
Active Fault Reasoning in Communication Networks

Yongning Tang and Ehab Al-Shaer
School of Computer Science,

Telecommunications and Information Systems
DePaul University, Chicago, USA
{ytang,ehab}@cs.depaul.edu

Abstract

Different fault reasoning techniques are used in fault localization for either deterministic
or probabilistic fault causality model. Symptom-Fault map is commonly used to describe
Symptom-Fault causality in fault reasoning. However lost and spurious symptoms severely
affect both performance and accuracy of fault reasoning. In this paper, we propose an extended
Symptom-Fault-Action model to incorporate actions into fault reasoning process to tackle the
above problem. Simulation study shows both performance and accuracy of fault reasoning can
be greatly improved by taking actions, especially when the rate of spurious and lost symptoms
is high.

1 INTRODUCTION

Most fault reasoning algorithms use a bipartite directed acylic graph to describe the
Symptom-Fault correlation, which represents the causal relationship between each fault fi

and a set of its observed symptoms Sfi
[2]. Symptom-Fault causality graph provides a vector

of correlation likelihood measures, p(si|fi), to bind a fault, fi, to a set of its symptoms, Sfi
.

If p(si|fi) = 0 or 1, then the Symptom-Fault correlation has a deterministic model, otherwise
(i.e. when 0 < p(si|fi)) it is a probabilistic model.

Two approaches are commonly used in fault reasoning and localization: passive diagnosis
([1], [2], [3], [7], [4]) and active probing ([6], [5] and [9]). In this paper, we propose a
novel fault localization technique that integrates the advantage of both passive and active
monitoring into one framework, called Active Integrated fault Reasoning or AIR. In our
approach, when passive reasoning is not sufficient, the optimal probing actions are selected
in order to discover the most critical symptoms that could have been lost or corrupted during
passive fault reasoning. Thus, our approach significantly improves the performance of fault
localization while minimizing the intrusiveness of active fault reasoning.

Fault localization techniques are required to identify faults not only accurately, but also
in a timely fashion. Thus, the performance of fault localization depends on the rate and
accuracy of the symptom collection and analysis. Many faults might cause serious damages
if they are not discovered and resolved promptly. For example, significant interruption of
a web server of e-commerce applications may directly result in losing customers. Our fault
localization technique, AIR, was developed to satisfy the following objectives:

• High-performance and low latency fault detection

• Accurate root cause analysis

• Handling deterministic and probabilistic causality models

(a) (b)

s
1

s
3
s
2

f
1
 f
2
 f
3

a
1
 a
4
a
3
a
2

s
4

.9
 .3

.3

.3

.3

.9

.9

.3

.01
 .01
.02

Fidelity Evaluation

(
FE
)

Fault Reasoning

(
FR
)

Action Selection

(
AS
)

Fidelity

satisfied
?

Symptoms

Verified?

Y

N

N

Y

Conclusion

(high credible h found)

Figure 1: (a) Action-Symptom-Fault Model (b)Active Action Integrated Fault Reasoning

• Scalability for large number of managed objects and faults

• Minimal network intrusiveness

• Adjustability to satisfy the user and network requirements

The paper is organized as follows. In section 2, we discuss our research motivation and
formalize the problem. In section 3 we describe the components of AIR and all related
algorithms. In Section 4 we present a simulation study. In Section 5 related work is discussed.
In section 6, we wrap up the paper with our conclusion and future work.

2 MOTIVATION AND PROBLEM FORMALIZATION

In general, active fault management does not scale well when number of managed nodes
or faults grow significantly in the network. In fact, some faults such as intermittent reacha-
bility problem may not even be identified if only active fault management is used. However,
this can be reported using passive fault management systems if agents are configured to
report abnormal system conditions or symptoms such as high average packet drop ratio. On
the other hand, symptoms can be lost due to noisy unreliable communications channels, or
corrupted due to spurious (untrue) symptoms, that might be generated as a result of mal-
functioning agents or devices. This significantly reduces the accuracy and the performance
of passive fault localization. Only the integration of active and passive reasoning can provide
efficient fault localization solutions.

