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Abstract

We present a corrected version of Baker’s algorithm for finding a minimum domi-
nating set in an l-outerplanar graph.
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1 Introduction

Baker, in her seminal work [3], gave a general technique to devise approxi-
mation schemes for the maximum independent set problem on planar graphs.
Her technique is partially based on a dynamic programming algorithm that,
for a planar graph of outerplanarity l, computes a maximum independent set
of the graph in time O(8ln), where n is the number of vertices in the graph
[3]. Baker also mentions in her paper that the O(8ln) algorithm, with a slight
modification and without any increase in running time, can be applied to solve
the minimum dominating set problem on planar graphs ([3], pages 175 and
176-177). If Baker’s algorithm works, then her algorithm, together with the
fact that a planar graph with a dominating set of size bounded by k can be
at most 3k-outerplanar, would imply that the Dominating Set problem on
planar graphs is solvable in time O(83kn), as observed in [1]. Many recent
papers, in fact, cite and/or make use of Baker’s algorithm for the dominating
set problem (e.g. [1], [2], [4], [5], [6], [7]).

However, Baker’s algorithm in its current form cannot be applied to solve the
minimum dominating set problem. This is essentially because the dominating
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set problem, unlike the independent set problem, does not exhibit an optimal
substructure property as we argue in section 2.

Baker’s algorithm can be modified to solve the minimum dominating set prob-
lem, albeit with an increase in the running time to O(27ln). Because Baker’s
paper focuses on the independent set problem and it is a non-trivial task to
translate Baker’s algorithm to the dominating set problem, and because of the
recent interest in Baker’s algorithm for the dominating set problem [1,2,4,7],
we provide a brief but complete description of the corrected Baker’s algorithm
for computing a minimum dominating set in an l-outerplanar graph.

2 The issue with Baker’s algorithm

Let O be a maximum independent set in a graph G = (V, E), and let S be a
separator of G. Let G1 = (V1, E1) and G2 = (V2, E2) be the subgraphs of G
obtained by removing S, and let G′

1 and G′
2 be the subgraphs of G induced by

V ′
1 = V1 ∪ S and V ′

2 = V2 ∪ S, respectively. Let I1 = O ∩ V ′
1 and I2 = O ∩ V ′

2 .
Then I1 and I2 are maximum independent sets of G′

1 and G′
2, respectively,

subject to the constraint that they agree with O on the vertices in S. Thus,
a maximum independent set of G can be computed by combining some two
maximum independent sets I1 and I2 of graphs G′

1 and G′
2, respectively, that

agree on S. The pair I1, I2 can then be found by listing, for every subset X
of S, maximum independent sets of G′

1 and G′
2 whose intersection with S is

exactly X. Baker, in her dynamic programming algorithm, uses this insight to
construct the maximum independent set of G as follows. Each vertex in some
separator S of G is assigned a state: 1 (in the independent set) or 0 (not in
the independent set). The algorithm is then called on G′

1 and G′
2 recursively

subject to the constraints on the vertices in S. The maximum independent set
is found by trying every possible assignment of states to vertices in S.

Now, consider O to be a minimum dominating set in G = (V, E) and let S,
G1, G2, G′

1 and G′
2 be defined as above. It is generally not true that O ∩ V ′

1

is the minimum among all dominating sets of G′
1 that agree with O on the

vertices in S (in fact O ∩ V ′
1 may not even be a dominating set for G′

1, e.g.
V = {1, 2, 3, 4}, E = {(1, 2)(2, 3)(3, 4)}, S = {1, 3} and O = {1, 4}). Thus,
one cannot in general construct a minimum dominating set for G by combining
minimum dominating sets D1 and D2 of graphs G′

1 and G′
2 that agree on the

vertices in S. The problem is that if a vertex in the separator S is not in the
minimum dominating set, then it could be dominated by a vertex in V1 or by
a vertex in V2. Two states (in the dominating set, or out of the dominating
set) for each vertex of the separator are not enough. For this reason, we must
consider 3 states for each vertex in the separator: 1 if the vertex is in the
dominating set, 0 if the vertex is not in and must be dominated, and 2 if the
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vertex is not in and does not need to be dominated (because it will presumably
be dominated by a vertex on the “other side” of the separator).

As we discuss in the remainder of this paper, Baker’s algorithm can be used
for the minimum dominating set problem, albeit with 3 states instead of 2
which changes the algorithm’s running time to O(27ln). We start with some
definitions.

