, modification and removal, and (3) concise translation of
filtering rules to high-level textual description for user visualization and verification. This is
implemented in a user-friendly tool called “Firewall Policy Advisor.” The firewall policy advisor
significantly simplifies the management of any generic firewall policy written as filtering rules,
while minimizing network vulnerability due to firewall rule misconfiguration.

Keywords: firewall, security management, security policy, policy conflict.

Design and Implementation of Firewall Policy Advisor Tools

Ehab S. Al-Shaer and Hazem H. Hamed
Multimedia Networking Research Laboratory

School of Computer Science, Telecommunications and Information Systems
DePaul University, Chicago, IL 60604

{ehab, hhamed}@cs.depaul.edu

Abstract
Firewalls are core elements in network security. However, managing firewall rules, especially for enterprise networks, has
become complex and error-prone. Firewall filtering rules have to be carefully written and organized in order to correctly
implement the security policy. In addition, inserting or modifying a filtering rule requires thorough analysis of the
relationship between this rule and other rules in order to determine the proper order of this rule and commit the updates. In
this paper, we present a set of techniques and algorithms that provide (1) automatic anomaly detection for discovering rule
conflicts and potential problems in legacy firewalls, (2) anomaly-free policy editing for rule insertion, modification and
removal, and (3) concise translation of filtering rules to high-level textual description for user visualization and
verification. This is implemented in a user-friendly tool called “Firewall Policy Advisor.” The firewall policy advisor
significantly simplifies the management of any generic firewall policy written as filtering rules, while minimizing network
vulnerability due to firewall rule misconfiguration.

Keywords: firewall, security management, security policy, policy conflict.

1. Introduction
With the global Internet connection, network security has gained significant attention in the research

and industrial communities. Due to the increasing threat of network attacks, firewalls have become
important integrated elements not only in enterprise networks but also in small-size and home networks.
Firewalls have been the frontier defense for secure networks against attacks and unauthorized traffic by
filtering out unwanted network traffic coming into or going from the secured network. The filtering
decision is taken according to a set of ordered filtering rules defined based on predefined security policy
requirements.

Although deployment of firewall technology is an important step toward securing our networks, the
complexity of managing firewall rule policy might limit the effectiveness of firewall security. When the
filtering rules are defined, serious attention has to be given to rule relations and interactions in order to
determine the proper rule ordering and guarantee correct security policy semantics. As the number of
filtering rules increases, the difficulty of writing a new rule or modifying an existing one also increases. It
is very likely; in this case, to introduce conflicting rules such as rules having the same filtering part but
different actions, one general rule shadowing another specific related rule, or correlated rules whose
relative ordering determines different actions for the same packets. In addition, a typical large-scale
enterprise network might involve hundreds of rules that might be written by different administrators in
various times. This significantly increases the potential of anomalies (conflicts) in the firewall rules and
makes the network more vulnerable.

Therefore, the effectiveness of firewall security is dependent on providing policy management
techniques/tools that enable network administrators to analyze, purify and verify the correctness of
written firewall legacy rules. In this paper, we define a formal model for firewall rule relations and their
filtering representation. The proposed model is simple and visually comprehensible. We use this model to
develop an anomaly discovery algorithm to report any anomaly that exists among the filtering rules. We
then develop anomaly-free firewall rule editing, which greatly simplifies adding and modifying rules into

2/21

firewall policy. We finally develop a policy translator that gives a concise textual description of the entire
policy rules for user verification. We used the Java programming language to implement these algorithms
in one graphical user-interface tool called “Firewall Policy Advisor.”

Although firewall security has been given strong attention in the research community, the emphasis
was mostly on the filtering performance and hardware support issues [4, 7, 9, 10, 16]. On the other hand,
few related work [5, 9] present a resolution for the correlation conflict problem only. Other approaches [2,
1, 11, 13, 17] propose using a high-level policy language to define and analyze firewall policies and then
mapping this language to filtering rules. Firewall query-based languages based on filtering rules are also
proposed in [6, 10]. So in general, we consider our work a new progress in this area because it offers new
techniques for complete anomaly detection, rules editing and translation that can be used on legacy
firewall policies of low-level filtering rule representation.

This paper is organized as follows. In Section 2, we give an introduction to firewall operation and
filtering rule format. In Section 3, we formally define filtering rule relations, and we present our proposed
model of filtering rule relations and the policy tree representation. In Section 4, we classify and define
firewall policy anomalies, and then we describe the anomaly detection algorithm and implementation. In
Section 5, we present the design and implementation of anomaly-free firewall rules editor. In Section 6,
we present the firewall policy translator. In Section 7, we give a summary of related work. Finally, in
Section 8, we show our conclusions and our future work plan.

2. Firewall Background
A firewall is a network element that controls the traversal of packets across the boundaries of a

secured network based on a specific security policy. A firewall security policy is a list of ordered filtering
rules that define the actions performed on matching packets. A rule is composed of filtering fields (also
called network fields) such as protocol type, source IP address, destination IP address, source port and
destination port, and a filter action field. Each network field could be a single value or range of values.
Filtering actions are either to accept, which passes the packet into or from the secure network, or to deny,
which causes the packet to be discarded. The packet is accepted or denied by a specific rule if the packet
header information matches all the network fields of this rule. Otherwise, the next following rule is used
to test the matching with this packet again. Similarly, this process is repeated until a matching rule is
found or the default policy action is performed. In this paper, we assume a “deny” default policy action.

Filtering Rule Format. It is possible to use any field in IP, UDP or TCP headers in the rule filtering part,
however, practical experience shows that the most commonly used matching fields are: protocol type,
source IP address, source port, destination IP address and destination port. Some other fields, like TTL
and TCP flags, are occasionally used for specific filtering purposes. The following is the common format
of packet filtering rules in a firewall policy:

<order> <protocol> <src_ip> <src_port> <dst_ip> <dst_port> <action>

In this paper, we refer to the fields in the shaded box as “5-tuple filter” or “network fields”,
interchangeably. The order of the rule determines its position relative to other filtering rules. The protocol
specifies the transport protocol of the packet, and can be one of these values: IP, ICMP, IGMP, TCP or
UDP. The src_ip and dst_ip specify the IP addresses of the source and destination of the packet
respectively. The IP address can be a host (e.g., 140.192.37.120), or a network address (e.g.,
140.192.37.∗). The src_port and dst_port fields specify the port address of the source and destination of
the packet respectively. The port can be either a single specific port number, or any port number indicated
by “any”. As an example, the following security policy is to block all TCP traffic coming from the
network 140.192.37.∗ except HTTP:

1: tcp, 140.192.37.∗, any, ∗.∗.∗.∗, 80, accept
2: tcp, 140.192.37.∗, any, ∗.∗.∗.∗, any, deny

3/21

Some firewall implementations allow the usage of non-wildcard ranges in specifying source and
destination addresses or ports. However, it is always possible to split a filtering rule with a multi-value
port field into several rules each with a single-value port field. In this paper, we use only wildcard ranges.
We also assume a statefull firewall; i.e. if a TCP connection is accepted, all incoming and outgoing
packets that belong to the connection are accepted as well.

3. Firewall Policy Modeling
As a basic requirement for any firewall policy management solution, we first modeled the relations

and the representation of firewall rules in the policy. This model is complete (i.e., means includes all rules
possible in any firewall policy) and efficient (i.e., means easy to implement and easy to use). Rule relation
modeling is necessary for analyzing firewall policy and designing management techniques such as
conflict detection and rules editing. The rules or policy representation modeling is important for
implementing these management techniques and visualizing the firewall policy structure. In this section,
we describe formally our model of firewall rule relations and policies.

