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Abstract

We present a model-based object recognition metric inte-
grated with the control system of a mobile robot. The met-
ric draws on the information-theoretic framework of string
processing. Object models and images are viewed as se-
quences of binary strings whose local pairwise similarities
contribute to global matches. We present and analyze the
results of evaluating the metric on several trash collection
tasks.

1. Introduction
Many problems in robotics depend on reliable object recog-
nition [6], [7], [8]. To be practical, object recognition must
use metrics that are robust in the presence of sensor noise
and account not only for exact matches but also for approx-
imate ones. But, robustness alone is not sufficient for a met-
ric to be used on a mobile robot. If a metric is to be used
on a robot, it must be integrated with the robot’s control
system. This integration, at the very least, presupposes that
the metric helps the robot transform raw images into dis-
crete messages about the world used by the control system
to make decisions.

Most current object recognition metrics are either model-
based or sample-based. Model-based metrics, such as cor-
relation [9], template matching [9], and color histogram
matching [11], [3], rely on model libraries. Sample-based
metrics, such as Bayesian Networks (BN) [2] and Ar-
tificial Neural Networks (ANN) [12], require large pre-
classified samples for training. Neither approach accounts
for approximate matches in a principled way. Model-based
metrics make recognition decisions by adjusting thresh-
olds. Sample-based metrics, while sensitive to approximate
matches, cannot explicitly control the degree of approxi-
mation. Nor do they offer insights into why the matching
happens the way it does, because the reasons are internal-
ized and hidden away from inspection during training. In
addition, most metrics from both camps focus exclusively
on robustness, bypassing integration altogether or pushing
it into future work. An exception is the research reported in

Kahn et. al [1996]. The authors present a vision architec-
ture, which, they argue, integrates symbolic and continuous
controls. However, no specifics are given on how vision
routines are integrated with the robot’s control system. It is
also difficult to determine how well those routines general-
ize, because the evaluation is done on a very small image
collection.

Thus, there is a practical and theoretical need for metrics
that are integrated with the robot’s control system, account
for approximate matches in a principled way, do not re-
quire large pre-classified sample collections to become op-
erational, and perform as well as or better than their model-
based or sample-based counterparts. This paper presents a
model-based integrated metric that seems to satisfy these
criteria. The metric explicitly specifies the degree of ap-
proximation it tolerates in matches. The metric’s model li-
brary is created from the images of the objects to be recog-
nized. The robustness experiments suggest that the metric
performs better than some of its counterparts and as well as
others.

The metric is implemented and integrated with the con-
trol system of a mobile robot collecting trash. The robot
patrols an office area and looks for soda cans, coffee cups,
and crumpled pieces of paper. When an object is recog-
nized in the image, the robot must pick it up and place it in
an area of the floor designated for that type of object. Thus,
it is critical that the robot distinguish each type of object.

The paper is organized as follows. In section 2, we dis-
cuss the information-theoretic concepts of string processing
on which the metric draws. We also introduce the Extended
Hamming distance as a similarity measure between binary
strings, and offer an algorithm for computing it. Section 3
explains how the object models are constructed and used in
matching. In section 4, we outline how the metric is inte-
grated with the robot’s control system. Section 5 describes
the experiments that compare the Extended Hamming dis-
tance metric with color histogram matching and normalized
correlation. Section 6 describes future work. Section 7 of-
fers conclusions.
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2 Extended Hamming Distance

The Hamming distance has long been used to measure the
similarity between two bit vectors of the same dimension
[10]. In particular, it was extensively used in the early appli-
cations of information theory that focused on measuring the
error introduced by the noise in the channel through which
messages are sent from the source to the target. The classic,
or crisp, Hamming distance (CHD) does not recognize the
notion of approximate similarity, because it measures only
the exact extent to which the corresponding bits in two bit
vectors agree.