3 Definitions

A graph is called outerplanar (or 1-outerplanar) if it has an embedding in
the plane such that every vertex lies on the unbounded face. Given a connected
outerplanar graph G = (V, E) in such an embedding, we can construct a
corresponding outerplanar decomposition tree G. (We assume, as Baker
[3] did, that the planar embedding is given to us by an appropriate data
structure such as that used by Lipton and Tarjan [8].) In order to construct the
tree, we first prepare the graph by adding a duplicate edge to every bridge of G
(so a face is created between two cutpoints). We then construct a rooted tree
G whose vertices correspond to the exterior edges and the interior faces of G.
Each vertex corresponding to an exterior edge (x, y) is a leaf of G labeled (x, y)
and is connected to the vertex of G corresponding to the face of G containing
(x, y). Pairs of vertices of G corresponding to neighboring (i.e. sharing an
edge) faces of G are also connected and one such vertex is designated as
the root. (If G has cutpoints then we actually obtain a forest. To make it
into a tree, we repeatedly choose disjoint trees T1 and T2 each containing an
internal node corresponding to a face incident to a particular cutpoint, and
we add an edge between these nodes.) Once the root is defined, we label each
internal vertex v of the tree, starting from the bottom of the tree, as follows:
we order the children of v so that their labels (i.e. corresponding edges) are
listed counterclockwise, say (x, u1), (u1, u2), . . . , (ul, y), and then we assign
v label (x, y). Note that if x 6= y, (x, y) is the edge between the face of G
corresponding to v and the face corresponding to v’s parent in G; if x = y
then x is a cutpoint, unless it is the root of G.

A node of a planar graph G in a planar embedding is said to be at level 1 if
it is on the exterior face. Let L1 be the subset of level 1 vertices. We define
Li to be the set of all nodes on the exterior face of the graph G after levels
L1, . . . , Li−1 have been removed. A graph is called l-outerplanar if Ll 6= ∅
and Ll+1 = ∅.

Now, given a connected l-outerplanar graph G, we construct one outerplanar
decomposition tree for every level-i connected component of G and every i =
1, 2, ..., l. More precisely, there will be a tree for the level 1 component, and also
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one for every level i > 1 connected component inside a level i−1 face; if there
are disconnected level i components inside a level i− 1 face, we add bridges –
and duplicate them as described above – to connect them (but we ignore them
in the dynamic programming algorithm). Thus each level i > 1 component C
inside a level i − 1 face is an outerplanar graph and has an outerplanar tree
decomposition C. In order to label the tree vertices, we construct a planar
triangulation of G (done after the addition of bridges) so that every added
edge is between vertices in different levels. We then label the tree vertices,
starting with the labeling of level 1 tree vertices as described above. Assuming
inductively a labeling of the level i − 1 tree vertices, we label the level i > 1
tree vertices as usual, after choosing the root of each tree and its leftmost child
as follows. Consider a level i > 1 component C enclosed inside a level i−1 face
with corresponding level i− 1 tree vertex already labeled (x, y) (where x = y
is possible). The root of C will be the tree node corresponding to the face of C
containing the node of C (say, z) adjacent to both x and y in the triangulation
(which is unique except if x = y in which case we arbitrarily choose a neighbor
of x). We label the root (z, z) and set its leftmost child to be the tree vertex
corresponding to the exterior edge of C incident to and counterclockwise from
z. In what follows, we will often identify a tree vertex with its labeling. We
note that the total number of tree vertices is O(|E(G)|) = O(n) because each
tree leaf corresponds to a unique edge of G and each internal tree vertex has
at least two children.

We now match each vertex of each tree to a subgraph of G we call a slice.
In order to define slices precisely, we introduce some terminology. Let C be
a level i > 1 component enclosed inside a level i − 1 face f . Let (x1, x2) and
(x2, x3) be two exterior edges of C listed in counterclockwise order. A vertex
of f is called a dividing point for the ordered edge pair ((x1, x2), (x2, x3)) if
it is adjacent to x2 in the triangulation and appears before x3 when listing the
neighbors of x2 in a counterclockwise manner, starting from x1. Note that, in
the planar triangulation of G, every pair of adjacent exterior edges (ordered
counterclockwise) of every level i > 1 component will have at least one dividing
point.

