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Abstract

In this paper we define the notion of an f(k)-uniform parameterized exponential time scheme.
We show that a problem can be solved in parameterized O(2o(f(k))p(n)) time if and only if it
has an f(k)-uniform parameterized exponential time scheme (p is a polynomial). We then
illustrate how our formulation can be used to show that special instances of parameterized NP-
hard problems are as difficult as the general instances. For example, we show that the Planar

Dominating Set problem on degree-3 graphs can be solved in O(2o(
√

k)p(n)) parameterized
time if and only if the general Planar Dominating Set problem can. Apart from their
complexity theoretic implications, our results have some interesting algorithmic implications as
well.

Key words. parameterized complexity, subexponential time complexity, parameterized algo-
rithms, exact algorithms

1 Introduction

Parameterized complexity theory [7] was motivated by the observation that many important NP-
hard problems in practice are associated with a parameter whose value usually falls within a
small or a moderate range. Thus, taking the advantage of the small size of the parameter may
significantly speedup the computation. Formally, a parameterized problem consists of instances of
the form (x, k), where x is the problem description and k is an integer called the parameter. A
parameterized problem is fixed parameter tractable if it can be solved by an algorithm of running
time O(f(k)nc), where f is a function independent of n = |x| and c is a constant.

A parameterized problem is solvable in parameterized subexponential time if it can be solved
in time O(2f(k)p(n)), where f(k) ∈ o(k) is a function, and p(n) is a polynomial in the input
size n. Very few parameterized NP-hard problems are known to be solvable in parameterized
subexponential time. Alber et al. [2] gave parameterized subexponential time algorithms for the
Planar Vertex Cover, Planar Independent Set, and Planar Dominating Set problems
that run in O(2c

√
kn), where c is a constant. In particular, improving the upper bounds on the

running time of subexponential time algorithms for Planar Dominating Set has been receiving
a lot of attention [2, 8, 13]. Currently, the most efficient algorithm for Planar Dominating Set

is by Fomin and Thilikos, and runs in O(215.13
√

kn) time [8].
On the other hand, deriving lower bounds on the precise complexity of parameterized NP-hard

problems has also started attracting more and more attention [4, 12]. Cai and Juedes [4] showed that
Planar Vertex Cover, Planar Independent Set, and Planar Dominating Set cannot
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be solved in O(2o(
√

k)p(n)) time unless 3-SAT is in DTIME(2o(n)) time, a consequence that seems
unlikely according to the common belief among researchers in the field. This basically shows that
Alber’s et al.’s results [2] are tight up to a constant factor in the exponent. This line of research
parallels the one in classical exponential time complexity by Impagliazzo, Paturi, and Zane [10]
in which they introduced the concept of SERF-reduction to show that many well-known NP-hard
problems are SERF-complete for the class SNP [10]. This implies that if any of these problems
is solvable in subexponential time, then so are all problems in the class SNP. A consequence that
seems quite unlikely.

In this paper we define the notion of an f(k)-uniform parameterized exponential time scheme.
Let f(k) be an unbounded nondecreasing function of k. A parameterized problem Q is said to have
an f(k)-uniform parameterized exponential time scheme if there exists a parameterized algorithm
A for Q, such that on any given instance (x, k) of Q and any given constant δ > 0, the running
time of the algorithm A is bounded by O(2δf(k)p(|x|)), where p is a polynomial. We show that a
parameterized problem Q admits an f(k)-uniform parameterized exponential time scheme if and
only if Q can be solved in O(2o(f(k))q(n)) parameterized time, where q is a polynomial. This notion
of equivalence was somehow intuitively used in [10, 11], without any explicit and precise definition,
and without proof, in the context of general exponential time algorithm (i.e., non parameterized).
Even though this equivalence may look intuitive, proving this equivalence formally requires precise
definitions and sophisticated proofs. As a matter of fact, this notion of equivalence was causing
some confusion among researchers in parameterized complexity recently. We then use this notion
to show that restricted instances of well-know parameterized NP-hard problems are as difficult
as the general instances in terms of their parameterized subexponential time computability. In
particular, we show that the Planar Dominating Set problem on degree-3 graphs (henceforth
abbreviated Planar-3DS) can be solved in O(2o(

√
k)p(n)) (p is a polynomial) parameterized time

if and only if the general Planar Dominating Set (abbreviated Planar-DS) problem can. Our
results parallel the result in [11] for the Independent Set problem, in the context of the standard
exponential time computability.

