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Abstract

We present two solutions to the firing synchronization problem on the ring,
an 8-state minimal-time solution and a 6-state non-minimal-time solution. Both
solutions use fewer states than the previous best-known minimal-time automaton,
a 16-state solution due to Culik. We also give the first lower bounds on the number
of states needed for solutions to the ring firing synchronization problem. We show
that there is no 3-state solution and no 4-state, symmetric, minimal-time solution
for the ring.

1 Introduction

In the original firing synchronization problem we consider a one-dimensional array of
n identical finite automata. Initially all automata are in the same state except for one
automaton that is designated as the initiator for the synchronization. The machines
operate in lock-step, and the transitions of each automaton depend on the state of the
automaton and the states of its neighbors. The goal is to define the set of states and
transition rules for the automata so that all machines enter a special fire state for the
first time and simultaneously during the final round of the computation. A great deal
of work has been done on the original firing synchronization problem [1, 4, 6, 7, 8, 12,
14, 15, 18, 19].
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There are many variations of the firing synchronization problem that involve net-
works of automata other than the one-dimensional array [3, 5, 9, 10, 11, 15, 16, 17]. We
consider the problem of synchronizing rings of finite automata. In this problem each
automaton has exactly two neighbors and there are no endpoints in the system. The
goal is the same as the original problem, namely the synchronization of all automata in
the final round of the computation.

Initial work on the ring variant of the firing synchronization problem focused on
finding correct solutions to the problem without considering the number of states or
even the minimal-time required to solve the problem [10, 5, 3, 11]. The main reason
for this is that the solutions to the ring were given as an initial step in solving a more
general problem, that of synchronizing connected graphs. The solution to the ring was
not the goal, but a necessary first step. Further details about these solutions can be
found in the next section.

The first work directly considering the number of states needed to solve ring syn-
chronization was done by Culik [2]. He established the minimal-time necessary for
synchronization and produced a minimal-time solution using 16 states. He did so in
the context of solving a related synchronization problem in which there are multiple
initiators.

In this paper we improve Culik’s result for the firing synchronization problem on a
ring by giving an 8-state, symmetric, minimal-time solution, as well as a 6-state, non-
minimal-time solution for the ring. We also give the first state lower bounds known
for the firing squad problem on the ring. We show that there is no 3-state solution,
regardless of the time provided for synchronization. This result is the first known lower
bound with no assumption about the time needed for synchronization. We also show
that no 4-state, symmetric, minimal-time solution to the ring exists.

2 Preliminaries

We now outline the definitions for the ring version of the firing synchronization problem,
sketch the previous work done on the problem, and state our results.

2.1 Definitions

One of the oldest variants of the firing synchronization problem is one in which the
underlying network is not a one-dimensional array but a ring. As in the original firing
problem there is a single initiator that may be located anywhere in the ring. The
automata change state once during each round based on their current state and their
neighbors’ current state. The problem is to define the set of states and the transition
function for the automaton so that all machines fire for the first time and simultaneously
in some round t(n).
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The transition function for each automaton can be given as a set of 4-tuples. The
4-tuple (X,Y,Z,W) represents the rule that an automaton currently in state Y, with
left neighbor in state X and right neighbor in state Z will enter state W at the next
time step. We will denote this by XYZ → W. By definition automata solving the
firing synchronization problem are deterministic so that there is at most one 4-tuple
(X,Y,Z,W) for any triple of states X,Y,Z.

A symmetric automaton is one which has a symmetric transition function, that
is, whenever a transition XYZ → W is defined, the transition ZYX → W must also be
defined. This means that the automata cannot distinguish their left and right neighbors.

2.2 Previous work

Recall that initial work on the synchronization of the ring was done while developing
solutions for connected graphs. Each of the papers that follows provides a solution
to the ring as a building block in a more general solution. The first result of this
type was given by Nishitani and Honda [10] in 1981. Their solution required 3rG + 1
steps to synchronize a connected, undirected graph where rG is the maximum distance
between the initiator and any other node in the graph. Kobayashi [5] adapted Nishitani
and Honda’s solution to directed graphs, giving a solution requiring (2a2 + 1)n time
where a is the number of output terminals of the automaton and n is the number of
nodes in the graph. The first polynomial-time solution for directed graphs was given
by Even, Litman, and Winkler [3] in 1990. They found a solution requiring O(n2) time
to synchronize a strongly-connected directed graph with n nodes. This was further
improved by Ostrovsky and Wilkerson [11], who gave a solution that synchronized a
strongly-connected directed graph in time O(nD) where n is the number of nodes in the
graph and D is the diameter of the graph.