We now define, for every tree vertex (x, y), the left and right boundaries,
which are two sets of vertices that together form a separator in G that bounds
the slice corresponding to (x, y). If (x, y) is a level 1 leaf, then its left boundary
is {x}, its right boundary is {y} and its slice is just the edge (x, y). If (x, y)
is a level i face, with leftmost child (x,w) and rightmost child (z, y), then the
left (resp. right) boundary of (x, y) is the left (resp. right) boundary of (x,w)
(resp. (z, y)). As shown by Baker [3], the slice for (x, y) is (x, y) (if it is an
edge) together with either: (a) the union of the slices of the children of (x, y)
if face (x, y) encloses no level i+1 components, or (b), if (x, y) encloses a level
i + 1 component C, the slice corresponding to the root of C.
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Finally, we define boundaries of leaves of each of level i > 1 tree C as fol-
lows. Let (x1, x1) be the root of C and let (x1, x2), ..., (xi, xi+1), ..., (xt, xt+1),
where xt+1 = x1, be the exterior edges of C (and also the leaves of C), listed
in counterclockwise order. Let C be enclosed by a level i − 1 face f labeled
(y1, yl) (where y1 and yl could be equal), and let the level i − 1 tree ver-
tex corresponding to f have children (y1, y2), ..., (yl−1, yl), listed in order from
left to right. Then the left boundary of (x1, x2) is x1 together with the left
boundary of (y1, y2), and the right boundary of (xt, x1) is x1 together with the
right boundary of yl−1, yl. For 1 < i ≤ t, the left boundary of (xi, xi+1) is xi

together with the left boundary of (yj, yj+1) where yj is the first (when ver-
tices of f are listed in counterclockwise order starting with y1) dividing point
for (xi−1, xi) and (xi, xi+1). For 1 ≤ i < t, the right boundary of (xi, xi+1)
will be equal to the left boundary of (xi+1, xi+2). The slice for any (xi, xi+1)
whose left and right boundaries differ will consist of the union of slices of
(yr, yr+1), ..., (ys−1, ys) of face f , where yr is in the left boundary and ys is in
the right boundary of (xi, xi+1), together with edges between xi, xi+1, yr, ...,
and ys. If the boundaries are the same, then the slice is (xi, xi+1) together with
the boundary. Note that for every pair of sibling tree vertices (x, y) and (y, z)
that are adjacent in the sibling ordering, the right boundary of (x, y) will be
the same as the left boundary of (y, z).

4 The algorithm

We now describe the details of Baker’s algorithm for computing a minimum
dominating set in an l-outerplanar graphs. Baker’s algorithm computes a table
for every vertex of every level i tree (1 ≤ i ≤ l), starting at the leaves of the
level 1 tree. Each table T will contain the size mT (s) (or simply m(s)) of the
minimum dominating set in the corresponding slice for every possible state
s of the boundary, i.e. for every assignment of states 1 (in the dominating
set), 0 (not in the dominating set and must be dominated by a vertex in the
slice), and 2 (not in the dominating set and does not need to be dominated)
to the vertices in the boundary. So, if the boundary has q vertices, there will
be 3q table entries. When a table has been computed for every vertex of every
level i tree (1 ≤ i ≤ l), the size of the minimum dominating set for G can be
read out from the table associated with the root of the level 1 tree, labeled,
say, (x, x), as follows: it will be the minimum of the two entries in the table
corresponding to states (0, 0) (graph node x not in the dominating set) and
(1, 1, ) (x in the dominating set).

(x, y) is a level 1 leaf

If tree node (x, y) is a level 1 leaf then the corresponding slice and boundary
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consist of just {x, y} and the following table is created:

state of x 0 0 0 1 1 1 2 2 2

state of y 0 1 2 0 1 2 0 1 2

m(s) ∞ 1 ∞ 1 2 1 ∞ 1 0

Clearly, creating the above table takes Θ(1) time, and is done no more than
O(n) times.

(x, y) is a level i non-leaf: case one

If (x, y) is a level i internal tree node corresponding to a face that does not
contain a level i + 1 component, then the table T for (x, y) is computed
by successively merging the tables of the children (x, z1), (z1, z2), . . . , (zl, y) of
(x, y) and then adjusting the final table. We describe below the procedures
Merge and and Adjust.

Merge takes two level i slices (x, z) and (z, y) such that the right boundary
of (x, z) is the same as the left boundary of (z, y). A new table T0 is created
with 32i entries, corresponding to a new slice whose left boundary is the left
boundary of (x, z) and whose right boundary is the right boundary of (z, y).
For every state s of the boundary of the new slice (i.e. an assignment of
states 0, 1 and 2 to vertices in the boundary), there corresponds a set Sx of 3i

boundary states in the table T1 of (x, z) that agree with s on the left boundary,
and a set Sy of 3i boundary states in the table T2 of (z, y) that agree with s
on the right boundary. We say that a boundary state s1 in Sx matches with
a boundary state s2 in Sy if the following is true: for every vertex v in the
right boundary of (x, z) (i.e. the left boundary of (z, y)) either the state for v
is 1 in both s1 and s2, or it is 0 in one and 2 in the other. We consider all 3i

pairs of matching boundary states s1 and s2 in Sx and Sy, respectively, and
for each pair we add the values mT1(s1) and mT2(s2), and then we subtract
from this sum the number of vertices in the boundary shared by (x, z) and
(z, y) assigned 1 in s1 (and s2). We set mT0(s) to be the minimum, over all 3i

matching states s1 and s2, of this value. The running time of Merge is O(33i).