Apart from their complexity theoretic implications, our results also have an algorithmic flavor.
For instance, in our proof of the above mentioned result we give a reduction from Planar-DS

to Planar-3DS. This reduction shows that if Planar-3DS can be solved in time O(2
√

k/3n),
then the Planar-DS problem can be solved in time O(215

√
kn). Given that the currently most

efficient algorithm for Planar-DS has running time O(215.13
√

kn) [8], and that the structure of the
Planar-3DS problem looks much simpler than that of Planar-DS, one could see a possibility of
improving the algorithms for Planar-DS by working on Planar-3DS. For instance, Baker’s layer-
wise decomposition theorem for planar graphs has been used extensively in designing parameterized
algorithms for Planar-DS. This decomposition theorem seems to have many nice properties that
could be exploited when the graph has degree bounded by 3. Also, the layer-wise separators, heavily
used in such algorithms as well, seems to have very special properties when the underlying graph
has degree bounded by 3.

Throughout the paper, we assume basic familiarity with graphs and standard NP-hard problems.
The reader is referred to [6, 9] for more details.
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2 The equivalence theorem

In this section we will show that a parameterized problem Q admits an f(k)-uniform parameterized
exponential time scheme if and only if Q can be solved in O(2o(f(k))q(n)) parameterized time. Let
Q be parameterized problem, and let f(k) be a nondecreasing and unbounded function1. We will
prove that the following two statements are equivalent:

(1) Q can be solved in time O(2δf(k)p(n)) for any constant δ > 0, where p is a polynomial;

(2) Q can be solved in time O(2o(f(k))q(n)), where q is a polynomial.

It is clear that proving this equivalence will imply our statement above. We first give precise
definitions for the above concepts.

Definition A parameterized problem Q is solvable in time O(2δf(k)p(n)) (p is a polynomial) for
any constant δ > 0 if there exists a parameterized algorithm A for Q such that, on any given
instance (x, k) of Q with |x| = n, and any constant δ > 0, the running time of the algorithm A is
bounded by hδ(δ)2δf(k)p(n), where hδ(δ) is independent of k and n.

Remark 1. According to the above definition, the algorithm A runs in time O(2δf(k)p(n))
for any fixed constant δ > 0. However, we do not exclude the possibility that the constant hidden
in the O() notation also depends on δ. In particular, the function hδ(δ) can be “non-uniform” in
the sense that different δ values may induce different functions hδ hidden in the O() notation. For
example, for two different δ1 and δ2, we may have hδ1(δ1) = 2/δ1, but hδ2(δ2) = 251/δ2 .

Remark 2. Besides the constant function hδ, we only consider the “uniform” case in which we
assume a single algorithm A for all constants δ > 0. This convention has been used in the study of
polynomial time approximation schemes, in which most proposed polynomial time approximation
schemes are based on a single algorithm. Moreover, we also assume a uniform polynomial p(n)
for all constants δ > 0. This also does not seem uncommon in the development of parameterized
algorithms.

Definition A parameterized problem Q is solvable in time O(2o(f(k))p(n)), where p is a polynomial,
if there exists a nondecreasing unbounded function r(k) such that the problem Q can be solved
in time O(2f(k)/r(k)p(n)), where the constant hidden in the O() notation is independent of k and n.

Lemma 2.1 Let f(k) be a nondecreasing and unbounded function, and let Q be a parameterized
problem solvable by an algorithm A0 in time hδ(δ)2δf(k)p(n) for all δ > 0. Then if we let kδ be
the smallest integer such that f(kδ) ≥ 2 log hδ/2(δ/2)/δ, then there is an algorithm A for Q such
that, on any δ > 0, the running time of A on an instance (x, k) of Q with k ≥ kδ is bounded by
2δf(k)p(n), where n = |x|.