3.1. Formalization of Firewall Rule Relations

To be able to build a useful model for filtering rules, we need to determine all the relations that may
relate two or more packet filters. In this section we define all the possible relations that may exist between
filtering rules, and we prove that there is no other relation exists. We determine the relations based on
comparing the network fields of filtering rules. The values of the same field in two different rules may be
equal, inclusive or distinct. Two values are equal if they exactly match, and are inclusive if one value is a
subset of, and not equal, the other (superset), and are distinct otherwise. Two fields match if they are
equal or inclusive. For examples, a source address value of 140.192.37.10 matches 140.192.37.∗ and does
not match 140.192.37.20.

Definition 1: Rules Rx and Ry are exactly matched if every field in Rx is equal to the corresponding field
in Ry. Formally:

Rx exactly matches Ry iff
∀ i: Rx[i] = Ry[i] where i ∈ {protocol, src_ip, src_port, dst_ip, dst_port}

For example, rule 1 and rule 2 below are exactly matched since all corresponding fields in both rules are
equal.

1: tcp, 140.192.37.10, any, 163.122.51.∗, 21, accept
2: tcp, 140.192.37.10, any, 163.122.51.∗, 21, deny

Definition 2: Rules Rx and Ry are inclusively matched if they do not exactly match and if every field in Rx
is a subset or equal to the corresponding field in Ry. Formally:

Rx inclusively matches Ry iff
∀ i : Rx[i] ⊆ Ry[i] and ∃ j such that: Rx[j] ≠ Ry[j]

where i, j ∈ {protocol, src_ip, src_port, dst_ip, dst_port}
In this relation, Rx is called the subset match while Ry is called the superset match. For example, rule 1
and rule 2 below are inclusively matched since they do not exactly match and every field in rule 1 is a
subset or equal to the corresponding field in rule 2. Rule 1 is the subset match of the relation while rule 2
is the superset match.

1: tcp, 140.192.37.10, any, 163.122.51.∗, 80, accept
2: tcp, 140.192.37.∗, any, 163.122.51.∗, any, deny

4/21

RyRx

Ry

Rx

Rx Ry Rx Ry

Inclusively matched rulesCompletely disjoint rules Partially disjoint (or
partially matched) rules

Correlated rules

Figure 1. Relations between two filtering rules Rx and Ry.

Definition 3: Rules Rx and Ry are completely disjoint if every field in Rx is not a subset and not a superset
and not equal to the corresponding field in Ry. Formally:

Rx and Ry are completely disjoint iff
∀ i: Rx[i] 6./ Ry[i] where ./∈ {⊂, ⊃, =}, i ∈ {protocol, src_ip, src_port, dst_ip, dst_port}

For example, rule 1 and rule 2 below are completely disjoint since all corresponding fields in both rules
are distinct.

1: tcp, 140.192.37.10, 2000, 163.122.51.50, 80, accept
2: udp, 140.192.37.20, 3000, 163.122.51.60, 21, accept

Definition 4: Rules Rx and Ry are partially disjoint (or partially matched) if there is at least one field in Rx
that is a subset or a superset or equal to the corresponding field in Ry, and there is at least one field in Rx
that is not a subset and not a superset and not equal to the corresponding field in Ry. Formally:

Rx and Ry are partially disjoint (or partially matched) iff
∃ i, j such that: Rx[i] ./ Ry[i] and Rx[j] 6./ Ry[j]

where ./ ∈ {⊂, ⊃, =} and i, j ∈ {protocol, src_ip, src_port, dst_ip, dst_port}

For example, rule 1 and rule 2 below are partially disjoint (or partially matched) since all fields in rule 1
are related to the corresponding fields in rule 2 except the destination port field.

1: tcp, 140.192.37.10, any, ∗.∗.∗.∗, 80, accept
2: tcp, 140.192.37.∗, any, ∗.∗.∗.∗, 21, deny

Definition 5 Rules Rx and Ry are correlated if some fields in Rx are subsets or equal to the corresponding
fields in Ry, and the rest of the fields in Rx are supersets of the corresponding fields in Ry. Formally:

Rx and Ry are correlated iff
 ∀ i: Rx[i] ./ Ry[i] and
∃ i, j such that: Rx[i] ⊂ Ry[i] and Rx[j] ⊃ Ry[j]

where ./ ∈ {⊂, ⊃, =} and i, j ∈ {protocol, src_ip, src_port, dst_ip, dst_port}

For example, Rule 1 and rule 2 below are correlated since they have the same protocol, source and
destination ports, and the source address of rule 1 is a subset of the corresponding fields in rule 2 , and the
destination address of rule 1 is a superset of that of rule 2.

1: tcp, 140.192.37.10, any, ∗.∗.∗.∗, 80, accept
2: tcp, ∗.∗.∗.∗, any, 140.192.37.∗, 80, deny

The diagrams shown in Figure 1 illustrate these relations between two filtering rules, Rx and Ry. Below we
give an intuition of our proof that there is no other relation between Rx and Ry could exist.
We define symbols the filter relations as follows. ℜEM: exact match, ℜIM: inclusive match,
ℜCD: completely disjoint, ℜPD: partially disjoint and ℜC: correlated.

Lemma 1. The relation between any two 2-tuple filters must be one of the defined relations.
Proof. For any two 2-tuple filters Rx and Ry, the relation between them is based on the relations between
the fields. Any two fields can be related with relation ℜ where ℜ ∈ {=, ⊂, ⊃}.
All possible relations between the fields of Rx and Ry are:

5/21

If Rx[field1] = Ry[field1] and Rx[field2] = Ry[field2] then Rx ℜEM Ry
If Rx[field1] = Ry[field1] and Rx[field2] ⊂ Ry[field2] then Rx ℜIM Ry
If Rx[field1] = Ry[field1] and Rx[field2] ⊃ Ry[field2] then Ry ℜIM Rx
If Rx[field1] = Ry[field1] and Rx[field2] ℜ Ry[field2] then Rx ℜPD Ry
If Rx[field1] ⊂ Ry[field1] and Rx[field2] = Ry[field2] then Rx ℜIM Ry
If Rx[field1] ⊂ Ry[field1] and Rx[field2] ⊂ Ry[field2] then Rx ℜIM Ry
If Rx[field1] ⊂ Ry[field1] and Rx[field2] ⊃ Ry[field2] then Ry ℜC Rx
If Rx[field1] ⊂ Ry[field1] and Rx[field2] ℜ Ry[field2] then Rx ℜPD Ry
If Rx[field1] ⊃ Ry[field1] and Rx[field2] = Ry[field2] then Ry ℜIM Rx
If Rx[field1] ⊃ Ry[field1] and Rx[field2] ⊂ Ry[field2] then Rx ℜC Ry
If Rx[field1] ⊃ Ry[field1] and Rx[field2] ⊃ Ry[field2] then Ry ℜIM Rx
If Rx[field1] ⊃ Ry[field1] and Rx[field2] ℜ Ry[field2] then Rx ℜPD Ry
If Rx[field1] ℜ Ry[field1] and Rx[field2] = Ry[field2] then Rx ℜPD Ry
If Rx[field1] ℜ Ry[field1] and Rx[field2] ⊂ Ry[field2] then Rx ℜPD Ry
If Rx[field1] ℜ Ry[field1] and Rx[field2] ⊃ Ry[field2] then Ry ℜPD Rx
If Rx[field1] ℜ Ry[field1] and Rx[field2] ℜ Ry[field2] then Rx ℜCD Ry
From the above conditions we can see that Rx and Ry are always related with one of the relations defined
before.