To incorporate active actions into traditional Symptom-Fault model, we propose an ex-
tended Symptom-Fault-Action model as shown in Fig. 1(a). In our model, actions are prop-
erly selected probes or test transactions that are used to detect or verify the existence of
observable symptoms. Actions can simply include commonly used network utilities, like ping
and traceroute; or some proprietary fault management system, like SMRM [9] and EPP [10].
We assume that symptoms are verifiable, which means that, if the symptom ever occurred,
we could verify the symptom existence by executing some probing actions or checking the
system status like system logs.

In this paper, we use F = {f1, f2, . . . , fn} to denote the fault set, and S = {s1, s2, . . . , sm}
to denote the symptom set that can be caused by one or multiple faults in F . Causality matrix
PF×S = {p(si|fj)} is used to define causal certainty between fault fi(fi ∈ F) and symptom

si(si ∈ S). If p(si|fj) = 0 or 1 for all (i, j), we call such causality model a deterministic
model; otherwise, we call it a probabilistic model. We also use A = {a1, . . . , ak} to denote
the list of actions that can be used to verify symptom existence. We describe the relation
between actions and symptoms using Action Codebook represented as a bipartite graph as
shown in Fig. 1(a). For example, the symptom s1 can be verified using action a1 or a2. The
Action Codebook can be defined by network managers based on symptom type, the network
topology, and available fault diagnostic tools. The extended Symptom-Fault-Action graph
is viewed as a 5-tuple (S, F, A,E1, E2), where fault set F , symptom set S, and action set
A are three independent vertex sets. Every edge in E1 connects a vertex in S and another
vertex in F to indicate causality relationship between symptoms and faults. Every edge in
E2 connects a vertex in A and another vertex in S to indicate the Action Codebook. The
basic Symptom-Fault-Action model can be described as the following:

• For every action, associates an action vertex ai, ai ∈ A;

• For every symptom, associates a symptom vertex si, si ∈ S;

• For every fault, associates a fault vertex fi, fi ∈ F ;

• For every fault fi, associate an edge to each si caused by this fault with a weight equal
to p(si|fi);

• For every action ai, associate an edge of weight equal to the action cost to each symptom
verifiable by this action.

The performance and accuracy are the most two important factors for evaluating fault
localization techniques. Performance is measured by fault detection time T , which is the
time between receiving the trouble tickets (fault symptoms) and identifying the root faults.
The fault diagnostic accuracy depends on two factors: (1) the detection ratio (α), which is
the ratio of the number of true detected root faults (Fd is the total detected fault set) to
the number of actual occurred faults Fh, formally α = Fd∩Fh

Fh
; and (2) false positive ratio

(β), which is the ratio of the number of false reported faults to the total number of detected
faults; formally β = Fd−Fd∩Fh

Fd
[4]. Therefore, the goal of any fault management system is to

increase α and reduce β in order to achieve high accurate fault reasoning results.
The task of the fault reasoning is to search for root faults in F based on the observed

symptoms SO. Our objective is to improve fault reasoning by minimizing the detection
time, T and the false positive ratio, β, and maximizing the detection ratio, α. We will show
in our simulation study in Section 4 that our approach shows a significant improvement in
performance and accuracy over the passive approach.

3 ACTIVE INTEGRATED FAULT REASONING

The Active Integrated Fault Reasoning (AIR) process (Fig. 1(b)) includes three functional
modules: Fault Reasoning (FR), Fidelity Evaluation (FE), and Action Selection (AS). The
fault Reasoning module takes passively observed symptoms SO as input and returns fault
hypothesis set Φ as output. The fault hypothesis set Φ might include a set of hypotheses
(h1, h2, . . . , hn) where each one contains a set of faults that explains all observed symptoms

so far. Then, Φ is sent to the Fidelity Evaluation module to check if any hypothesis, hi ∈ Φ,
is satisfactory. If most correlated symptoms necessary to explain the fault hypothesis hi are
observed (i.e. high fidelity), then the fault reasoning process terminates. Otherwise, a list of
unobserved symptoms, SN , that contribute to explain the fault hypothesis hi of the highest
fidelity, is sent to the Action Selection module to determine which symptoms have occurred.
As a result, the fidelity value of hypothesis hi is adjusted accordingly. The conducted actions
return the test result with a set of existing symptoms SV and non-existing symptoms SU .
The corresponding fidelity value might be increased or decreased based on the action return
results. If the newly calculated fidelity is satisfied, then the reasoning process terminates;
otherwise, SV , SU , SO are sent as new input to the Fault Reasoning module to create a new
hypothesis. This process is repeated until a hypothesis with high fidelity is found. Fidelity
calculation is explained later in this section. In the following, we describe the three modules
in detail, then discuss the complete Active Integrated Fault Reasoning algorithm.