1We only consider “nice” complexity functions. We always assume that all complexity functions, such as f(k),
are computable in time polynomial in n, and the function values are always larger than or equal to 1.
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Proof. Consider the following algorithm A. Given an instance (x, k) of Q and δ > 0, the
algorithm A simulates the algorithm A0 on instance (x, k) and δ′ = δ/2. The running time of A

is bounded by hδ/2(δ/2)2δf(k)/2p(n). Since 2δ/2 > 1 and f(k) is nondecreasing and unbounded, for
all k ≥ kδ, we have f(k) ≥ 2 log hδ/2(δ/2)/δ, which gives 2δf(k)/2 ≥ hδ/2(δ/2). Thus, on instances
(x, k) of Q with k ≥ kδ, the running time of the algorithm A is bounded by

hδ/2(δ/2)2δf(k)/2p(n) ≤ 2δf(k)/22δf(k)/2p(n) = 2δf(k)p(n)

This completes the proof.

Theorem 2.2 Let f(k) be a nondecreasing and unbounded function, and let Q be a parameterized
problem. Then the following statements are equivalent:

(1) Q can be solved in time O(2δf(k)p(n)) for any constant δ > 0, where p is a polynomial;
(2) Q can be solved in time O(2o(f(k))q(n)), where q is a polynomial.

Proof. Suppose that (2) holds and Q can be solved in time O(2o(f(k))q(n)). By definition, there
exists a nondecreasing and unbounded function r(k) such that Q is solved by a parameterized
algorithm A1 whose running time is bounded by c · 2f(k)/r(k)q(n), where c is a fixed constant
independent of k and n. Since f(k) and r(k) are nondecreasing and unbounded, there must exist
a k̄δ such that

f(k)/r(k) + log c < δf(k)

for all k ≥ k̄δ. The value k̄δ depends only on δ.
Now consider the complexity of the algorithm A1. For any instance (x, k) of Q and any δ > 0,

if k < k̄δ, then the complexity of the algorithm A1 is (note that f(k) is nondecreasing):

c · 2f(k)/r(k)q(n) ≤ c · 2f(k)q(n) ≤ c · 2f(k̄δ)q(n) = hδ(δ)q(n) ≤ hδ(δ)2δf(k)q(n)

where hδ(δ) = c · 2f(k̄δ) is a function only depending on δ. On the other hand, if k ≥ k̄δ, then

c · 2f(k)/r(k)q(n) = 2f(k)/r(k)+log cq(n) < 2δf(k)q(n) ≤ hδ(δ)2δf(k)q(n)

Thus, the complexity of the algorithm A1 is again bounded by hδ(δ)2δf(k)q(n). This shows that
if Q is solvable in time O(2o(f(k))q(n)), then Q is also solvable in time O(2δf(k)q(n)) for any δ > 0.

Now suppose that (1) holds and Q is solvable in time O(2δf(k)p(n)) for all δ > 0. By definition,
there exist a parameterized algorithm A for Q such that on any given instance (x, k) of Q and any
constant δ > 0, the running time of the algorithm A is bounded by hδ(δ)2δf(k)p(|x|), where hδ(δ)
is independent of k and n. By Lemma 2.1, there is another algorithm A2 for Q such that, on any
δ > 0, the running time of A2 on an instance (x, k) of Q with k ≥ kδ is bounded by 2δf(k)p(n),
where kδ is defined to be the smallest integer satisfying f(kδ) ≥ 2 log hδ/2(δ/2)/δ. Let δs = 1/s, for
s = 1, 2, . . .. We define a sequence of integers

k0 < k1 < k2 < · · · < ks < · · ·
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as follows. Let k0 = 0. Inductively, for each i > 0, we define ki = max{ki−1 + 1, kδi
}, where kδi

is the smallest integer satisfying f(kδi
) ≥ 2 log hδi/2(δi/2)/δi.