Lemma 2. Adding one more field to any two filters related with one of the defined relations will create
two filters related by one of the defined relations.
Proof. For any two k-tuple filters Rx and Ry, if fieldk+1 is added to both filters we have two new filters Rx`
and Ry`. If Rx and Ry are related by one of the defined relations, then all possible relations between Rx`
and Ry` are:
If Rx ℜEM Ry and Rx[fieldk+1] = Ry[fieldk+1] then Rx` ℜEM Ry`
If Rx ℜEM Ry and Rx[fieldk+1] ⊂ Ry[fieldk+1] then Rx` ℜIM Ry`
If Rx ℜEM Ry and Rx[fieldk+1] ⊃ Ry[fieldk+1] then Ry` ℜIM Rx`
If Rx ℜEM Ry and Rx[fieldk+1] ℜ Ry[fieldk+1] then Rx` ℜPD Ry`
If Rx ℜIM Ry and Rx[fieldk+1] = Ry[fieldk+1] then Rx` ℜIM Ry`
If Rx ℜIM Ry and Rx[fieldk+1] ⊂ Ry[fieldk+1] then Rx` ℜIM Ry`
If Rx ℜIM Ry and Rx[fieldk+1] ⊃ Ry[fieldk+1] then Ry` ℜC Rx`
If Rx ℜIM Ry and Rx[fieldk+1] ℜ Ry[fieldk+1] then Rx` ℜPD Ry`
If Rx ℜCD Ry and Rx[fieldk+1] = Ry[fieldk+1] then Rx` ℜPD Ry`
If Rx ℜCD Ry and Rx[fieldk+1] ⊂ Ry[fieldk+1] then Rx` ℜPD Ry`
If Rx ℜCD Ry and Rx[fieldk+1] ⊃ Ry[fieldk+1] then Ry` ℜPD Rx`
If Rx ℜCD Ry and Rx[fieldk+1] ℜ Ry[fieldk+1] then Rx` ℜCD Ry`
If Rx ℜPD Ry and Rx[fieldk+1] = Ry[fieldk+1] then Rx` ℜPD Ry`
If Rx ℜPD Ry and Rx[fieldk+1] ⊂ Ry[fieldk+1] then Rx` ℜPD Ry`
If Rx ℜPD Ry and Rx[fieldk+1] ⊃ Ry[fieldk+1] then Ry` ℜPD Rx`
If Rx ℜPD Ry and Rx[fieldk+1] ℜ Ry[fieldk+1] then Rx` ℜPD Ry`
If Rx ℜC Ry and Rx[fieldk+1] = Ry[fieldk+1] then Rx` ℜC Ry`
If Rx ℜC Ry and Rx[fieldk+1] ⊂ Ry[fieldk+1] then Rx` ℜC Ry`
If Rx ℜC Ry and Rx[fieldk+1] ⊃ Ry[fieldk+1] then Ry` ℜC Rx`
If Rx ℜC Ry and Rx[fieldk+1] ℜ Ry[fieldk+1] then Rx` ℜPD Ry`
From the above conditions we can see that Rx` and Ry` are always related with one of the relations defined
before.

6/21

Theorem. The union of these relations represents the Universal Set of relations between any two filters.

Proof. We prove the theorem by induction. For the initial step, we start with two 2-tuple filters that have
one of the defined relations (Lemma 1). Now we assume that for any given two k-tuple filtering rules Rx
and Ry, we have a relation ℜ such that Rx ℜ Ry where ℜ ∈ {ℜEM, ℜIM, ℜCD, ℜPD, ℜC}. In the induction
step, we add one more field to each rule, so we have two (k+1)-tuple rules, Rx` and Ry`. Since Rx ℜ Ry
and Rx` and Ry` are generated by adding a new field to Rx and Ry respectively, therefore Rx` ℜ Ry`
(Lemma 2). From the above results we prove that the relation between any two filters must belong to the
defined relations. Therefore, the union of these relations represents the universal set of relations between
any two filters.

3.2. Firewall Rule Policy Representation

We represent the firewall rule policy by a single rooted tree that we name the policy tree. The tree
model provides a simple and apprehensible representation of the filtering rules and at the same time
allows for easy discovery of relations and anomalies among the rules. Each node in a policy tree
represents a field of the filtering rule, and each branch at this node represents a possible value of the
associated field. At every node, we use a hash table to store the field value for each emerging branch. The
root node of a policy tree represents the protocol field, and the leaf nodes represent the action field,
intermediate nodes represent other 5-tuple filter fields in order. Every tree path starting at the root and
ending at a leaf represents a rule in the policy and vice versa. Rules that have the same field value at a
specific node, will share the same branch representing that value.

Figure 3 illustrates the policy tree model of the security policy in Figure 2. Notice that every rule
should have an action leaf in the tree. The dotted box below each leaf indicates the rule represented by
that leaf. The tree shows that rules 1 to 9 share the same branch at the protocol node since they all have
the same field value “tcp”. Rules 1 and 5 each has a separate source address branch as they have different
field values. Rules 2, 4, 6 and 7 share the same source address branch as they all have the same field value
“140.192.37.∗”. Similarly, rules 3, 8 and 9 share the same source address branch. Notice that rule 8 has a
separate branch, and also appears on rule 7 branch, because it is a superset of rule 7. Also notice that rule
4 has a separate branch, and also appears on rule 3 branch, as it is a subset of rule 3. Since rule 9 is a
superset of all the previous rules, it should appear on the branches of these rules, but has been omitted for
clarity.

order protocol src_ip src_port dst_ip dst_port action

1: tcp, 140.192.37.20, any, ∗.∗.∗.∗, 80, deny
2: tcp, 140.192.37.∗, any, ∗.∗.∗.∗, 80, accept
3: tcp, ∗.∗.∗.∗, any, 140.192.37.40, 80, accept
4: tcp, 140.192.37.∗, any, 140.192.37.40, 80, deny
5: tcp, 140.192.37.30, any, ∗.∗.∗.∗, 21, deny
6: tcp, 140.192.37.∗, any, ∗.∗.∗.∗, 21, accept
7: tcp, 140.192.37.∗, any, 140.192.37.40, 21, accept
8: tcp, ∗.∗.∗.∗, any, 140.192.37.40, 21, accept
9: tcp, ∗.∗.∗.∗, any, ∗.∗.∗.∗, any, deny
10: udp, 140.192.37.∗, any, ∗.∗.∗.∗, 53, accept
11: udp, ∗.∗.∗.∗, any, 140.192.37.∗, 53, accept
12: udp, ∗.∗.∗.∗, any, ∗.∗.∗.∗, any, deny

Figure 2. A firewall policy example.

7/21

tcp

∗.∗.∗.∗

udp

14
0.

19
2.

37
.∗

∗ ∗ ∗

14
0.

19
2.

37
.4

0

80 21

accept accept

rule 8rule 3
rule 4

∗.∗.∗.∗

80 21

accept accept

rule 6rule 2

∗.∗.∗.∗

∗

14
0.

19
2.

37
.∗ ∗.∗.∗.∗

53

accept

rule 11

deny

rule 12

∗53

accept

rule 10

src_ip

src_port src_port

dst_ip

dst_port

action

dst_port

actionaction

src_port

dst_port dst_port

action actionaction

140.192.37.20

∗
∗.∗.∗.∗

80

deny

rule 1

deny

rule 5

src_port

dst_ip

dst_port

action action

140.192.37.30

∗
∗.∗.∗.∗

21

src_port

dst_ip

dst_port

∗.∗.∗.∗

deny

rule 9

∗

dst_port

action

dst_ip

∗.∗.∗.∗

dst_ip

dst_port

140.192.37.40

21

deny accept

rule 7
rule 8rule 4

action

dst_ip

protocol

140.192.37.∗

src_ip

action

src_port

80

action

dst_port

Figure 3. Policy tree for the firewall policy in Figure 2.