3.1 Heuristic Algorithm for Fault Reasoning

Fault Reasoning is the process of searching for the best fault explanation of the observed
symptoms. Symptom-Fault causality map is commonly used fault reasoning model. For each
fault fi, Symptom-Fault causality map provides a vector of correlation likelihood measures
p(sj|fi) associated with correlated symptom set Sfi

, where sj ∈ Sfi
. Sfi

includes all symp-
toms caused by fi, which implies the occurrence of this fault. In the fault reasoning process,
it is a commonly assumed that the probability of multiple faults happening simultaneously
is low.

In the Fault Reasoning module, we use a contribution function, C(fi), as a criteria to find
faults that have the maximal contribution of the observed symptoms. In the following, we
use SOi

to denote the set of observed symptoms so far.
In the probabilistic model, symptom si can be caused by a set of faults fi, (fi ∈ Fsi

) with
different possibilities p(si|fi) ∈ (0, 1]. We assume that the Symptom-Fault correlation model
is sufficient enough to neglect other undocumented faults (i.e., prior fault probability is very
low). Thus, we can also assume that symptom si will not occur if none of the faults in Fsi

happened. In other words, if si occurred, at least one fi ∈ Fsi
must have occurred. However

conditional probability p(si|fi) itself may not truly reflect the chance of fault fi occurrence
by observing symptom si. For example, in Fig. 1(a), by observing s1, there are three possible
scenarios: f1 happened, f2 happened or both happened. Based on the heuristic assumption
that the possibility of multiple faults happened simultaneously is low, one of the faults (f1

or f2) should explain the occurrence of s1. In order to measure the contribution of each fault
fi to the creation of si, we normalize the conditional probability p(si|fi) to the normalized
conditional probability p̂(si|fi) to reflect the relative contribution of each fault fi to the
observation of si.

p̂(si|fi) =
p(si|fi)∑

fi∈Fsi
p(si|fi)

Algorithm 1 Fault Reasoning Algorithm FR(SO)
Input: observed symptoms SO

Output: fault hypothesis set Φ
Initialize: FC ← ∅, h ← ∅,Φ ← ∅
1: for all fi ∈ F do
2: if Sfi ∩ SO 6= ∅ then
3: FC ← FC ∪ {fi}
4: end if
5: end for
6: Φ = HU(h, SO, FC)
7: return < Φ >

With p̂(si|fi), we can compute normalized posterior probability p̂(fi|si) as follows.

p̂(fi|si) =
p̂(si|fi)p(fi)∑

fi∈Fsi
p̂(si|fi)p(fi)

p̂(fi|si) shows the relative probability of fi happening by observing si. For example, in
Fig. 1(a), assuming all faults have the same prior probability, then p̂(f1|s1) = 0.9/(0.9+0.3) =
0.75 and p̂(f2|s1) = 0.3/(0.9 + 0.3) = 0.25. The following contribution function C(fi)
evaluates all contribution factors p̂(fi|si), si ∈ SOi

with the observation SOi
, and decides

which fi is the best candidate with maximum contribution value C(fi) to the currently not
yet explained symptoms.

C(fi) =

∑
si∈SOi

p̂(fi|si)∑
si∈Sfi

p̂(fi|si)

Therefore, fault reasoning becomes a process of searching for the fault (fi) with maximum
C(fi). This process continues until all observed symptoms are explained. The contribution
function C(fi) can be used for both deterministic and probabilistic model.

In the deterministic model, the more the number of symptoms observed, the stronger the
indication that the corresponding fault fi has occurred. Meanwhile, we should not ignore the
influence of prior fault probability p(fi), which represents long-term statistical observation.
Since p(si|fj) = 0 or 1 in the deterministic model, the normalized conditional probability
reflects the influence of prior probability of fault fi. Thus, the same contribution function

can seamlessly combine the effect of p(fi) and the ratio of
SOi

Sfi
together (Algorithm 4).