We first show, for a given k, how to compute in polynomial time the index t such that kt ≤
k < kt+1. By definition, k0 = 0. Inductively, suppose we have computed k0, k1, . . ., ki−1 such that
ki−1 ≤ k. We then calculate f(l), for l = ki−1 + 1, ki−1 + 2, . . ., until either we reach l = k or l

satisfies f(l) ≥ 2 log hδi/2(δi/2)/δi. Note that in the latter case, l is exactly the value ki. Therefore,
after computing all values f(1), f(2), . . ., f(k), we should find the index t such that kt ≤ k < kt+1.
By our assumption, the function f is computable in polynomial time. Moreover, by our definition,
ki ≥ i for all i. Thus, t ≤ k for the index t satisfying kt ≤ k < kt+1. So we only need to compute
at most k values for hδi/2(δi/2)/δi, and again by our assumption, the value of hδi/2(δi/2) can be
computed in polynomial time. In conclusion, for a given k, we can compute the index t such that
kt ≤ k < kt+1 in polynomial time.

Now we are ready for the proof. Construct an algorithm A′
2 as follows. Given an instance

(x, k) of the problem Q, the algorithm A′
2 first computes the index t such that kt ≤ k ≤ kt+1, then

simulates the algorithm A2 on the instance (x, k) and δt. Since kt ≤ k and kt ≥ kδt , the algorithm
A2 runs in time 2δtf(k)p(n) = 2f(k)/tp(n). Thus, the running time of the algorithm A′

2 is bounded
by 2f(k)/tp(n) + p1(n) for kt ≤ k < kt+1, where p1(n) is the polynomial time taken to compute the
index t. For simplicity, we will ignore the polynomial term p1(n) in the following discussion.

Let T (k, n) be the running time of the algorithm A′
2. From the above discussion, we have

T (n, k) ≤ 2f(k)/tp(n) for kt ≤ k < kt+1

Let F (k) = T (n, k)/p(n), then

F (k) ≤ 2f(k)/t for kt ≤ k < kt+1

This gives
f(k)/ log F (k) ≥ t for kt ≤ k < kt+1

Now if we define
r(k) = t for kt ≤ k < kt+1

then r(k) ≤ f(k)/ log F (k) for all k. Moreover, r(k) is a nondecreasing and unbounded function.
From this, we can easily get log F (k) ≤ f(k)/r(k), and F (k) ≤ 2f(k)/r(k). By the definition of

F (k), we have T (n, k)/p(n) ≤ 2f(k)/r(k). Finally

T (n, k) ≤ 2f(k)/r(k)p(n)

Since T (k, n) is the running time of the algorithm A′
2, and r(k) is a nondecreasing and unbounded

function, we conclude that the running time of the algorithm A′
2 is O(2o(f(k))p(n)). It follows that

the problem Q can be solved in time O(2o(f(k))p(n)). This completes the proof of the theorem.
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Figure 1: Vertex folding and unfolding

3 Hard instances of parameterized NP-hard problems

3.1 VC and VC-3

A set of vertices C is a vertex cover for G if every edge in G is incident to at least one vertex in C.
In the parameterized VC problem (shortly the VC problem) we are given a pair (G, k) as input,
where G is an undirected graph and k is a positive integer (the parameter), and we are asked to
decide if G has a vertex cover of size bounded by k. The VC-3 problem is the set of instances of
the VC problem in which the underlying graph has degree bounded by 3. For a graph G, denote
by τ(G) the size of a minimum vertex cover of G. We will show in this section that the VC-3

problem is as hard as the general VC problem in terms of its parameterized subexponential time
complexity. Let (G, k) be an instance of the VC problem. We will need the following propositions.

Proposition 3.1 [NT-Theorem] ([3, 15]). There is an O(
√

nm) time algorithm that, given a graph
G of n vertices and m edges, constructs two disjoint subsets C0 and V0 of vertices in G such that

(1) Every minimum vertex cover of G(V0) plus C0 forms a minimum vertex cover for G;
(2) A minimum vertex cover of G(V0) contains at least |V0|/2 vertices.

Proposition 3.1 allows us to assume, without loss of generality, that in an instance (G, k) of the
VC problem, the graph G contains at most 2k vertices.