The algorithm shown in Figure 4 is used in building the policy tree. The basic idea is to insert the
filtering rule in the correct tree path. While inserting a rule field at any tree node, the rule branch is
determined based on matching the field value with the existing branches. If a branch exactly matches the
rule, the rule is inserted in this branch; otherwise a new branch is created. The rule also propagates in
superset or superset branches to preserve the relations between the policy rules. The algorithm is invoked
for each rule in the policy with the rule as the first parameter, the protocol field as the second parameter
and the root node as the third parameter. If the inserted field is not the rule action, the algorithm checks if
the input field value matches any of the already created branches at the input node. If a match is found,
the algorithm is recursively called with the same rule and the next field and the matching branch node as
parameters. The recursive call ensures that a rule will propagate in all the branches representing rules that
may be related to the newly inserted rule. If the field value was not equal to any of the existing branches,
a new branch that represents the inserted field value is created. If the inserted field is not the action field,
the algorithm is recursively applied on the new branch with the same rule and the next field and the new
branch node as parameters.

We would like to emphasize that our main objective is to provide a simple model that can be used for
the analysis of filtering rules, as well as visualizing the rules in an expressible view that will reflect
relations between rules. The main objective of the “Firewall Policy Advisor” is to assist in firewall policy
editing. Therefore, we are not as much concerned about search time complexity as we are concerned
about clarity and simplicity of the rule model.

8/21

function BuildPolicyTree(rule, field, node)
 value_found = FALSE
 if field ≠ ACTION then
 for each branch in node.branch_list do
 if branch.value = rule.field.value then (* exact match found *)
 value_found = TRUE
 BuildPolicyTree(rule, field.next, branch.node)
 else if branch.value ⊂ rule.field.value (* inclusive match found *)
 or branch.value ⊃ rule.field.value then
 BuildPolicyTree(rule, field.next, branch.node)
 end if
 end for
 end if
 if value_found = FALSE then (* field value is not in tree *)
 new_branch = new TreeBranch(rule, rule.field, rule.field.value)
 node.branch_list.add(new_branch)
 if field ≠ ACTION then
 BuildPolicyTree(rule, field.next, new_branch.node)
 end if
 end if
end function

Figure 4. Algorithm for building the policy tree.

4. Firewall Policy Anomaly Detection
The ordering of filtering rules in a security policy is very crucial in determining the firewall policy

because the firewall packet filtering process is performed by sequentially matching the packet against
filtering rules until a match is found. If filtering rules are independent (or completely disjoint), the
ordering of the rules is insignificant. However, it is very common to have filtering rules that are inter-
related. In this case, if the relative rule ordering is not carefully assigned, some rules may be always
screened by other rules producing an incorrect security policy and action. Moreover, when large number
of filtering rules exists in a policy, the possibility of writing conflicting or redundant rules is relatively
high. A firewall policy anomaly is defined as the existence if two or more different filtering rules that
match the same packet. In this section, we define different types of anomalies that may exist among
filtering rules in a firewall policy and then describe the technique to discover these anomalies.

4.1. Firewall Policy Anomaly Types

Here, we describe and then define a number of possible firewall policy anomalies. This includes clear
conflicts that cause some rules to be always suppressed by other rules, or warnings for potential conflicts
between related rules.

(1) Shadowing anomaly: A rule is shadowed when a previous rule matches all the packets that match
this rule, such that the shadowed rule will never be evaluated. If the shadowed rule is removed, the
security policy will not be affected. Rule Rx is shadowed by rule Ry if Rx follows Ry in the order, and Rx is
a subset match of Ry and the actions of Rx and Ry are different. As illustrated in the rules in Figure 2, rule
4 is a special case of rule 3 with a different action, so if rule 4 is removed, the effect of the resulting
policy will be unchanged. We say that rule 4 is shadowed by rule 3.

Shadowing is a critical error in the policy, as the filtering rule never takes effect. This might cause a
permitted traffic to be blocked and vice versa. It is important to discover shadowed rules and alert the
administrator who might correct this error by reordering or removing the shadowed rule.

9/21

(2) Correlation anomaly: Two rules are correlated if the first rule in order matches some packets that
match the second rule and the second rule matches some packets that match the first rule. Rule Rx and rule
Ry have a correlation anomaly if Rx and Ry are correlated and the actions of Rx and Ry are different. As
illu

ill not be shadowed by rule 3.
Correlation is c on that is not

explicitly handled b

affic will be

 if Rx is a subset match of Ry and the actions of Rx and Ry are similar. As illustrated in
the

f the filtering rule table, and might increase the search time and

ore, as it
wil

Generalization is considered only an anomaly warning because inserting a specific rule makes an
s confirming this action by the administrator is important.

plification reduces the number of
sta

ant to Rx, while if the actions are different, Rx is a generalization of Ry.
These cases are represented by the state sequences: 0 0-1-4-6-9-12, 0-1-4-6-9-13, 0-
0-3-6-9-12 and 0-0-3-6-9-13.

strated in the rules in Figure 2, rule 2 is in correlation with rule 3; if the order of the two rules is
reversed, the effect of the resulting policy will be changed, but rule 2 w

onsidered an anomaly warning because the correlated rules imply an acti
y the filtering rules. Consider the following rules:
1: tcp, 140.192.37.10, any, ∗.∗.∗.∗, 80, accept
2: tcp, ∗.∗.∗.∗, any, 140.192.37.∗, 80, deny

These two rules with this ordering imply that all HTTP traffic coming from address “140.192.37.10” and
going to address “140.192.37.∗” is accepted. However, if the order is reversed, the same tr
denied. Therefore, in order to resolve this conflict, we point out the correlations between the filtering
rules and prompt the user to choose the proper order that complies with the security policy.

(3) Redundancy anomaly: A redundant rule performs the same action on the same packets as another
rule such that if the redundant rule is removed, the security policy will not be affected. Rule Rx is
redundant to rule Ry

 rules in Figure 2, rule 7 is redundant to rule 8, so if rule 7 is removed, the effect of the resulting policy
will be unchanged.

Redundancy is considered an error. A redundant rule may not contribute in making the filtering
decision, however, it adds to the size o
space requirements. It is important to discover redundant rules so that the administrator may modify its
filtering action or remove it altogether.

(4) Generalization anomaly: A rule is a generalization of another rule if the first rule matches all the
packets that the second one could match but not the opposite. Rule Rx is a generalization of rule Ry if Rx
follows Ry in the order, and Rx is a superset match of Ry and the actions of Rx and Ry are different. As
illustrated in the rules in Figure 2, rule 2 is a generalization of rule 1; if the order of the two rules is
reversed, the effect of the resulting policy will be changed, and rule 1 will not be effective anym

l be shadowed by rule 2. Therefore, as a general guideline, if there is an inclusive match relationship
between two rules, the superset (or general) rule should come after the subset (or specific) rule.

exception of the general rule, and thu

4.2. Anomaly Detection Algorithm

The state diagram shown in Figure 5 summarizes anomaly discovery for any two rules, Rx and Ry
where Rx comes after Ry in order. For simplicity, the source address and source port and integrated into
one field, and the same with the destination address and port. This sim

tes and simplifies the explanation of the diagram. A similar state diagram can be produced for the real
case of five fields with a substantially larger number of states involved.