As an example, consider the target bit vector A =

1100100000 and the two source bit vectors B =

1100010000 and C = 1100000001. As measured by the
CHD, both B and C approximate A equally well since both
differ from it by a distance of 2. In the case of B, the dis-
tance is obtained by deleting the 6th bit, which incurs a cost
of 1, and inserting it in the 5th position, which incurs an-
other cost of 1. In the case of C, the 10th bit is deleted and
inserted in the 5th position. Intuitively, however, B is a bet-
ter approximation, because it misses A by only one bit while
C misses it by five. In applications with noisy channels, e.g.,
robot cameras, finding such better approximations is impor-
tant.

One can view the CHD as an edit distance with the op-
erations of insertion and deletion. Given two bit vectors
of the same dimension, the CHD is the minimum number
of bit changes required to change one bit vector into the
other. The Extended Hamming distance (EHD) is also an
edit distance, but the set of operations is extended with a
shift operation, which has not received much attention in the
string literature [5]. By extending the operation set with the
shift operation, we account for the notion of approximate
matches, i.e, situations when corresponding bits in two bit
vectors are considered aligned even when they are not in the
exact same positions.

Formally, assume that we wish to measure the distance
between a target bit vector T and a source bit vector S.
For example, T may be a representation of an object while
S may be the output of a vision routine, e.g., edge de-
tection. Ideally, of course, S and T are identical. Now
let B = [b1; :::; bD] be a bit vector of dimension D and
let N(B) be the number of 1-bits in B. For example, if
B = 1001, N(B) = 2. To compute the EHD, we associate
a cost with each of the three operations. Given the costs, we
compute the EHD by transforming S into T and adding up
the costs of the operations used in the transformation. To
eliminate the ambiguity associated with multiple transfor-
mation sequences, we quantify the EHD as the minimum
cost of the sequences of operations that transform S into T .

In the string literature, the computation of edit distances
typically requires processing whole strings. However, since

the EHD depends only on 1-bits, bit vectors are represented
as lists of indices of their 1-bits given in ascending order.
If B is a bit vector, let I(B) =< s1; s2; :::; sN(B) > be
an index list, where si is the position of the i-th 1-bit. For
example, if B = 1010, I(B) =< 1; 3 >. The indices start
with 1, because 0 is reserved for the dynamic programming
algorithm to compute the EHD presented below. Let c(i; j)
denote the minimum cost of transforming the first i 1-bits of
S into the first j 1-bits of T , where 1 � i � N(S) and 1 �

j � N(T ). The objective is to compute c(N(S); N(T )).
The computation is carried out by filling the entries of an
N(S) + 1 by N(T ) + 1 table with the following dynamic
programming technique:

� Insertion: S is considered to have missed the j-th 1-bit
of T . A 1-bit is inserted into S at location sj at a cost
of cI > 0. Since the insertion is applied to an optimal
transformation taking < s1; :::; si > to < t1; :::; tj >,
c(i; j) = cI + c(i; j � 1).

� Deletion: S is considered to have an extra 1-bit in the
i-th position. The 1-bit is changed into a 0-bit at a cost
of cD > 0 so that c(i; j) = cD + c(i� 1; j).

� Shift: The i-th 1-bit of S and the j-th 1-bit of T are
considered misaligned. The i-th 1-bit of S is shifted
P positions to align it with the j-th bit of T so that
c(i; j) = cS(P ) + c(i � 1; j � 1). The incurred cost,
cS(P ), is a non-negative function that monotonically
increases with P = jj � ij. The function cS(D) can
be defined as KP , for some non-negative constant K
chosen in such a way that for large values of P it is
cheaper to delete and insert than to shift. The shift cost
function offers an explicit way to control the degree of
approximation in matches.

The table is initialized by inserting the following values
in its 0-th row and 0-th column: c(0; j) = jcI and c(i; 0) =
icD. Intuitively, c(0; j) defines the cost of inserting j 1-
bits into S, while c(i; 0) defines the cost of deleting i 1-bits
from S. Once the table is initialized, the costs are computed
according to the above three rules.