Let v be a degree-2 vertex in the graph G with two neighbors u and w such that u and w are not
adjacent. We construct a new graph G′ as follows: remove the vertices v, u, and w and introduce
a new vertex v0 adjacent to all neighbors of the vertices u and w in G (of course except the vertex
v). We say that the graph G′ is obtained from the graph G by folding the vertex v. See Figure 1
for an illustration of this operation.

Proposition 3.2 ([5]) Let G′ be a graph obtained by folding a degree-2 vertex v in a graph G,
where the two neighbors of v are not adjacent to each other. Then τ(G) = τ(G′) + 1. Moreover,
a minimum vertex cover for G can be constructed from a minimum vertex cover for G′ in linear
time.

We define an inverse operation of the folding operation that we call unfold. Given a vertex v0

in a graph G where d(v0) > 3, and with neighbors x1, . . . , xr, we construct a graph G′ as follows.
Remove v0 and introduce three new vertices v, u, and w. Connect v to u and w, connect u to x1

and x2, and connect w to x3, . . . , xr (see Figure 1).
From Proposition 1, we know that τ(G′) = τ(G) + 1. Moreover, the unfold(v0) operation

replaces v0 with three new vertices: v of degree 2, u of degree 3, and w of degree d(v0)− 1. Now if
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d(w) > 3, we can apply the unfold(w) operation, and so on, until all the newly introduced vertices
have degree bounded by 3. It is easy to check that exactly d(v0) − 3 operations are needed to
replace v0 by new vertices each having a degree bounded by 3. Let us call this iterative process
initiated at the vertex v0 iterative-unfold(v0). If G′′ is the resulting graph from G after applying
iterative-unfold(v0), then from the above discussion we have τ(G′′) = τ(G) + d(v0)− 3. Since each
unfold() operation increases the number of vertices in the graph by 2, the number of vertices n′′ in
G′′ is n + 2d(v0)− 6, where n is the number of vertices in G.

Theorem 3.3 The VC-3 problem can be solved in O(2o(k)p(n)) time if and only if the VC problem
can be solved in O(2o(k)q(n)) time, where n is the number of vertices in the graph, and p, q are two
polynomials.

Proof. Obviously, if VC can be solved in O(2o(k)q(n)) time then so can VC-3. To prove the
other direction, suppose that VC-3 can be solved in O(2o(k)p(n)) time for some polynomial p. By
Theorem 2.2, VC-3 can be solved in time O(2εkp(n)) for any 0 < ε < 1. To show that VC can be
solved in time O(2o(k)q(n)), by Theorem 2.2, it suffices to show that it can be solved in O(2δkq(n))
time (q is a polynomial) for any 0 < δ < 1. Let (G, k) be an instance of the VC problem, and let
0 < δ < 1 be given. Consider the scheme in Figure 2.

VC-scheme

Input: an instance (G, k) of VC and a constant 0 < δ < 1
Output: a vertex cover C of G of size bounded by k in case it exists

1. apply Proposition 3.1 to G; (without loss of generality, assume the resulting instance is (G, k))
2. let d = d−2 lg (2δ/2 − 1)/δe;
3. while there exists a vertex v of degree > d do branch as v and N(v);
4. while there exists a vertex v of degree > 3 do iterative-unfold(v);
5. call the VC-3 scheme on the resulting graph and parameter,

with ε = δ/(4d− 10), to compute the desired vertex cover C′ in case it exists;
6. if C′ exists then using Proposition 3.2 and C′ output the desired vertex cover C of G;

Figure 2: A scheme for VC

We are implicitly assuming that at each step the above algorithm, the graph and the parameter
are updated appropriately. Keeping this in mind, it is not difficult to see the correctness of the
above algorithm. The only step that may need additional explanation is step 3. Basically, for any
vertex v in G, it is easy to see that either there exists a minimum vertex cover containing v, or a
minimum vertex cover containing its set of neighbors N(v). Thus, the branch in step 3 is correct.
Also note that at the end of step 4 every vertex in the resulting graph has degree bounded by 3.
The correctness of the other steps follows from Proposition 3.1 and Proposition 3.2.