Initially no relationship is assumed. Each field in Rx is compared to the corresponding field in Ry
starting with the protocol then source address and port, and finally destination address and port. The
relationship between the two rules is determined based on the result of subsequent comparisons. If every
field of Rx is a subset or equal to the corresponding field in Ry and both rules have the same action, Rx will
be redundant to Ry, while if the actions are different, Rx will be shadowed by Ry. These cases are
represented by the state sequences: 0-1-4-8-11, 0-1-4-8-12, 0-1-5-8-11, 0-1-5-8-12, 0-2-5-8-11 and 0-2-5-
8-12. If every field of Rx is a superset or equal to the corresponding field in Ry and both rules have the
same action, Ry will be redund

-1-6-9-12, 0-1-6-9-13,

10/21

start
0

redundant?
1

redundant?
4

generalize?
3

shadow?
redundant?

8

redundant
12

shadowed
11

general
13

correlated
14

disjoint
10

protocol x =
 protocol y

protocolx ⊂ protocoly

protocolx ⊃ protocoly
generalize?

6

src x
 = sr

c y

src
x ⊇ src

y

dstx ⊆ dsty

actionx = actiony

actionx ≠ actiony

dst x ⊆
 dst y

dstx ⊇ dsty

srcx ⊂ srcy

src
x ⊃ src

y

shadow?
2

shadow?
5

srcx ⊆ srcy

correlate?
7

src
x ⊃ src

y

src
x ⊂ src

y

dstx ⊆ dstydstx ⊃ dsty

dstx ⊃ dsty

dstx ⊃ dst
y

ds
t x ⊂

 d
st

y

src x
 ≠ sr

c y

sr
c x

≠
sr

c y

sr
c x

≠
sr

c y

ds
t x

≠
ds

t y

ds
t x
 ≠

 d
st y

ds
t x
 ≠

 d
st y

dst x ≠
 dst y

protocolx ≠ protocoly

genralize?
redundant?

9

action x =
 action y

actionx ≠ actiony

Figure 5. State diagram for detecting anomalies for rules Rx and Ry, rule Rx comes after Ry.

If some fields of Rx are subsets or equal to the corresponding fields in Ry, and some fields of Rx are
supersets to the corresponding fields in Ry, and their actions are different, then Rx is in correlation with Ry.
This case is represented by the state sequences: 0-1-5-7-14, 0-1-6-7-14, 0-1-4-6-7-14, 0-2-7-14, 0-2-5-7-
14, 0-3-7-14 and 0-3-6-7-14. If any field of Rx is not a subset, not a superset and not equal to the
corresponding field in Ry, then Rx and Ry are disjoint. This case is represented by the state sequences: 0-
10, 0-1-10, 0-2-10, 0-3-10, 0-1-4-10, 0-1-5-10, 0-1-6-10, 0-2-5-10, 0-2-7-10, 0-3-6-10 and 0-3-7-10.

The basic idea for discovering anomalies is by determining if two rules coincide in their policy tree
paths. If the tree path of a rule coincides with the tree path of another rule, there is a potential anomaly
that can be determined based on the previous definitions of anomalies. If rule paths do not coincide, these
rules are disjoint and they have no anomalies. The algorithm for building the policy tree is extended to
determine the relationships and anomalies among the filtering rules. An extra algorithm parameter is
added to save the anomaly state. The extended algorithm is shown in Figures 6 and 7. The algorithm is
divided into two main parts: an anomaly discovery routine, which represents the transition states in the
state diagram, and an anomaly decision routine, which represents the termination states.

In the discovery routine, the previous anomaly state is checked if there is a value match between the
field of the new rule and the already existing field branch. The next anomaly state is determined based on
the shown state diagram and the algorithm is executed recursively to let the rule propagate in existing
branches and check the remaining fields. As the rule propagates, the anomaly state is updated until the
final state is reached. If a field value exactly matches an existing branch, a potential redundancy state is
recorded. If the field is a subset of the branch, a potential shadowing state is recorded except if the
previous state is generalization; in this case the anomaly state is changed to correlation. If the field is a
superset of the branch, a potential generalization state is recorded except if the previous state is
shadowing; in this case the anomaly state is changed to correlation. If there is no match for the value of a
field, a new branch is created at the current node to represent the inserted field value, and the anomaly
state is initialized to no anomaly. The algorithm then proceeds to check the next field.

11/21

function DiscoverAnomaly(rule, field, node, anomaly_state)
 if field ≠ ACTION then
 value_found = FALSE
 for each branch in node.branch_list do
 if branch.value = rule.field.value then
 value_found = TRUE
 if anomaly_state = NOANOMALY then
 anomaly_state = REDUNDANT
 DiscoverAnomaly(rule, field.next, branch.node, anomaly_state)
 else
 if rule.field.value ⊂ branch.value then
 if anomaly_state = GENERALIZATION then
 DiscoverAnomaly(rule, field.next, branch.node, CORRELATION)
 else
 DiscoverAnomaly(rule, field.next, branch.node, SHADOWING)
 else if rule.field.value ⊃ branch.value then
 if anomaly_state = SHADOWING then
 DiscoverAnomaly(rule, field.next, branch.node CORRELATION)
 else
 DiscoverAnomaly(rule, field.next, branch.node GENERALIZATION)
 end if
 end if
 end for
 if value_found = FALSE then
 new_branch = new TreeBranch(rule, rule.field, rule.field.value);
 node.branch_list.add(new_branch);
 DiscoverAnomaly(rule, field.next, new_branch.node, NOANOMALY);
 end if
 else /* action field reached */
 call DecideAnomaly(rule, field, node, anomaly_state)
 end if
end function

Figure 6. Algorithm for building the policy tree with anomaly discovery.

The decision routine is activated once all the rule fields have been inserted in the tree and the action
field is reached. At that point the final anomaly state is determined and reported. If the rule action
coincides with the action of another rule, an anomaly is discovered. Correlation and generalization are
confirmed if the rule actions are different. If the input anomaly state is a generalization and the actions are
the same, the existing rule is redundant to the new rule. Finally, if the new rule is a subset or equal to the
existing rule, the new rule is redundant if their actions are the same, and is shadowed if their actions are
different. If an anomaly is discovered and decided, the user is reported with the type of anomaly and the
rules involved. The anomaly is also recorded in the filtering rule list.

It is important to mention that we consider this algorithm as an offline process that precedes the actual
deployment of the filtering rules in the firewall rule table. As the “Firewall Policy Advisor” is a design-
time tool, our main focus is on correctness and usability more than the computation complexity and
optimization of the algorithm.

Applying the algorithm on the rules in Figure 2, two conflicts are detected. Rule 4 is shadowed by rule
3 since they both coincide in the tree path, and they have different filtering actions. Rule 7 is redundant
since rule 8 propagates in its tree path and has a similar action.

Figure 8 shows the graphical user interface for the “Firewall Policy Advisor.” The bottom panel shows
a tabular list of filtering rules. The top-left panel displays the policy tree showing aggregated rules. The
top-right panel displays the anomalies discovered along with highlighting redundant and shadowed rules
in a different color.

12/21

function DecideAnomaly(rule, field, node, anomaly)
 if node has branch_list then
 branch = node.branch_list.first()
 if anomaly = CORRELATION then
 if rule.action ≠ branch.value then
 report rule rule.id is in correlation with rule branch.rule.id
 else if anomaly = GENERALIZATION and rule.action ≠ branch.value then
 report rule rule.id is a generalization of rule branch.rule.id
 else if anomaly = GENERALIZATION and rule.action = branch.value then
 branch.rule.setAnomaly(REDUNDANCY)
 report rule branch.rule.id is redundant to rule rule.id
 else if rule.action = branch.value then
 anomaly = REDUNDANCY
 report rule rule.id is redundant to rule branch.rule.id
 else if rule.action ≠ branch.value then
 anomaly = SHADOWING
 report rule rule.id is shadowed by rule branch.rule.id
 end if
 end if
 rule.setAnomaly(anomaly)
end function

Figure 7. Algorithm for making the anomaly decision.