Algorithm 1 describes the fault reasoning algorithm. First it finds the fault candidate set
FC including all faults that can explain at least one symptom si ∈ SO (lines 1-4), then it calls
the function HU() (line 6) to generate and update the hypothesis set Φ until all observed
symptoms SO can be explained. According to the contribution C(fi) of each fault, fi, in
FC , algorithm 2 searches for the best explanation of SK , which is currently observed but not
yet explained symptom by the hypothesis hi (lines 2-12). Here SK = SO − ∪fi∈hi

SOi
and

initially SK = SO (Algorithm 1 line 6). If multiple faults have same contribution, multiple
hypotheses will be generated (lines 13-17). The searching process (HU) will recursively

Algorithm 2 Hypothesis Updating Algorithm HU(h, SK , FP)
Input: hypothesis h, observed but uncovered symptom set SK , fault candidate set FP

Output: fault hypothesis set Φ
1: cmax = 0
2: for all fi ∈ FP do
3: if C(fi) > cmax then
4: cmax ← C(fi)
5: FS ← ∅
6: FS ← FS ∪ {fi}
7: else
8: if C(fi) = cmax then
9: FS ← FS ∪ {fi}

10: end if
11: end if
12: end for
13: for all fi ∈ FS do
14: hi ← h ∪ {fi}
15: SKi ← SK − SOi

16: FPi ← FP − {fi}
17: end for
18: for all SKi = ∅ do
19: if SKi = ∅ then
20: Φ ← Φ ∪ {hi}
21: end if
22: end for
23: if Φ 6= ∅ then
24: return < Φ >
25: else
26: /* No hi can explain all SO*/
27: for all hi do
28: HU(hi, SKi , FPi)
29: end for
30: end if

run until all observed symptoms explained (lines 18-24). Notice that only those hypotheses
with minimum number of faults that cover all observed symptoms are included into Φ (lines
23-24).

3.2 Fidelity Evaluation of Fault Hypotheses

The fault hypotheses created by the Fault Reasoning algorithm may not accurately de-
termine the root faults because of lost or spurious symptoms. The task of the Fidelity
Evaluation is to measure the credibility of hypothesis created in the reasoning phase given
the corresponding observed symptoms. We use the fidelity function FD(h) to measure the
credibility of hypothesis h given the symptom observation SO. We assume that the occur-
rence of each fault is independent.

S
1
 S
3
S
2

v
1
 a
1
 a
2
 a
3

a
1
 a
2

S
1
 S
3
S
2

v
1
 a
1
 a
2
 a
3

2
 2

1
 1

1

1

Figure 2: Symptom-Action Bipartite Graph

• For deterministic model:

FD(h) =

∑
fi∈h |SOi |/|Sfi |

|h|

• For probabilistic model:

FD(h) =

∏
si∈

⋃
fi∈h Sfi

(1−∏
fi∈h(1− p(si|fi)))

∏
si∈SU

(1− p(si|h))
∏

si∈SO
(1−∏

fi∈h(1− p(si|fi)))

Algorithm 3 Fidelity Evaluation FE(Φ)
Input: Φ and SO

Output: the hypothesis with highest fidelity value, corresponding unobserved symptom set SN

1: fdmax = FD(h1)
2: for all hi ∈ Φ do
3: fd = FD(hi)
4: if fd ≥ fdmax then
5: fdmax = fd; j = i
6: end if
7: end for
8: if fdmax < FDTHRESHOLD then
9: SN ← {⊔fi∈hj

Sfi} − SO;
10: else
11: SN ← ∅
12: end if
13: return < hj , SN >

Fidelity evaluation determines the rank of each hypothesis and decides whether the fault
reasoning result is satisfactory or not. Algorithm 3 evaluates each hypothesis using fidelity
evaluation function and decides if the result is satisfactory by comparing to the pre-defined
threshold value FDTHRESHOLD. If an acceptable hypothesis that matches the fidelity thresh-
old exists, the FE algorithm returns this hypothesis (lines 2-7, 11). Otherwise, the best
available hypothesis and a non-empty set of symptoms (SN) to be verified are returned (line
9) in order to reach a satisfactory hypothesis in the next iteration.