We analyze the running time of the algorithm. By proposition 3.1, step 1 takes polynomial
time in n, and the resulting parameter is not larger than the initial parameter k. In step 3 we
branch according to the recurrence relation T (k) ≤ T (k − d− 1) + T (k − 1), which has a solution
T (k) = O(rk), where r is the unique root of the polynomial p(x) = xd+1−xd−1 in the interval [1, 2]
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(see [5]). It is easy to verify that, with the choice of d in step 2, this recurrence relation has solution
O(2δk/2) [5]. In step 4 we apply the subroutine iterative-unfold to every vertex of degree > 3.
For every vertex v in the graph of degree > 3, iterative-unfold(v) can increase the parameter by
no more than d(v)− 3 ≤ d− 3, and the number of vertices in the graph by no more than 2(d− 3),
since at this point of the algorithm the degree of the graph is bounded by d (note that d > 3).
By Proposition 3.1, the number of vertices in the graph is bounded by 2k, and hence, after step 4,
the new parameter k′ is bounded by k + 2k(d − 3) = (2d − 5)k, and the number of vertices n′ is
bounded by 2k + 4k(d− 3) = (4d− 10)k. Clearly, the running time of step 4 is polynomial. In step
5, the VC-3 scheme is called with ε = δ/(4d − 10). By our assumption, the VC-3 scheme runs
in time O(2εk′

p(n)). It follows that step 5 takes time O(2δ(2d−5)k/(4d−10)p(n)) = O(2δk/2p(n)), and
the total running time of the algorithm is O(2δk/2.2δk/2q(n)) = O(2δkq(n)), for some polynomial q.
The theorem follows.

3.2 Planar-DS and Planar-3DS

A dominating set D in G is a set of vertices such that every vertex in G is either in D or adjacent
to a vertex in D. The parameterized Planar-DS problem takes as input a pair (G, k), where G is
a planar graph, and asks to decide if G has a dominating set of size bounded by k. The Planar-

3DS problem is the Planar-DS problem restricted to graphs of degree bounded by 3. For a graph
G, denote by η(G) the size of a minimum dominating set in G. Let (G, k) be an instance of the
Planar-DS problem. We will need the following propositions.

Proposition 3.4 ([1]). There is an O(n3) time algorithm that, given an instance (G, k) of
Planar-DS, where G has n vertices, produces an instance (G′, k′) of Planar-DS, where G′ has
n′ vertices, such that: (1) n′ ≤ n and k′ ≤ k; (2) n′ ≤ 335k′; (3) G′ has a dominating set of size
≤ k′ if and only if G has a dominating set of size ≤ k; and (4) from a solution D′ of G′ a solution
D of G can be constructed in linear time.

By Proposition 3.4, we can assume that in an instance (G, k) of the Planar-DS problem, the
graph G contains at most 335k vertices.

Let v be a vertex in the graph G of degree > 3 and let w1, . . . , wr, r > 3, be the neighbors of
v. We construct a new graph G′ from G as follows. Remove v and introduce four new vertices
x, x′, y, y′. Connect x to w1 and w2, y to w3, . . . , wr, x′ to x, y′ to y, and x′ to y′. We say that the
graph G′ is obtained from the graph G by expanding the vertex v. See Figure 3 for an illustration
of this operation. It is clear that this operation preserves the planarity of the graph.

Proposition 3.5 Let G′ be a graph obtained by expanding a vertex v of degree > 3 in a planar
graph G. Then η(G) = η(G′)− 1. Moreover, a minimum dominating set for G can be constructed
from a minimum dominating set for G′ in linear time.