Adjust: If x = y (i.e. x is a cut vertex of its level-i component C, or (x, x)
is the root of C) then we set mT (s) = ∞ for every boundary state s with
different states for x and y. In addition, we decrement mT (s) by 1 for every
boundary state s which assigns 1 to both x and y. If x 6= y and (x, y) is
an edge, for every boundary state s in which x and y are assigned 1 and 0,
respectively, we set mT (s) = mT (s2) where s2 is a boundary state that agrees
with s on every vertex except y, which is assigned 2 instead. We repeat this
for assignments in which x and y are assigned 0 and 1, respectively. Adjust
runs in O(32i) time and is called at most once for each tree vertex.
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(x, y) is a level i non-leaf: case two

If (x, y) is a level i tree vertex corresponding to a face f that contains a
level i + 1 component C, then the algorithm is recursively called on C and a
table T ′ for its root, labeled, say, (z, z), is computed. Note that the left (resp.
right) boundary of (z, z) is z together with the left (resp. right) boundary of
(x, y). Therefore, for every boundary state s in the table T for (x, y) there will
correspond 3 boundary states s0, s1 and s2 in T ′, one for each assignment of
states 0, 1 and 2 to z, respectively, and that agree with s on all vertices in
the boundary of (x, y). We set mT (s) to min{mT ′(s0),mT ′(s1),mT ′(s2)} if x
is assigned 1 and there is an edge (x, z) in G or if y is assigned 1 and there
is an edge (y, z) in G; otherwise, we set mT (s) to min{mT ′(s0),mT ′(s1)}. We
then run the Adjust procedure. Computing the whole table thus takes Θ(32i)
time, excluding the time taken by the recursive call, and this case will happen
O(n) times.

(x, y) is a level i > 1 leaf

If (x, y) is a level i > 1 leaf and the corresponding graph edge (x, y) is contained
in a level i−1 face f , let (x1, x2), (x2, x3), . . . , (xl−1, xl) be the subset of children
of the level i− 1 tree vertex corresponding to f , listed from left to right, such
that x1 and xl belong to the left and right boundaries of (x, y), respectively.
We start by extending the table T (i.e. slice) of each level i − 1 tree vertex
(xj, xj+1) to include z = x or z = y, depending on which forms a triangle
with (xj, xj+1) in the planar triangulation of G. Then, each state s in the
original table T will correspond to 3 new states s0, s1, and s2 in the extended
table T ′, one for each possible state 0, 1, and 2, respectively, for z. We set
mT ′(s2) = mT (s) and

mT ′(s0) = mT (s) if xi has state 1 in s0 and (x, xi) ∈ E(G) or xi+1 has state
1 in s0 and (x, xi+1) ∈ E(G); otherwise mT ′(s0) = ∞.

mT ′(s1) = mT (s)+1 unless (a) xi is assigned state 0 in s1 and (x, xi) ∈ E(G),
or (b) xi+1 is assigned state 0 in s1 and (x, xi+1) ∈ E(G). If (a) holds but not
(b), let s∗ be the boundary state equal to s except that xi is assigned 2. If (b)
holds but not (a), let s∗ be the boundary state equal to s except that xi+1

is assigned 2. If both (a) and (b) hold, let s∗ be the boundary state equal to
s except that xi and xi+1 are both assigned 2. Then, mT ′(s1) = mT (s∗) + 1.

Each extension takes Θ(32i) time and is done no more than O(n) times. Next,
we successively merge the tables of neighboring extended slices containing
z = x and, separately, of neighboring extended slices containing z = y. For
every state s in the table T of a slice obtained by merging left slice S1 with
right slice S2, we compute mT (s) as follows. If z is assigned 1 or 2 in s, we
define the shared boundary to consist of the right boundary of S1 (i.e. the
left boundary of S2) with z removed, and we compute mT (s) on this shared

7



boundary as we did in the merge procedure. If z is assigned 0 in s, we define the
shared boundary to consist of the right boundary of S1 (i.e. the left boundary
of S2), including z, and we again compute mT (s) on this shared boundary
as we did in the merge procedure except that states assigning 1 to z are not
considered. Finally, we merge the resulting two slices, one containing x and the
other containing y to obtain a table for (x, y), and call adjust on the resulting
table to obtain the final table for (x, y).

We note that the total running time of the algorithm is bounded by the run-
ning time of Merge which takes O(33ln) time in the worst case and is called
O(n) times. We conclude that the Minimum Dominating Set problem on
l-outerplanar graphs on n vertices can be solved using this corrected Baker’s
algorithm in time O(27ln).
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