The complexity of the computation is significantly re-
duced, because the size of the table is N(S)N(T ), not D2,
where D is the dimension of the bit vectors. We define the
function that computes the EHD as ehd(S; T; cI ; cD;K).
The parameter K defines each instance of the metric in
terms of the degree of approximation that it tolerates in
matches between the source and the target. If K is suffi-
ciently large, the cost of shifting becomes prohibitively ex-
pensive, and the shift operation is never chosen, thus mak-
ing the EHD and the CHD identical. Hence, the EHD gen-
eralizes the CHD. The choice of K depends on how much
approximation can be safely tolerated. If good matches oc-
cur only between strings whose bits are closely aligned, K
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Figure 1: A soda can.

Figure 2: Edges of the soda can.

Figure 3: Bit array of the soda can.

should be small. In general, the larger the value of K, the
greater the degree of approximation allowed.

3 Object Representation and Match-
ing

Objects are represented by model libraries created from
images taken from different distances and with differ-
ent camera tilts. The camera used is the Pioneer Pan-
Tilt-Zoom (PTZ) Robotic Camera mounted on a Pio-
neer 2DX mobile robot manufactured by ActivMedia, Inc.
[www.activmedia.com]. Figure 6 depicts the robot used in
the experiments. The camera has a horizontal angle of view
of 48.8 degrees and a vertical angle of view of 37.6 degrees.
The images are saved as 120 by 160 color bitmaps. The red,
blue, and green intensities range from 0 to 255. The origin
of the image coordinate system is in the bottom left corner
of the image. The positive X-axis measures the width. The
positive Y-axis measures the height. The distance is mea-
sured in meters from the robot’s gripper to the object.

The models were taken from the following distances:
0.5, 1.0, 1.5, and 2 meters. The camera tilt for the distances
1.0, 1.5, and 2 was 0 degrees. The camera tilts for 0.5 were
0 and -10 degrees. The negative tilt, which indicates that the
camera is tilted 10 degrees downward, was chosen for the
distance 0.5, because as the robot approaches an object, the

Figure 4: Bit model.

Figure 5: Bit image.

pickup skill tilts the camera in order to ensure that the ob-
ject is still present or to correctly identify the object. Each
object has two types of models: Hamming distance models
(HDMs) and color histogram models (CHMs) [11], [3].

3.1 Hamming distance models

To create an HDM, an object’s image is taken from a given
distance and with a given camera tilt. The image is con-
volved with the gradient edge detection mask [9] and turned
into a bit array by thresholding pixel intensities to 0 or 1.
The object’s model is the smallest region of the image con-
taining the object. Thus, HDMs are 2D bit arrays. Figure 1
contains part of an image containing a soda can. Figure 2
contains the image from Figure 1 after the application of the
gradient edge detection mask. After the edges are detected,
the image is turned into a 2D bit array by thresholding pixel
intensities to 0 or 1. Figure 3 contains the bit array ob-
tained from the image from Figure 2. An HDM model is
obtained from the 2D bit array by taking the smallest region
containing the object. In this case, the region is a rectangle
containing all of the bits that consitute the soda can.

Each object has five HDMs: two models for the distance
0.5, one with tilt 0 and one with tilt -10, and three models
with tilt 0 for the remaining distances. Each model has two
row constraints specifying the region of an image where the
model is applied. For example, the row constraints of the
two meter pepsican model are 40 and 45. The row con-
straints are based on the camera’s calibration.

To recognize objects in images using HDM models,
we convert images into 2D bit arrays. Formally, let
MH(O;D; T; L; U) denote an HDM for object O at dis-
tance D and with tilt T and two row constraints L and U
for the lower and upper rows, respectively. For example,
MH(pepsican; 2; 0; 40; 45) is the model of a pepsican two
meters from the robot and with tilt 0 and row constraints 40
and 45. Let H and W be the model’s height and width.
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Figure 6: Pionner 2DX robot.

Let I be an image. I is first convolved with the gradi-
ent edge detection mask. To recognize O in I , the model
MH(O;D; T; L; U) is matched with the region of I whose
bottom row is L and whose top row is U+H . For example,
if the height of MH(pepsican; 2; 0; 40; 45) is 13 rows, the
matching happens between rows 40 and 58 (45 + 13). The
matching is done by moving the model from left to right
C columns at a time and from top to bottom R rows at a
time. For this reason,R and C are referred to as model shift
parameters.