3.3 Action Selection Heuristic Algorithm

The task of Action Selection is to find the least-cost actions to verify SN (unobserved
symptoms) of the hypothesis that has highest fidelity. The goal of the Action Selection
algorithm is to select the actions that cover all symptoms, SN , in the graph with a minimal
action cost. With the representation of Symptom-Action bipartite graph, we can model
this problem as a weighted set-covering problem. Thus, the Action Selection algorithm
searches for Ai such that Ai includes the set of actions that cover all the symptoms in the
Symptoms-Action correlation graph with total minimum cost. We can formally define Ai as
the covering set that satisfies the following conditions: (1) ∀si ∈ S, ∃aj ∈ Ai s.t. wij > 0,
and (2)

∑
ai∈Ai,sj∈SN

wij is the minimum.
The weighted set-covering is an NP-complete problem. Thus, we developed a heuristic

greedy set-covering approximation algorithm (Algorithm 4) to solve this problem. The main
idea of the Algorithm 4 is simply selecting first the action (ai or vi) that has the maximum

ratio of the relative covering ratio, Ri =
|Sai |∑

sj∈Sai
wij

, where this action is added to the final

set Af and removed from the candidate set Ac that includes all actions (Lines 3-5). Here, Sai

is the set of symptoms that action ai can verify, Sai
⊆ SN . Then, we remove all symptoms

that are covered by this selected action from the unobserved symptom set, SN (Line 6).
This search continues to find the next action, ai ∈ Ac, that has the maximum ratio Ri

until all symptoms are covered (i.e., SN is empty) (Line 2). Thus, intuitively, this algorithm
appreciates actions that have more symptoms correlation or aggregation. If multiple actions
have the same relative covering weight, the action with more covered symptoms (i.e., larger
|Sai

| size) will be selected. If multiple actions have the same ratio, Ri, and same |Sai
|, then

each action is considered independently to compute the final selected sets for each action
and the set that has the minimum cost is selected.

In order to control the trade-off between the searching time and accuracy (i.e., finding
close to optimal solution), we use this greedy algorithm until size of SN becomes smaller
than a threshold (G) after which we use an exhaustive search technique to improve accuracy
(line 7). The function performAction(AS) executes the selected actions from Af (Line 13)
and reports the occurred (existing) symptom set SV and the not-occurred (non-existing)
symptom set SU (Lines 13-14).

Finally, it is important to notice that each single action in the Af set is necessary for the
fault determination process because each one covers unique symptoms.

3.4 Algorithm for Active Integrated Fault Reasoning

The major contribution of this work is to incorporate active actions into fault reasoning.
Passive fault reasoning could work well if enough symptoms can be observed correctly. How-
ever in most cases, we need deal with interference from symptom loss and spurious symptoms,
which could mislead fault localization analysis. As a result of fault reasoning, the generated
hypothesis suggests a set of selected symptoms, SN , that are unobserved but expected to
happen based on the highest fidelity hypothesis. If fidelity evaluation of such hypothesis is
not acceptable, optimal actions are selected to verify SN . Action results will either increase
fidelity evaluation of previous hypothesis or bring new evidence to generate new hypothesis.
By taking actions selectively, the system can evaluate fault hypotheses progressively and

Algorithm 4 Action Selection AS(SN)
Input: a set of unobserved symptoms SN

Output: final selected action set Af , verified occurred symptom set SV and unoccurred symptom
set SU

Initialize: AS ← ∅, SV ← ∅, SU ← ∅
1: find AC containing actions that can verify at least one symptom in SNi

2: while SN 6= Ø do
3: find ai ∈ AC with maximum covering ratio Ri

4: AC = AC − {ai}
5: As ← ai

6: SN ← SN − Sai

7: if |SN | < G then
8: do exact searching for optimized minimum-size action set
9: else