Proof. We first show that η(G′) ≤ η(G) + 1. Let D be a minimum dominating set for G. If D

contains v, then clearly (D−{v})∪{x, y} is a dominating set for G′ of size η(G)+1. If D does not
contain v, then D must contain at least one vertex in {w1, . . . , wr} (since v must be dominated). If
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D contains a vertex in {w1, w2} then D ∪ {y′} is a dominating set for G′ of size η(G) + 1, whereas
if D contains a vertex in {w3, . . . , wr}, then D ∪ {x′} is a dominating set for G′ of size η(G) + 1.
It follows that in all cases G′ has a dominating set of size η(G) + 1, and hence η(G′) ≤ η(G) + 1.
Now to prove that η(G) ≤ η(G′)− 1, let D′ be a minimum dominating set for G′. We distinguish
the following cases.
Case 1. D′ contains both x and y. In this case (D′ − {x, y, x′, y′}) ∪ {v} is a dominating set for
G of size bounded by η(G′)− 1.
Case 2. D′ contains exactly one vertex in {x, y}, without loss of generality, let this vertex be
x (the other case is symmetrical). Then D′ must contain at least one vertex in {x′, y′}. Thus,
(D′ − {x, x′, y′}) ∪ {v} is a dominating set for G of size bounded by |D| − 1 = η(G′)− 1.
Case 3. D′ does not contain any vertex in {x, y}, then D′ has to contain at least one vertex in
{x′, y′}. If D′ contains at least one vertex in {w1, . . . , wr}, then D′−{x′, y′} is a dominating set for G

of size bounded by η(G′)− 1. On the other hand if D′ does not contain any vertex in {w1, . . . , wr},
then D′ must contain both x′ and y′ in order to cover x and y. Now (D′ − {x′, y′}) ∪ {v} is a
dominating set for G′ of size η(G′)− 1.
Thus, in all cases G has a dominating set of size bounded by η(G′) − 1. It follows that η(G) ≤
η(G′) − 1, and hence, η(G′) = η(G) + 1. Moreover, given a dominating set D′ of G′, it should be
clear how the corresponding dominating set D of G can be constructed in linear time according to
one of the above three cases.

If v is a vertex in G such that d(v) > 3, the operation expand(v) replaces v with four new
vertices: x of degree 3, x′ of degree 2, y′ of degree 2, and y of degree d(v) − 1. If d(y) > 3, we
can apply the expand(y) operation, and so on, until all the newly introduced vertices have degree
bounded by 3. Again exactly d(v) − 3 operations are needed to replace v by new vertices each
having a degree bounded by 3. We denote this iterative process initiated at the vertex v iterative-
expand(v). If G′′ is the resulting graph from G after applying iterative-expand(v), then we have
η(G′′) = η(G) + d(v)− 3, and the number of vertices n′′ of G′′ is n + 3d(v)− 9.

Theorem 3.6 The Planar-3DS problem can be solved in O(2o(
√

k)p(n)) time if and only if the
Planar-DS problem can be solved in O(2o(

√
k)q(n)) time, where n is the number of vertices in the

graph, and p, q are two polynomials.

Proof. The proof of this theorem has the same flavor as Theorem 3.3. First if Planar-DS can
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be solved in O(2o(
√

k)q(n)) time then so can Planar-3DS. To prove the other direction, we suppose
that Planar-3DS can be solved in time O(2ε

√
kp(n)) for any 0 < ε < 1, and for some polynomial

p, and we show that Planar-DS can be solved in O(2δ
√

kq(n)) time (q is a polynomial) for any
0 < δ < 1. By Theorem 2.2, this will be sufficient. Let (G, k) be an instance of the Planar-DS

problem, and let 0 < δ < 1 be given. Consider the scheme in Figure 4.

DS-scheme

Input: an instance (G, k) of Planar-DS and a constant 0 < δ < 1
Output: a dominating set D of G of size bounded by k in case it exists

1. apply Proposition 3.4 to G;
2. while there exists a vertex v of degree > 3 do iterative-expand(v);
3. call the Planar-3DS scheme on the resulting graph and parameter,

with ε = δ/
√

2011, to compute the desired dominating set D′ in case it exists;
4. if D′ exists then using Proposition 3.5 and D′ output the desired dominating set D of G;