The first work directly considering the number of states needed to solve ring syn-
chronization was done by Culik [2]. In his paper Culik considered a variation of the
firing synchronization problem in which there are multiple initiators. He showed that
any solution to the problem for the one-dimensional array of length n with two initiators
located at the endpoints requires n − 1 steps to synchronize. The following theorem is
a direct corollary of this result.

Theorem 2.1 (Culik) Any solution to the firing synchronization problem for the ring
with n automata requires n time steps to synchronize.

If we take an array of length n+1 with two initiators at the endpoints and consider
it as a ring with a single initiator we obtain Theorem 2.1. It should be noted that Culik
incorrectly gave a time bound of n−1 time steps in his paper, as he neglected to account
for the fact that the length of the ring is shorter by one than the equivalent array since
the two initiators are merged into one.
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We will call any solution that synchronizes a ring of n automata in t(n) = n time steps
a minimal-time solution. Any solution that requires t(n) > n time steps to synchronize
will be called a non-minimal-time solution.

In addition to giving a time bound, Culik also described a minimal-time solution to
the ring version of the problem. He used a modified version of Waksman’s solution [18],
producing an automaton that uses 16 states.

No prior work has been done on improving the number of states used by the minimal-
time solution described above. Further, no state lower bounds for the ring version of
the problem are known. In particular, the known state lower bounds for the original
firing synchronization problem [1, 12] do not apply to the ring, and no one has directly
considered state lower bounds for the ring.

2.3 Our contributions

We present a 8-state, symmetric, minimal-time solution to the firing synchronization
problem on the ring. This solution is adapted from Szwerinski’s solution to the original
firing synchronization problem [16]. To synchronize an array of length n the ring solution
requires time n.

We also give a 6-state, non-minimal-time solution for ring synchronization. This
solution is an extension of Mazoyer’s solution to the original problem [6]. It requires
2n − 2 steps to synchronize an array with n automata.

We also give the first known state lower bounds for the firing synchronization problem
on the ring. Our first state lower bound result is to prove the following theorem:

Theorem 2.2 There is no 3-state solution to the firing synchronization problem for the
ring.

As noted in the previous section, this is the first known lower bound for the firing
synchronization problem that places no restrictions on the time required to synchronize.
With two additional conditions, we can extend the theorem to the following:

Theorem 2.3 There is no 4-state, symmetric, minimal-time solution to the firing syn-
chronization problem for the ring.

Since the ring provides an inherently symmetric setting, it is natural to consider
symmetric solutions for the ring.

3 The minimal-time solution

Our 8-state, minimal-time solution is adapted from Szwerinski’s 8-state, symmetric so-
lution to the firing synchronization problem on the one-dimensional array [16]. The
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construction of the solution requires the addition of some transitions to the solution,
as well as the removal of transitions that are not needed for the ring, but the solution
behaves in the same manner as Szwerinski’s.

In Szwerinski’s solution, the array is repeatedly subdivided into halves as new ini-
tiators are placed in the center(s) of each of the intervals. The simulation ends when
all automata become initiators and then fire. The synchronization begins when the first
initiator sends out a signal, the purpose of which is to produce a second initiator when
it reaches the opposite end of the array. When this wake-up signal is reflected back by
the new initiator it intersects with markers created in the wake of the first signal and
produces a third initiator (or pair of initiators depending on the parity of the original
array) located at the center of the array. This division of the array into halves continues
until every other automaton is an initiator. At the next step in the simulation every
automaton becomes an initiator, and at the next time step all automata fire. For a more
detailed description of Szwerinski’s solution, see the references [13, 16].

Because the eight-state solution is symmetric, it can be adapted to the ring in a
straightforward manner. Instead of a single wake-up signal, two signals are sent from
the initiator. These intersect on the opposite side of the ring, creating either one or
two new initiators depending on the parity of the ring. The process then continues as
described above until every automaton becomes an initiator and then fires.