10: continue
11: end if
12: end while
13: < SV , SU >= performAction(AS)
14: return < SO >

reach to root faults.
Algorithm 5 illustrates the complete process of the AIR technique. Initially, the system

takes observed symptom SO as input. Fault Reasoning is used to search the best hypothesis
Φ (Line 3). Fidelity is the key to associate passive reasoning to active probing. Fidelity
Evaluation is used to measure the correctness of corresponding hypothesis, h (h ∈ Φ), and
produce expected missing symptoms SN (Line 3). If the result h is satisfied, the process
terminates with current hypothesis as output (Line 5 - 6). Otherwise, AIR waits until Initial
Passive Period (IPP) expired (Line 8) to initiate actions to collect more evidence of verified
symptoms SV and not-occurred symptoms SU (Line 10). New evidence will be added to
re-evaluate previous hypothesis (Line 13). If fidelity evaluation is still not satisfied, the new
evidence with previous observation is used to search another hypothesis (Line 3) until the
fidelity evaluation is satisfied. At any point, the program terminates and returns the current
selected hypothesis, if either the fidelity evaluation does not find symptoms to verify (SN

is ∅), or none of the verified symptom had occurred (SV is ∅). In either case, this is an
indication that the current selected hypothesis is creditable. IPP is used to control passive
symptom collecting period before initiating actions to avoid unnecessary actions in case the
symptom passive collecting rate (SPCR) is relatively low.

4 SIMULATION STUDY

In this section, we describe our simulation study to evaluate the proposed Action Inte-
grated fault Reasoning (AIR) technique. We conducted a series of experiments to measure
how our approach improves the performance and the accuracy of the fault localization com-
pared with Passive Fault Reasoning (PFR). The evaluation study considers fault detection
time T as a performance parameter and the detection rate α and false positive rate β as

Algorithm 5 Active Integrated Fault Reasoning SO

Input: SO

Output: fault hypothesis h

1: SN ← SO

2: while SN 6= ∅ do
3: Φ = FR(SO)
4: < h, SN >= FE(Φ)
5: if SN = ∅ then
6: return < h >
7: else
8: if IPP experied then
9: /*used to schedule active fault localization periodically*/

10: < SV , SU >= AS(SN)
11: end if
12: end if
13: SO ← SO ∪ SV

14: < h, SN >= FE({h})
15: if SN = ∅ ‖ SV = ∅ then
16: return < h >
17: end if
18: end while

accuracy parameters.
In our simulation study, the number of monitored network objects, D, such as web servers

and routers, ranged from 60 to 600. We assume every network object can generate different
faults and each fault could be associated with 2 to 5 symptoms uniformly distributed. The
number of simulated symptoms vary from 120 to 3000 uniformly distributed. We use fault
cardinality (FC), symptom cardinality (SC) and action cardinality (AC) to describe the
Symptom-Fault-Action matrix such that FC defines the maximal number of symptoms that
can be associated with one specific fault; SC defines the maximal number of faults one
symptom might correlate to; AC defines the maximal number of symptoms that one action
can verify. The independent prior fault probabilities, p(fi), and conditional probabilities are
uniformly distributed p(si|fj) in ranges [0.001, 0.01] and (0, 1] respectively. Our simulation
model also considers the following parameters: Initial Passive Period (IPP); Symptom
Active Collecting Rate (SACR); Symptom Passive Collecting Rate (SPCR); Symptom
Loss Ratio (SLR); Spurious Symptom Ratio (SSR); Fidelity Threshold FDTHRESHOLD.

4.1 The Impact of Symptom Loss Ratio

Symptom loss hides fault indications, which negatively affects both accuracy and per-
formance of fault localization process. In order to study the improvement on both the
performance and accuracy of AIR approach, we fix the value of spurious symptom ratio
(SSR = 0), the initial passive period (IPP = 10sec), symptom active collecting rate (SACR
= 100 symptoms/sec) and symptom passive collecting rate (SPCR = 20 symptoms/sec).
In this simulation, we use SLR value that varies from 10% to 30%. From Fig. 3(a), on
contrast to passive approach, AIR system can always reach relatively high fidelity thresh-

(a) (b) (c)

0

30

60

90

60 120 180 240 300 360 420 480 540 600

Network Size

D
e
te
c
ti
o
n
 T
im
e
 (
s
)