Figure 4: A scheme for Planar-DS

The analysis of the algorithm and its correctness follows a similar line to that of Theorem 3.3.
However, few things need to be clarified. First, after step 1, we know by Proposition 3.4 that
the number of vertices n in G is bounded by 335k. In step 2, the iterative-expand() operation
increases both the parameter and the number of vertices in G. Let G′ be the resulting graph at
the end of step 2, and let k′ and n′ be the parameter and number of vertices in G′, respectively.
Each call to iterative-expand(v), where d(v) > 3, increases k by d(v)− 3 and n by 3d(v)− 9. It
follows that

k′ = k +
∑

v∈G,d(v)>3

(d(v)− 3) ≤ k +
∑
v∈G

d(v)

≤ k + 6n− 12 < k + 2010k = 2011k

The last two inequalities follow from the fact that the number of edges in a planar graph of n

vertices is bounded by 3n− 6 [6], and from Proposition 3.4. Similarly, we can show that n′ ≤ 19n.
It is easy now to see that the theorem follows.

3.3 Max-SAT and Max-Cut

The parameterized Max-SAT problem is defined as follows. Given a boolean formula F in con-
junctive normal form and a positive integer k, decide if F has a truth assignment that satisfies k

or more clauses. The parameterized Max-3SAT problem is the parameterized Max-SAT problem
restricted to formulas in which each clause contains at most three literals. Mahajan and Raman
[14] showed the following.

Proposition 3.7 ([14]) Given a formula F and a positive integer k, then in linear time, we
can compute a formula G and a positive integer k′ ≤ k with |G| ∈ O(k′2), such that F has an
assignment satisfying at least k clauses if and only if G has an assignment satisfying at least k′
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clauses. Moreover, such an assignment for F is computable from an assignment for G in linear
time.

Using Proposition 3.7, the standard reduction from SAT to 3-SAT [9], and Theorem 2.2, we
can show the following theorem.

Theorem 3.8 If parameterized Max-3SAT can be solved in time O(2o(
√

k)p(n)) then parameter-
ized Max-SAT can be solved in time O(2o(k)q(n)), where p and q are two polynomials.

In the parameterized Max-Cut problem we are given an undirected graph G and a positive
integer k, and we are asked to decide if the vertex set of G can be partitioned into two parts so that
at least k edges cross the partitioning. The parameterized Max-3Cut problem is the parameterized
Max-Cut problem on graphs of degree bounded by 3. We have the following theorem.

Theorem 3.9 Parameterized Max-3Cut can be solved in time O(2o(k)p(n)) if and only if param-
eterized Max-Cut can be solved in time O(2o(k)q(n)), where p and q are two polynomials.

4 Concluding remarks

In this paper we showed the equivalence of the two notions: an algorithm having an f(k)-uniform
parameterized exponential time scheme and an algorithm being solvable in O(2o(f(k))p(n)) param-
eterized time. We used this equivalence to identify some hard special instances of well-known NP-
hard parameterized problems like Vertex Cover, Planar-DS, Max-3SAT, and Max-3Cut.
Our results can have algorithmic implications in addition to their complexity theoretic ones.

A final remark that is worth mentioning is the following. Our results show that 3-VC, Planar-

3DS, and Max-3Cut, are ”as hard” as the corresponding general problems. These results do not
seem to generalize in the same manner to Max-SAT, as we have seen in the previous section.
The problem that arises with Max-SAT is very similar to that that arises when trying to show
the same result for 3-SAT and SAT, with respect to the standard exponential time computability
framework.

The question whether 3-SAT and SAT have subexponential time algorithms seems to have
direct consequences on parameterized complexity: 3-SAT in DTIME(2o(n)) would imply that Ver-

tex Cover, for instance, can be solved in parameterized subexponential time by our results and
those in [4], and SAT in DTIME(2o(n)) would imply that W[1] = FPT [7]. It would be interesting to
study what elements contribute to the differentiation between the time complexity of Max-3SAT

and Max-SAT, and 3-SAT and SAT. It seems one of the major differences between such problems
and problems like Vertex Cover, is that in SAT and Max-SAT there are two parameters that
affect the complexity, namely the number of variables and the number of clauses. This suggests
that there might be some threshold that is somehow related to the “density” of the formula (total
number of occurrences of literals divided by the total number of clauses) that is affecting the (pa-
rameterized) exponential time computability of these problems. This difference and the existence
of a threshold are worth investigation.
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