To produce the above results on the ring, two types of changes to the transition
function had to be made. First, all unnecessary transitions were eliminated. A transition
is unnecessary if it involves a triple that does not appear in any simulation. Clearly, any
transition involving the end marker is unnecessary, as the end marker is used in solutions
to the original problem to indicate the end of the array. The marker allows the definition
of a single transition function instead of three different types of transition functions, one
for the central automata and one for each of the left and right end machines. Since
there are no endpoints in the ring, these transitions can be removed. In addition, the
transitions ARA → Q, PRQ → Q, QRP → Q, and QRQ → Q were eliminated. Each
corresponds to a configuration produced only for arrays.

Next, additional transitions had to be defined for configurations that appeared in
simulations on the ring but did not appear in any simulations in the array. These
transitions are AZA → G, AAR → G, RAA → G, AAP → G, PAA → G, AAG → G,
GAA → G, QGG → G, and GGQ → G. All of these configurations represent triples
produced late in the simulation and are of two types. The first is triples produced
immediately following the creation of the center initiator or initiators, and the second
is triples that occur just prior to synchronization. The state A is used in Szwerinski’s
solution as a pseudo-initiator to break symmetry in these places in the simulation.
Because the ring produces more symmetric behavior than the array, more transitions
designed for this purpose were needed.

Table 1 shows the transition function for the 8-state automaton. The state of an
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present state
neighbors’

states Z A B R P Q G

Z–Z Z Z B G
Z–A A Z G A
Z–B Z G B P
Z–R R P P Q R Z G
Z–P Z R B Q
Z–Q Z B Q R
Z–G A R B A G
A–A G G G
A–B A G G G P
A–R P G A
A–P R G G Q
A–Q A G P
A–G R G G B G
B–B Z P G

present state
neighbors’

states Z A B R P Q G

B–R R P P R Z G
B–P Z R Q
B–Q Z B R
B–G A R B A G
R–R P G
R–P R Q Z
R–Q P Z G
R–G R B A A G
P–P A
P–Q Z R Z
P–G B A A A
Q–G A R A G
G–G G G G F

Table 1: The transition function for the 8-state automaton

automaton at the next time step can be found by looking at the entry in the column
corresponding to the automaton’s present state and the row corresponding to the states
of its neighbors. Since the automaton is symmetric, the orientation of the neighbors is
irrelevant.

4 A non-minimal-time solution

The 6-state, non-minimal-time ring solution is an extension of Mazoyer’s 6-state solu-
tion to the restricted firing synchronization problem [6]. The restricted version of the
problem requires that the initiator to be located at the left endpoint of the array. The
construction of a ring solution requires a slight modification of the transition function,
but the solution behaves in the same manner as Mazoyer’s.

Mazoyer’s solution works by dividing the line of n automata into unequal parts,
one of length 2

3n and the other of length 1
3n. An initiator is placed at the left end

of the shorter segment, and each segment is then recursively subdivided. After every
automaton becomes an initiator, the automata fire and the synchronization ends. For a
detailed description of the solution see Mazoyer’s paper [6].

In order to extend Mazoyer’s solution to the ring, two types of changes had to be
made. First, all transitions involving the end marker were eliminated, as in with the
8-state solution described above. Next, two transitions were added. These transitions
are ZGZ → A and ZZA → Z. The transition ZGZ → A is needed to prevent a wake-up
signal from propagating to the left of the first initiator. At the very next time step,
the transition ZZA → Z must be defined in order to keep all the initiators to the left of
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A Z A B C G
Z A Z G
A A A B C B
B G G C C
C A A
G C C

B Z A B C G
Z G B Z B
A G B B Z
B G A B C B
C Z A Z
G C C B G

C Z A B C G
Z C A G C G
A B B B
B C C G
C C A B C B
G B B B

Z Z A B C G
Z Z Z Z Z Z
A G Z Z Z C
B Z Z Z Z Z
C A Z Z Z G
G C Z Z Z A

G Z A B C G
Z A G G G
A B G G
B B G G G
C A G G A
G B G G F

Table 2: The transition function for the 6-state automaton

the first initiator quiescent. The purpose of both of these transitions is to preserve the
behavior of Mazoyer’s solution.