Active SLR=30% FTH=0.8 Active SLR=20% FTH=0.8

Active SLR=10% FTH=0.8 Passive SLR=30% FTH=0.35

Passive SLR=20% FTH=0.6 Passive SLR=10% FTH=0.7

active

passive

0

0.3

0.6

0.9

60 120 180 240 300 360 420 480 540 600

Network Size

D
e
te
c
ti
o
n
 R
a
te

Active SLR=30% FTH=0.8 Active SLR=20% FTH=0.8

Active SLR=10% FTH=0.8 Passive SLR=30% FTH=0.35

Passive SLR=20% FTH=0.6 Passive SLR=10% FTH=0.7

active

passive

0

0.3

0.6

0.9

60 120 180 240 300 360 420 480 540 600

Network Size

F
a
ls
e
 P
o
s
it
iv
e
 R
a
te

Active SLR=30% FTH=0.9 Active SLR=20% FTH=0.9

Active SLR=10% FTH=0.9 Passive SLR=30% FTH=0.35

Passive SLR=20% FTH=0.6 Passive SLR=10% FTH=0.7

active

passive

Figure 3: The Impact of Symptom Loss Ratio (a) Detection Time T (b) Detection rate α
(c) False positive rate β

(a) (b) (c)

0

30

60

90

60 120 180 240 300 360 420 480 540 600

Network Size

D
e
te
c
ti
o
n
 T
im
e
 (
s
)

Active SSR=5% Active SSR=3% Active SSR=1%

Passive SSR=5% Passive SSR=3% Passive SSR=1%

active

passive

0

0.3

0.6

0.9

60 120 180 240 300 360 420 480 540 600

Network Size

D
e
te
c
ti
o
n
 R

a
te

Active SSR=5% Active SSR=3% Active SSR=1%

Passive SSR=5% Passive SSR=3% Passive SSR=1%

passive

active

0

0.3

0.6

0.9

60 120 180 240 300 360 420 480 540 600

Network Size

F
a
ls
e
 P
o
s
it
iv
e
 R
a
te

Active SSR=5% Active SSR=3% Active SSR=1%

Passive SSR=5% Passive SSR=3% Passive SSR=1%

active

passive

Figure 4: The Impact of Spurious Symptoms (a) Detection time T (b) Detection rate α (c)
False positive rate β

old (FDTHRESHOLD = 0.8) with average performance improvement of 20% to 40%. Hence,
when SLR getting bigger, the advantage of active fault reasoning in the performance aspect
is more evident. In addition to performance improvement, AIR approach shows high accu-
racy. With the same settings, Fig. 3(b) and (c) show that active approach gains 20-50%
improvement of detection rate and 20-60% improvement of false detection rate, even with
much different fidelity criteria over the passive reasoning approach.

4.2 The Impact of Spurious Symptoms

The spurious symptoms are also regarded as observation noise, which could seriously affect
fault reasoning because they provide misleading information rather than losing information.
To isolate the impact of spurious symptoms, we set SLR = 0 and fix IPP with 10sec and
SACR with 100 symptoms/sec. The relative signal-noise ratio can be calculated as SNR =
1−SSR

SSR
if SLR = 0. Fig. 4(a) shows that on average AIR will have 10-20% improvement

of the performance over the passive approach even with high fidelity value. With the same
experiment settings, in Fig. 4(b) and (c), AIR shows accuracy improvement of 10-50% for
the detection rate and 10-40% for the false positive rate over the passive approach.

5 RELATED WORK

Many proposed solution were presented to address fault localization problem in commu-
nication networks. Number of these techniques use different causality model to infer the
observation of network disorder to the root faults. In our survey, we classify the related
work into two general categories:

Passive Approach. Passive fault management techniques typically depended on mon-
itoring agents to detect and report network abnormality using alarms or symptom events.
These events are then analyzed and correlated in order to reach the root faults. Different
techniques are also introduced to improve the performance, accuracy and resilience of fault
localization. In [7], a model-based event correlation engine is designed for multi-layer fault
diagnosis. In [1], coding approach is applied to deterministic model to reduce the reasoning
time and improve system resilience. A novel incremental event-driven fault reasoning tech-
nique is presented in [3] and [4] to improve the robustness of fault localization system by
analyzing lost, positive and spurious symptoms.In real systems, symptom loss or spurious
symptoms (observation noise) are unavoidable. Even with good strategy ([2] and [4]) to
deal with observation noise, those techniques have limited resilience to noise because of their
underlying passive approach, which might also increase the fault detection time.