Figure 8. Policy Advisor anomaly detection user interface.

13/21

5. Firewall Policy Editor
Firewall policies are often written by different network administrators and occasionally updated

(inserting, modifying or removing rules) to accommodate new security requirements and network
topology changes. Editing a security policy for inserting, removing or modifying rules can be far more
difficult than creating a new one. As rules in firewall policy are often ordered, a new rule must be inserted
in a particular order in order to avoid creating anomalies. The same applies if any network field in a rule
is modified. In this section, we present a policy editor tool that simplifies the rule editing task
significantly, and avoids introducing anomalies due to policy updates. The policy editor (1) prompts the
user with the proper position(s) for a new or modified rule, (2) shows the changes in the security policy
semantic before and after removing a rule, and (3) provides visual aids for users to track and verify policy
changes. Using the policy editor, administrators require no prior knowledge or understating of the firewall
policy in order to insert, modify or remove a rule. In the following, we present the editing, modifying and
removal process as implemented in our policy editor.

5.1. Rule Insertion

Since the ordering of rules in the filtering rule list directly impacts the semantics of the firewall
security policy, a new rule must be inserted in the proper order in the policy such that no shadowing,
correlation or redundancy is created. The policy editor helps the user to determine the correct position(s)
of the new rule to be inserted. It also identifies anomalies that may occur due to improper insertion of the
new rule, and suggests the proper resolution.

The algorithm shown in Figure 9 describes the mechanism to insert a new rule. The general idea is that
the order of a new rule is determined based on its relation with other existing rules in the firewall policy.
In general, a new rule should be inserted before any rule that is its superset match, and after any rule that
is its subset match. The policy tree is used to keep track of the correct order of the new rule, and detect
any potential anomalies. The algorithm is organized into two phases: the browsing phase and the
insertion phase. In the browsing phase, the fields of the new rule are compared with the corresponding
tree node values one at a time. If the field value of the new rule is a subset of an existing branch, then the
new rule must be inserted before the minimum order of all the rules/leaves in this branch. If the field
value is a superset of an existing branch, the rule must be inserted after the maximum order of all the
rules in this branch. In addition, if the field value is an exact match or a subset match of a branch,
evaluating the next field continues recursively by browsing through the branch sub-tree until correct
position of the rule within the sub-tree is determined. Otherwise, if disjoint or superset match occurs, a
branch is created for the new rule.

The algorithm enters into the insertion phase when the action field of a new rule is to be inserted. If an
action branch is created for the new rule, then the rule will be inserted and assigned the order determined
in the browsing phase. If there is more than one possible order for this rule, the user is asked to select an
order from within a valid range of orders as determined in the browsing phase. However, if the order state
of the new rule remains UNDETERMINED or it coincides with the branches for all 5-tuple fields of an
existing rule, which has the same action, then policy editor ignores this new rule and prompts the user
with the appropriate message. In the former case, the rule exactly matches an existing rule and considered
redundant or directly conflicting depending on the action. In the latter case, the new rule is an inclusive
subset match of an existing rule but they have the same action, and thus it is considered redundant rule. If
the rule is inserted, the anomaly detection algorithm is invoked to alert the administrators with any
generalization or correlation cases as a possible source of anomalies the firewall policy.

14/21

function InsertRule(rule, field, node)
 read rule.field.value
 if field ≠ ACTION then
 for each branch in node.branch_list do
 if branch.value = rule.field.value then
 target_branch = branch
 else
 if rule.field.value ⊂ branch.value then
 if rule.max_order > branch.rule_list.getMinOrder() then
 rule.max_order = branch.rule_list.getMinOrder()
 target_branch = branch
 end if
 else if rule.field.value ⊃ branch.value then
 if rule.min_order < branch.rule_list.getMaxOrder() then
 rule.min_order = branch.rule_list.getMaxOrder()+1
 end if
 end if
 end for
 if exists target_branch then
 InsertRule(rule, field.next, target_branch.node)
 else
 new_branch = new TreeBranch(rule, rule.field, rule.field.value);
 node.branch_list.add(new_branch);
 InsertRule(rule, field.next, new_branch.node);
 end if
 else
 read rule.order where rule.max_order ≥ rule.order ≥ rule.min_order
 if node has branch_list then
 if rule.min_order=UNDERTERMINED and rule.max_order=UNDERTERMINED then
 branch = node.branch_list.first()
 if rule.action = branch.value then
 error rule rule.id is redundant to rule branch.rule.id
 else if branch.value ≠ rule.action then
 error rule rule.id is shadowed by rule branch.rule.id
 end if
 else if rule.max_order ≠ UNDERTERMINED and
 rule.action = branch.value then
 error rule rule.id is redundant to rule branch.rule.id
 end if
 end if
 rule_list.insertAt(rule, rule.order)
 DiscoverAnomaly(rule, tree_root, anomaly)
 if anmaly in {CORRELATION, GENERALIZATION} then
 alert potential anomaly, please confirm policy semantics
 end if
end function

In
se

rti
on

 p
ha

se

B
ro

w
se

 p
ha

se

Figure 9. Algorithm for inserting a new rule in the policy.

5.2. Rule Removal and Modification

In general, removing a rule has much less impact on the firewall policy than insertion. A removed rule
does not introduce an anomaly but it might change the policy semantics and this change should be
highlighted and confirmed. To remove a rule, the user enters the rule number to retrieve the rule from the
rule list and selects to remove it. To preview the effect of rule removal, the policy editor gives a textual
translation of the affected portion of the policy before and after the rule is removed. The user is able to
compare and inspect the policy semantics before and after removal, and re-assure correctness of the
policy changes. Modifying a rule in a firewall policy is also a critical operation. However, this editing
action can be easily managed as rule removal and insertion as described before.

15/21

Figure 10. Rule editor user interface.

Figure 10 shows the graphical user interface for the rule editor tool. The figure shows the final step in
inserting a rule in the filtering rule table. The tool alerts the user for any anomalies that may be introduced
by inserting the new rule.

6. Firewall Policy Translator
It is difficult to comprehend the policy semantics by reading through a set of filtering rules. Rules that

have common or related fields values such as source IP address or destination port number may be widely
scattered within the rule table, making it even harder to have a concise and complete description of the
firewall policy. In this part of our work, we implemented a firewall policy translation tool that describes,
in a natural textual language, the meaning and the interactions of all filtering rules in the policy, revealing
the complete semantics of the policy in a very concise fashion. The produced policy translation should
have the following features:

• Complete: the translator should reflect each and every correct rule in the firewall rule table and
preserve the relations between related rules.

• Concise: the translator should express the firewall policy in the shortest text possible. For this purpose,
the policy tree is represented in many different field ordering formats in order to aggregate as many
related rules as possible in a single translated statement.

• Easy to read: the translation text and fields should be properly formatted and aligned, respectively, to
be easily comprehensible.

In this section, we describe the design and the implementation of the policy translator, which is based
on the policy tree model presented in Section 3.