To make the model matching more efficient for the dis-
tances of 1, 1.5 and 2 meters, the floor line is computed
to connect the lowest edge pixel in each column of the im-
age [7]. The model matching happens only around the floor
line: 10 rows up and 10 rows down. It is assumed that
since all objects are on the floor, they are either part of the
floor line, i.e., the lowest edge pixels in several consecutive
columns belong to an object, or are next to the floor line.
When that assumption does not hold, e.g., an object is more
than 10 rows behind a power cord on the floor, the robot
does not recognize the object.

The similarity coefficient between the model and an im-
age region covered by the model is the sum of the EHDs
between the corresponding bit strings of the model and the
image region normalized by the model’s size. Formally, let
S be the image region covered byMH(O;D; T; L; U). The
similarity between MH and S, sim(MH ; S), is given by
sim(MH ; S) = 1=HW

PH�1

R=0 ehd(MR; SR; cI ; cD;K),
where MR and SR are the two corresponding bit strings,
i.e., rows, from MH and S, respectively. Consider Fig-
ure 4 and Figure 5. The former contains the top of an
HDM model for a pepsican. The latter contains a region
of a 2D array obtained from an image with another pepsi-
can. Once the model top overlaps the region, the similarity
between the model top and the region is computed by sum-
ming the EHDs between the corresponding horizontal bit
strings. In other words, the EHD between the first horizon-
tal pair is added to the EHD between the second horizontal
pair, etc. The sum thus obtained is normalized by the prod-
uct of the model’s height and width. Similarity results are
4-tuples < x; y;m; s >, where x and y are the coordinates
of the bottom left corner of the image region that matches

the model m with the similarity score s. Similarity results
are sorted in nondecreasing order by similarity scores and
the top N matches are taken.

3.2 Color histogram models

The CHMs were created for the same distances and tilts as
the HDMs. Thus, each object has five CHMs. An object’s
image is taken from a given distance and with a given cam-
era tilt. The smallest region of the image containing the
object is cropped. Three color histograms are created from
the cropped region. The first histogram records the relative
frequencies of red intensities. The other two do the same
for blue and green. Each histogram has sixteen intensity
intervals, i.e., the first is from 0 to 15, the second is from
16 to 31, etc. Thus, each CHM consists of three color his-
tograms. The same row and floor line constraints as for the
HDMs hold.

Formally, let MC(O;D; T; L; U) be the H �W CHM
of object O at distance D and with tilt T and two row con-
straints L and U . Let I be an image. To recognize O in I
withMC(O;D; T; L; U), theH�W mask is matched with
the appropriate region of the image R. The similarity be-
tweenMC andR is the weighted sum of the similarities be-
tween their corresponding color histograms. Let h(H1; H2)

be the similarity between two color histograms H1 and H2

computed as the sum of the absolute differences of their rel-
ative frequencies so that 0 � h(H1; H2) � Q, whereQ is a
suitably chosen constant. Let RH(MC) denote the model’s
red histogram, BH(MC) denote its blue histogram, and
GH(MC) denote its green histogram. Let RH(R) be the
red intensity histogram of R, and let BH(R) and GH(R)
be the blue and green intensity histograms, respectively.
Then sim(MC ; R) = 1=Q[A � h(RH(MC); RH(R)) +
B�h(BH(MC); BH(R))+C�h(GH(MC); GH(R))],
where A, B, and C are the weights assessing the relative
importance of each color that sum up to 1. In the experi-
ments, A = :34, B = C = :33. In other words, all colors
are equally important. Thus, 0 � sim(MC ; R) � 1. This
matching metric is different from the standard intersection
metric used in color histogram matching [11], because it
provides a way to control the relative importance of differ-
ent colors.

4 Integrating Object Recognition
with Robot Control

The object recognition routines are part of the robot’s con-
trol system. The control system is the bottom tier in
the three-tier robot architecture [6], [1], with the top two
tiers being the planner and the reactive executor. In ad-
dition to the vision routines, the control system includes
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a set of low level behaviors, e.g., obstacle avoidance,
that run on the P2OS operating system for Pioneer robots
[www.activmedia.com].