Active Probing Approach. Recently, some researchers incorporate active probings into
fault localization. In [6], an active probing fault localization system is introduced, in which
pre-planned active probes are associated with system status by a dependency matrix. An
on-line action selection algorithm is studied in [5] to optimize action selection.

Active probing approach is more efficient in locating faults in timely fashion and more
resilient to observation noise. However, this approach has the following limitation: 1)Lack of
integrating passive and active techniques in one framework that can take advantage of both
approaches; 2)Lack of a scalable technique that can deal with multiple simultaneous faults;
3) Limitation of some of these approaches to track or isolate intermittent network faults and
performance related faults because they solely depends on the active probing model; 4) The
number of required probes might be increased exponentially to the number of possible faults
([5]).

Both passive and active probing approaches have their own good features and limitations.
Thus, integrating passive and active fault reasoning is the ideal approach. Our approach
combines the good features of both passive and active approaches and overcome their limi-
tations by optimizing the fault reasoning result and action selection process.

6 CONCLUSION AND FUTURE WORK

In this paper, a novel technique called Action Integrated fault Reasoning or AIR
is presented. This technique is the first to seamlessly integrate passive and active fault
reasoning in order to reduce fault detection time as well as improve the accuracy of fault
diagnosis. AIR approach is designed to minimize the intrusiveness of active probing via
enhancing the fault hypothesis and optimizing the action selection process. Our simulation
results show that AIR is robust and scalable even in extreme scenarios such as large network
size and high spurious and symptom loss rate. In our future work, we will study the use
of positive symptoms in AIR, and optimize the fault reasoning algorithm to reduce the

hypotheses searching time. In addition, we would investigate the automatic creation of
the Action-Symptom correlation matrix from the network topology and high-level service
specifications.

References

[1] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo. A coding approach
to event correlation, Proceedings of the Fourth International Symposium on Intelligent
Network Management, (1995).

[2] M. Steinder and A. S. Sethi . Non-deterministic diagnosis of end-to-end service
failures in a multi-layer communication system, IEEE International Conference on Com-
puter Communications and Networks (ICCCN), (Scottsdale, AR, 2001), pp. 374-379.

[3] M. Steinder and A. S. Sethi . Increasing robustness of fault localization through
analysis of lost, spurious, and positive symptoms, In Proc. of IEEE INFOCOM, (New
York, NY, 2002)

[4] M. Steinder and A. S. Sethi . Probabilistic Fault Diagnosis in Communication
Systems Through Incremental Hypothesis Updating, Computer Networks Vol. 45, 4 pp.
537-562, (July 2004)

[5] I. Rish, M. Brodie, N. Odintsova, S. Ma, G. Grabarnik. Real-time Problem
Determination in Distributed Systems using Active Probing, IEEE/IFIP (NOMS), (Soul,
Korea, 2004).

[6] Brodie, M., Rish, I. and Ma, S.. Optimizing Probe Selection for Fault Localization,
IEEE/IFIP (DSOM), (2001).

[7] K. Applety et al. Yemanja - a layered event correlation system for multi-domain com-
puting utilities, Journal of Network and Systems Management, (2002).

[8] S. Thomas H. Cormen et al. Introduction to Algorithms, The MIT Press, (2001),
Second Edition.

[9] Ehab Al-Shaer, Yongning Tang. QoS Path Monitoring for Multicast Networks,
Journal of Network and System Management (JNSM), (2002).

[10] A. Frenkiel and H. Lee.. A Framework for Measuring the End-to-End Performance
of Distributed Applications, In Proceedings of Performance Engineering Best Practices
Conference, IBM Academy of Technology, (1999).

[11] J. Pearl. Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann Publish-
ers, (San Francisco, CA (1988)).

[12] K. Houck, S. Calo, and A. Finkel. Towards a practical alarm correlation system,
Integrated Network Management IV, (Santa Barbara, CA, May 1995).