The fact that a solution to the restricted firing synchronization problem could be
adapted to work on a ring is remarkable. Particularly interesting in this case is that
Mazoyer’s solution is distinctly non-symmetric. He relied on asymmetry to help him
reduce the number of states needed for the solution, which is why the solution only
works for the restricted version of the original problem. Despite this, the solution could
be modified to work on the ring, where symmetry is inherent. We conjecture that this
is a consequence of the structure of Mazoyer’s solution, and that not all non-symmetric
solutions can be modified for the ring.

Table 2 gives the transition function for the 6-state non-minimal-time automata.
The state of an automaton at the next time step can be found by looking at the table
corresponding to the automaton’s present state. The state that the automaton should
enter at the next time step is the one in the row and column corresponding to the states
of its left and right neighbors respectively.
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5 Lower bounds

As mentioned previously, there are no known lower bounds for the firing synchroniza-
tion problem on a ring. In this section we show that there is no 3-state solution to
ring synchronization. We also show that there is no 4-state, symmetric, minimal-time
solution.

5.1 Three-state bound

We now prove Theorem 2.2, a result stating that there is no 3-state solution to the firing
synchronization problem on the ring.
Proof: Denote the three states by G, Z, and F. Since there are only three states for
the solution and the fire state cannot be used prior to the final round, there are only
eight possible triples of states that may be used prior to the last round. These are:
ZZZ, GZZ, ZGZ, ZZG, GZG, GGZ, ZGG, and GGG. We know that ZZZ → Z must be
defined. Partition the triples into four classes, based on the number of initiators.

Class 0 ZZZ
Class 1 GZZ, ZGZ, ZZG
Class 2 GGZ, GZG, ZGG
Class 3 GGG

Consider the ring of length 3. By assumption, the initial configuration is ZGZ.
In order to produce the next configuration we must apply three class 1 rules. The
next configuration, however, must have at least two initiators, since otherwise it would
duplicate the initial configuration.

This means that there are two cases to consider:

1. Class 1 rules have all G’s on the right hand side, or

2. Exactly two of the class 1 rules have a G on the right hand side.

In the first case, we must have GGG → F. This yields a contradiction for the ring
of length four, where after one round we produce the configuration GGGZ.

In the second case, we must have all class 2 triples defined to have G on the right
hand side, or we produce an infinite loop for the length three ring. This is because in
the length three ring, the first configuration has two Z’s and the second configuration
has one Z. Since it is not possible by the definition of the problem to have three Z’s, the
next configuration must have no Z’s.

So in the case where exactly two of the class 1 triples are defined to transition to G,
all class 2 rules must use G on the right hand side. Further, we must have GGG → F
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must be defined, since it is the only remaining undefined triple. Consider the ring of
length five. ZZZGZ yields ZZs, where s is a string with 2 initiators. If the initiators are
adjacent in s, the we are done since in the next round we get the triple GGG from the
triples ZGG, GGZ, and either ZZG or GZZ since two out of three of the class 1 triples
are defined to transition to G. This produces a firing prior to the final round. If the
string s is of the form GZG, so that the length 5 ring in round 2 looks like ZZGZG, we
must have had ZGZ → Z, ZZG → G, and GZZ → G. This produces the configuration
GGZGZ and then GGGZG, which causes a partial firing of the ring contrary to the
definition of the problem. ♦

5.2 Four state bound

Recall that Theorem 2.3 states that there is no 4-state, symmetric, minimal-time sym-
metric solution to the ring synchronization problem. We now give the proof of the
theorem.

Proof of Theorem 2.3

This result follows from the fact, shown by Balzer [1] and verified by Sanders [12],
that there is no 4-state minimal-time solution to the firing synchronization problem on
an array, and the following lemma:

Lemma 5.1 If there exists a symmetric, minimal-time k-state solution to the firing
squad problem on a ring, then there exists a symmetric, minimal-time k-state solution
to the firing squad problem on an array.