6.1. Maximum Rule Aggregation for Tree-based Translation

To achieve a concise translation, we model the rules such that partially disjoint rules are aggregated
together based on related field values. Let us start by translating rule 2 and rule 6 from Figure 2
separately, we get the following translation: “accept tcp traffic from address 140.192.37.∗ and to port 80”
for rule 2 and “accept tcp traffic from address 140.192.37.∗ and to port 21” for rule 6. Both rules have
common protocol, source address, source port and destination address but different destination ports. The
policy tree aggregates the two rules in one branch starting from the protocol node down to the destination
address node, and then the two rules split in two branches at the destination port node. By using depth-
first traversal to translate the branch that aggregates the two rules, we get the following concise
translation that exploits the commonality of the two rules: “accept tcp traffic from address 140.192.37.∗
and to port 80 or to port 21.”

16/21

tcp udp

∗∗

∗53
140.192.37.∗

∗.∗.∗.∗

∗.∗.∗.∗

accept

rule 11

deny

rule 12

∗.∗.∗.∗

140.192.37.*

accept

rule 10

src_port

src_ip

dst_port

dst_ip dst_ip

action actionaction

80

deny

rule 1

action

21

∗.∗.∗.∗

∗.∗.∗.∗

dst_port
∗.∗.∗.∗

deny

rule 9

∗

dst_port

action

∗.∗.∗.∗
src_ip

dst_ip

14
0.

19
2.

37
.∗

21

accept accept

rule 6rule 2

action

src_port

src_ipdst_ip

80

action

dst_port

140.192.37.30

deny

rule 5

action

140.192.37.20

src_ip

14
0.

19
2.

37
.4

0

dst_ip

21

accept accept

rule 8rule 3

action

80

action

dst_portdst_port

protocol

Figure 11. Translation tree for the firewall policy in Figure 2.

However, the descri the fields of common
values in the policy tree are followed by the fields with different values. Otherwise, if the fields of the
com

e translation, we
con

s. This is accomplished by building five policy trees, each rooted with
on

bed technique provides concise rule translation only if

mon values come after the fields with different values, depth-first traversal does not generate a
concise translation, as separate tree branches will be created at a higher tree level. For example, rules 10
and 11 have different source addresses but they have a common destination port number. Since the source
address field is inserted in the policy tree before the destination port field, each rule will have a separate
branch starting at the source address node. If we attempt to translate these branches, we will get a separate
translation statement for each rule, although these two rules have a common field value.

From the previous discussion, we realize that a fixed-order policy tree may not give us a concise
translation for all the rules in the policy. Therefore, in order to have the most concis

struct a more optimized tree that provides maximum aggregation of all the rules regardless of the
order of common fields, and at the same time preserves the semantics of the security policy. We call this
optimized tree a translation tree.

The idea of the translation tree is basically to find the best field ordering that provides maximum
aggregation of a set of related rule

e of the 5-tuple filter fields. Each branch at the root node of every policy tree is an aggregation of a
number of rules. The branch that has the highest number of aggregated rules is picked from its policy tree
and inserted as a new branch in the translation tree. If this branch does not cover all the rules, another
branch is picked in the same manner and inserted in the translation tree until all rules are completely
covered by the translation tree branches. This process is applied on all translation tree branches for all the
remaining network fields. Figure 11 illustrates the translation tree model of the security policy in Figure
2, and Figure 12 shows the translation of the rules using depth-first traversal of the translation tree.

17/21

2: accept all tcp traffic from address 140.192.37.* and { to port 80
6: or to port 21 }
1: except from address 140.192.37.20 and to port 80
5: or from address 140.192.37.30 and to port 21
3: accept all tcp traffic to address 140.192.37.40 and { to port 80
8: or to port 21 }
9: deny any other tcp traffic
0: accept all udp traffic to port 53 and { from address 140.192.37.*
1: or to address 140.192.37.* }
2: deny any other udp traffic

Figure 12. Translation of Figure 2 rules using depth-first traversal of the translation tree in Figure 11.

6.2.

The lation
n to determine and exclude any shadowed or redundant
en created to represent the protocol field, and all non-

con

ert, the algorithm terminates after inserting the leaf action node. If there are
mo

m the branches list and a new
no

ple as running a depth-first tree traversal algorithm on the
tra

 Translation Tree Construction Algorithm

1
1
1

 algorithm shown in Figure 13 is used to build the translation tree. Before using the trans
algorithm, the anomaly detection algorithm is ru
rules. The root node of the translation tree is th

flicting rules are stored in the root node. The algorithm is then called with the root node as the first
parameter, and an initial field order as the second parameter. The initial field order is arbitrary and will be
optimized by the algorithm.

The first stage of the algorithm creates a list of policy trees each of which is rooted by a different rule
field. The algorithm first excludes the field represented by the current node from the input field order. If
there are no more fields to ins

re fields to insert then for every listed field a policy tree rooted by this field is created and added to a
tree list. After this stage a list of policy trees, each rooted by a different field will be available. The
branches emerging from the root of each tree are then added to a branches list, which will eventually
contain all the branches of all the created policy trees.

In the second stage, the algorithm extracts the branches that have the maximum aggregation of rules
from the branches list. The branches list is first sorted based on the number of rules aggregated in each
branch. The branch having the maximum rule aggregation is extracted fro

de representing the branch root field is inserted in the tree. After a branch is extracted, all the rules
aggregated by this branch are removed from the rest of the branches. The second stage is repeated until all
policy rules are aggregated in the extracted braches and there are no more uncovered rules. After this
stage a single rooted sub-tree is created. Each branch at the root node represents a field value and
aggregates the maximum number of rules that have this field value in common. It is important to notice
that the sub-tree root may represent more than one field since the root branches may come from more than
one policy tree, each with a different root field.

The last stage recursively calls the algorithm for each branch of the resulting sub-tree. This stage
assures that at each level in the translation tree, all sub-tree branches are the optimal aggregate of the rules
they represent. Translation of the rules is as sim

nslation tree. The traversal algorithm is extended to print prepositions and conjunctions between the
printed field values to make the output translation as readable as possible.

Figure 14 shows the graphical user interface for the translation of the firewall policy given in Figure 2.
Field conditions are hyperlinked with the rule table on the main window such that the user may know
which rule is associated with each part of the translation.

18/21

7.

sec
thr
function BuildTranslationTree(node, field_order)
 tree_order = field_order – node.field_id
 if tree_order.isEmpty() then
 node.add(new RuleTreeNode(node.rule(), ACTION, node.rule().action))
 return
 end if
 for each root_field in tree_order do
 tree = new PolicyTree(root_field, node.rules)
 tree.buildTree()

 tree_list.add(tree)
 end for
 for each tree in tree_list
 branch_list.add(tree.root)
 end for
 all_rules = node.rules
 while not all_rules.isEmpty() do
 sort(branch_list)
 branch = branch_list.firstElement()
 branch_list.remove(branch)
 child = new TreeNode(branch.rules, branch.field_id, branch.value)
 node.add(child)
 for each other_branch in branch_list do

 for each rule in branch do
 other_branch.removeRule(rule)
 all_rules.removeRule(rule)
 end for
 end for
 end while
 for each child in node.children do
 BuildTranslationTree(child, field_order)
 end for

St
ag

e
1

 St

ag
e

2

 St

ag
e

3

Figure 13. Algorithm for building the translation tree.

Figure 14. Translation tree and policy translation user interface.

Related Work
There is a significant amount of work has been reported in the area of firewall and policy-based
urity management. In this section, we focus our study on related work that intersects with our work in
ee areas: filtering modeling, conflict detection and rules analysis.