The reactive executor is the Reactive Action Package
(RAP) system [6]. RAPs are sets of methods for achiev-
ing goals under different circumstances. For example, there
are two methods in a RAP for navigating towards the door.
One method assumes that the robot knows where the door
is. The other method makes no such assumption and in-
structs the robot to find the door first.

The RAP system consists of the RAP programming lan-
guage and an interpreter for executing RAPs written in that
language. The interpreter maps external goals to methods
that achieve them in a context-sensitive manner. For exam-
ple, when choosing between the two methods in the door
navigation RAP, the interpreter queries the RAP memory to
find out if the robot knows where the door is. The result of
the query determines which RAP gets to execute. The cho-
sen methods become tasks that are refined into commands
to enable sensing and action.

These commands enable and disable low-level behaviors
called skills. When necessary, skills invoke P2OS primi-
tives to interface with the robot hardware, e.g., read sonars,
set rotational and translational velocities, open and close the
gripper, etc. Only the skills make assertions in the robot’s
memory, which ensures that the memory is synchronized
with the world as much as possible.

The finite set of robot skills completely describes the
robot’s physical abilities. Each skill can be viewed as a pro-
cess parameterized for input and output. When a skill is en-
abled its process starts running; when the skill is disabled,
the process terminates. For example, ehd-detect-obj-
skill is enabled when a RAP method enables the EHD
visual routine to detect an object. The input parameters al-
low the enabler of a skill, i.e., a RAP method, to influence
the skill’s behavior. For example, ehd-detect-obj-
skill is parameterized for object type, cost of insertion,
deletion, and shifting, model shift parameters, and matching
threshold.

Conceptually, the output of a skill is a set of messages
that the skill can send to the robot’s memory. We define
the output of a skill as a set of predicate templates that are
instantiated with specific values extracted from the sensory
data. These predicate templates allow the robot to transform
raw sensory data from the world into discrete statements
about it. The ehd-detect-obj-skill skill has the
following predicate templates associated with it: (ehd-
detected-obj <obj-type>), (ehd-dist-
to <dist>), (ehd-obj-bottom <x> <y>), and
(ehd-sim-score <score> <model-id>). For
example, when activated to look for a pepsican, the
skill may put the following assertions in the memory:
(ehd-detected-obj :pepsican), (ehd-dist-

to 1.5), (ehd-obj-bottom 10 43), and (ehd-
sim-score .73 :m10). These assertions mean that
the routine detected a pepsican 1.5 meters away from
the robot, and the bottom left coordinates of the image
region that had the best matching score of .73 are X = 10,
Y = 43. The second argument of the ehd-sim-score
assertion is the ID of a model.

This object recognition scheme is indexical-functional
[4], because only the types of objects are recognized, not
their identities. One should note that the described skill
chooses the best matching model. There is another skill
which, when enabled, makes assertions about the top n
matching models, where n is a small integer, e.g., 2 or 3.
Once these assertions are in the robot’s memory, navigation
RAPs and skills use them to home on the detected object.
It is up to the higher level modules, i.e., RAPs and plans,
to decide how to use the assertions made by the visual rou-
tines. For example, if the color histogram skill asserts that
there is a pepsican .5 meter away from the robot and the
EHD skill asserts that there is a coffee cup 2 meters away
from the robot, the higher level module instructs the robot
to focus on the can, because it is closer. Thus, the robot’s
memory is a message board through which different mod-
ules communicate and keep abreast of each other’s activi-
ties.

An important objective of an integrated visual skill is to
help the robot stay in sync with the world. This objective
is met in our implementation by having visual skills run in
three steps. First, the skill erases the old assertions it made
in the robot’s memory during its previous run. Second, the
skill does its computation and generates a set of assertions
by filling its parameterized predicates with the results of
its computation. Finally, the new assertions are put in the
robot’s memory. One potential disadvantage of this strategy
is that the skill does not have access to the history of its own
assertions. The history can be helpful, for example, when
looking for objects detected before. In our future work, we
plan to investigate this issue by adding time stamps to as-
sertions in the robot’s memory.