To see intuitively why this lemma is true, we describe how to construct a simulation
on an array of n = 6 automata from a simulation on a ring of 2n−2 = 10 automata. We
first run a simulation on the ring, using the symmetric, minimal-time k-state solution
to the firing synchronization problem on a ring:

0 G Z Z Z Z Z Z Z Z Z
1 ? ? Z Z Z Z Z Z Z ?
2 ? ? ? Z Z Z Z Z ? ?
3 ? ? ? ? Z Z Z ? ? ?
4 ? ? ? ? ? Z ? ? ? ?
5 ? ? ? ? ? ? ? ? ? ?
6 ? ? ? ? ? ? ? ? ? ?
7 ? ? ? ? ? ? ? ? ? ?
8 ? ? ? ? ? ? ? ? ? ?
9 ? ? ? ? ? ? ? ? ? ?
10 F F F F F F F F F F
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We obtain the simulation on an array of n = 6 automata by simply removing the
last four columns.

In the arguments below, we will assume that 2n−2 automata on a ring are numbered
1 through 2n−2 in counter-clockwise order, with the initiator being numbered 1. Before
we formally prove Lemma 5.1, we first show the following holds:

Claim 5.1 Suppose we run a simulation of a symmetric solution on a ring of 2n − 2
automata. Then, in any round r, automata i and 2n − i must be in the same state, for
i = 2, 3, ..., n − 1.

Proof: We use induction on r. If r = 0, the claim holds trivially since all relevant
automata are quiescent. Consider now round r ≥ 1 and choose some i between 2 and
n−1. By induction, automata i−1 and 2n− i+1 (or 1 if i = 2) are in the same state in
round r− 1, as are automata i and 2n− i, and automata i+1 and 2n− i− 1. Since the
solution is symmetric, this implies that automata i and 2n− i must be in the same state
in round r. This is true for any i between 2 and n − 1, which completes the induction
step. ♦

We are now ready to complete the proof of Lemma 5.1.
Proof: From our intuitive example, it should be clear that all we need to do is define the
additional transitions for the array solution that involve the left or right end markers.
Let δl be the set of all the transitions of the k-state, symmetric, minimal-time ring
solution that are used by automaton 1 in a ring of size 2n − 2, for any n ≥ 2. Each
transition in δl must be of the form XY X → W , since automata 2 and 2n − 2 are
always in the same state, by the above claim. For each such transition, we define a new,
array transition ∗Y X → W . Next, we consider the set δr of transitions of the k-state,
symmetric, minimal-time ring solution that are used by automaton n in a ring of size
2n − 2, for any n ≥ 2. Each transition in δr is also of the form XY X → W . For each
such transition, we define a new array transition XY ∗ → W . ♦

It should be noted that the symmetric solution requirement in Theorem 2.3 and
Lemma 5.1 is stronger than necessary. In the proof of Lemma 5.1, all we really used is
that the following two conditions are satisfied by the k-state, minimal-time solution for
the firing synchronization problem on a ring:

1. For any simulation on a ring of even length 2n− 2, automaton 1 does not use two
transitions X1Y Z → W1 and X2Y Z → W2 where X1 �= X2 and W1 �= W2.

2. For any simulation on a ring of even length 2n− 2, automaton n does not use two
transitions XY Z1 → W1 and XY Z2 → W2 where Z1 �= Z2 and W1 �= W2.
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6 Conclusion

In this paper we presented improved bounds on the complexity of solutions to the firing
synchronization problem on the ring. We gave an 8-state, symmetric, minimal-time
solution, as well as a 6-state, non-minimal-time solution to the firing synchronization
problem on the ring. Both of these solutions use fewer states that the best-known
solutions to the firing synchronization problem on the ring, a 16-state solution given by
Culik [2].

We also provide the first lower bounds for the synchronization of the ring. We show
that there is no 3-state solution to ring synchronization, the first known result to place
no restrictions on the time needed to synchronize. We also prove that there is no 4-state,
symmetric, minimal-time solution.

This work establishes a gap between the best-known upper bounds and lower bounds
for ring synchronization. For minimal-time solutions this gap is 4 states in the symmetric
case and 5 states in general. For non-minimal-time solutions the gap is only 3 states.
Reducing this gap, either by producing a smaller solution for the ring or by improving
the lower bounds, is an important direction for future work.
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