19/21

Several models have been proposed for filtering rules. Ordered binary decision diagram is used as a
model for optimizing packet classification in [10]. Another model using tuple space is developed in [15],
which combines a set of filters in one tuple and stored in a hash table. The model in [16] uses bucket
filters indexed by search trees. Multi-dimensional binary tries are also used to model filters [14]. In [5] a
geometric model is used to represent 2-tuple filtering rules. Because these models were designed
particularly to optimize packet classification in high-speed networks, we found them too complex to use
for firewall policy rule analysis such as anomaly detection, translation and editing. We can confirm from
experience that the tree-based model is simple and powerful enough for this purpose.

Research in policy conflict analysis has been actively growing for many years. However, most of the
work in this area addresses general management policies rather than firewall-specific policies. For
example, authors in [12] classify possible policy conflicts in role-based management frameworks, and
develop techniques to discover them. A policy conflict scheme for IPSec is presented in [7]. Although this
work is very useful as a general background, it is not directly applicable in firewall anomaly detection. On
the other hand, few research projects address the conflict problem in filtering rules. Both [5] and [9]
provide algorithms for detecting and resolving conflicts among general packet filters. However, they only
detect what we defined as correlation anomaly because it causes ambiguity in packet classifiers.

A considerable amount of research work has been performed in translating high-level firewall policy
requirements to low-level filtering rules. The first generation of global policy management technology is
presented in [8], which proposes a global policy definition language along with algorithms for verifying
the policy and generating filtering rules. However, in [1] the authors adopted a better approach by using a
modular architecture that separates the security policy and the underlying network topology to allow for
flexible modification of the network topology without the need to update the security policy. Similar
work has been done in [11] with a procedural policy definition language. Other research work goes one
step forward by offering query-based tools for firewall policy analysis. In [13] and [17], the authors
developed a firewall analysis tool to perform queries on a set of filtering rules and extract the related rules
in the policy. However, the extracted information is not expressive because it is represented in a low-level
format (rules). In [6], an expert system is used for verifying the functionality of filtering rules by
performing queries. In conclusion, we could not find any published research work that uses low-level
filtering rules to perform a complete anomaly analysis, and provides editing, textual translation and
visualization support for firewall policies.

8. Conclusions and Future Work
Firewall security, like any other technology, requires proper management to provide proper security

service. Thus, just having a firewall on the boundary of a network may not necessarily make the network
any secure. One reason of this is the complexity of managing firewalls rules and the potential network
vulnerability due to rule conflicts (e.g. shadowing, correlation). The “Firewall Policy Advisor” presented
in this paper provides a number of user-friendly tools for purifying and protecting the firewall policy from
anomalies. The administrator can use the firewall policy advisor to manage a general firewall security
policy without prior analysis of filtering rules. In this work, we formally defined all possible firewall rule
relations and we used this to classify firewall policy anomalies. We then model the firewall rule
information and relations in a tree-based representation. Based on this model and formalization, the
firewall policy advisor implements three management tools:
• Policy Anomaly Detector for identifying conflicting, shadowing, correlated and redundant rules.

When a rule anomaly is detected, users are prompted with proper corrective actions. We intentionally
made the tool not to automatically correct the discovered anomaly but rather alarm the user because
we believe that the administrator is the one who should do the policy changes.

• Policy Editor for facilitating rules insertion, modification and deletion. The policy editor
automatically determines the proper order for any inserted or modified rule. It also gives a preview of

20/21

21/21

the changed parts of the policy whenever a rule is removed to show the affect on the policy before
and after the removal.

• Policy Translator for visualizing the rules and provide a concise natural language translation of any
low-level filtering rules in a firewall policy. A considerable policy tree analysis is performed in order
to combine the maximum aggregate of fields in one tree and achieve the most concise and precise
translation.

The firewall policy advisor is shown to be very useful and effective when used on real firewall rules in
different academic and industrial environments. However, we believe that there is more to do in firewall
policy management area. Our future research plan includes extending the translator with a query-based
interface, extending the proposed techniques to handle distributed firewall policies with centralized or
distributed repositories, classifying different semantics in firewall policies and extracting them from the
filtering rules, enhancing our visualization of firewall policy rules.

Acknowledgements
We gratefully thank Iyad Kanj for his feedback on the theory work in this paper. We would also like to thank
Lopamudra Roychoudhuri and Yongning Tang for their useful comments on an earlier version of this paper.

References
[1] Y. Bartal., A. Mayer, K. Nissim and A. Wool. “Firmato: A Novel Firewall Management Toolkit.” In

Proceedings of 1999 IEEE Symposium on Security and Privacy, May 1999.
[2] D. Chapman and E. Zwicky. Building Internet Firewalls, Second Edition. Orielly & Associates Inc., 2000.
[3] W. Cheswick and S. Belovin. Firewalls and Internet Security. Addison-Wesley, 1995.
[4] S. Cobb. “ICSA Firewall Policy Guide v2.0.” In NCSA Security White Paper Series, 1997.
[5] D. Eppstein and S. Muthukrishnan. “Internet Packet Filter Management and Rectangle Geometry.” In

Proceedings of 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), January 2001.
[6] P. Eronen and J. Zitting. “An Expert System for Analyzing Firewall Rules.” In Proceedings of 6th Nordic

Workshop on Secure IT-Systems (NordSec 2001), November 2001.
[7] Z. Fu, F. Wu, h. Huang, K. Loh, F. Gong, I. Baldine and C. Xu. “IPSec/VPN Security Policy: Correctness,

Conflict Detection and Resolution.” In Proceedings of Policy’2001 Workshop, January 2001.
[8] J. Guttman. “Filtering Posture: Local Enforcement for Global Policies.” In Proceedings of 1997 IEEE

Symposium on security and Privacy, May 1997.
[9] B. Hari, S. Suri and G. Parulkar. “Detecting and Resolving Packet Filter Conflicts.” In Proceedings of IEEE

INFOCOM’00, March 2000.
[10] S. Hazelhusrt. “Algorithms for Analyzing Firewall and Router Access Lists.” In Technical Report TR-WitsCS-

1999, Department of Computer Science, University of the Witwatersrand, South Africa, July 1999.
[11] S. Hinrichs. “Policy-Based Management: Bridging the Gap.” In Proceedings of 15th Annual Computer Security

Applications Conference (ACSAC’99), December 1999.
[12] E. Lupu and M. Sloman. “Conflict Analysis for Management Policies.” In Proceedings of IFIP/IEEE

International Symposium on Integrated Network Management (IM’1997), May 1997.
[13] A. Mayer, A. Wool and E. Ziskind. “Fang: A Firewall Analysis Engine.” In Proceedings of 2000 IEEE

Symposium on Security and Privacy, May 2000.
[14] L. Qiu, G. Varghese, and S. Suri. “Fast Firewall Implementations for Software and Hardware-based Routers.”

In Proceedings of 9th International Conference on Network Protocols (ICNP'2001), November 2001
[15] V. Srinivasan, S. Suri and G. Varghese. “Packet Classification Using Tuple Space Search.” In Computer ACM

SIGCOMM Communication Review, October 1999.
[16] T. Woo. “A Modular Approach to Packet Classification: Algorithms and Results.” In Proceedings of IEEE

INFOCOM’00, March 2000.
[17] A. Wool. “Architecting the Lumeta Firewall Analyzer.” In Proceedings of 10th USENIX Security Symposium,

August 2001.
[18] Cisco Secure Policy Manager 2.3 Data Sheet.

http://www.cisco.com/warp/public/cc/pd/sqsw/sqppmn/prodlit/spmgr_ds.pdf
[19] Check Point Visual Policy Editor Data Sheet.

http://www.checkpoint.com/products/downloads/vpe_datasheet.pdf

	Acknowledgements
	References