5 Evaluation

Trash collection is a well-known task in AI robotics [6],
[8]. In the experiments, the standard trash collection task
was extended insomuch as the robot had to recognize types
of trash to place them in designated areas.

A typical experimental setup for object recognition tests
is to collect images first and then compare different metrics
on the static collection. Our experimental setup was differ-
ent, because our objective was to test not only the robustness
of metrics but also our integration mechanism. Towards
that end, the evaluation was carried out as the robot was
engaged in trash collection. The robot patrolled an office
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dist and tilt Pepsi RootBeer Coffee Paper Pepsi RootBeer Coffee Paper
0:5(�10) .83 : .74 .79 : .67 .81 : .78 0 : .78 .85 : .76 .8 : .71 .82 : .8 0 : .8
0:5(0) .38 : .78 .46 : .71 .8 : .73 0 : .79 .38 : .80 .46 : .73 .83 : .75 0 : .84
1:0(0) .41 : .80 .12 : .83 .15 : .81 0 : .87 .77 : .81 .65 : .85 .69 : .85 0 : .95
1:5(0) .82 : .84 .86 : .85 .42 : .97 .12 : .95 .96 : .85 .91 : .86 .75 : 1 .74 : 1
2:0(0) .5 : .90 .64 : .87 .25 : .91 .22 : .95 .5 : .91 .64 : .9 .38 : 1 .71 : 1

Figure 7: Crisp Hamming Distance. N=1 and N=5

dist and tilt Pepsi RootBeer Coffee Paper Pepsi RootBeer Coffee Paper
0:5(�10) 1 : .77 1 : .78 .91 : .77 .18 : .8 1 : .78 1 : .75 1 : .77 .21 : .8
0:5(0) .48 : .78 .75 : .78 .91 : .8 .18 : .8 .58 : .78 .81 : .76 1 : .77 .23 : .81
1:0(0) .51 : .79 .61 : .8 .34 : .81 .15 : .84 .77 : .8 .77 : .81 .69 : 78 .21 : .84
1:5(0) .82 : .81 .85 : .82 .57 : .83 .32 : .85 .96 : .81 .96 : .81 .75 : 79 .83 : .84
2:0(0) .71 : .84 .75 : .85 .61 : .84 .67 : .96 .81 : .85 .82 : .83 .87 : .84 1 : .97

Figure 8: Extended Hamming Distance. N=1 and N=5.

dist and tilt Pepsi RootBeer Coffee Paper Pepsi RootBeer Coffee Paper
0:5(�10) .33 : .77 .33 : .76 0 : .81 0 : .82 .37 : .78 .33 : .8 0 : .81 0 : .82
0:5(0) .17 : .78 .17 : .77 0 : .82 0 : .83 .25 : .79 .33 : .81 0 : .82 .33 : .82
1:0(0) .41 : .78 .12 : .78 .1 : .83 0 : .84 .71 : .8 .47 : .82 .31 : .83 0 : .83
1:5(0) .61 : .77 .66 : .77 .25 : .84 .43 : .85 .71 : .81 .71 : .83 .58 : .84 .22 : .84
2:0(0) .71 : .79 .67 : .8 .25 : .85 .21 : .86 .75 : .82 .71 : .84 .25 : .85 .22 : .85

Figure 9: Normalized Correlation. N=1 and N=5.

dist and tilt Pepsi RootBeer Coffee Paper Pepsi RootBeer Coffee Paper
0:5(�10) 1 : .51 .91 : .54 1 : .54 .91 : .55 1 : .51 .91 : .54 1 : .54 .91 : .55
0:5(0) .86 : .52 .8 : .56 1 : .54 .91 : .57 .86 : .52 .8 : .56 1 : .54 .91 : .57
1:0(0) .4 : .57 0 : .57 0 : .57 0 : .59 .4 : .57 0 : .57 0 : .57 0 : .59
1:5(0) 0 : .59 0 : .58 0 : .58 .43 : .59 0 : .59 0 : .58 0 : .58 .43 : .59
2:0(0) 0 : .61 0 : .71 0 : .71 0 : .71 0 : .71 0 : .75 0 : .81 .33 : .82

Figure 10: Color Histogram Matching. N=1 and N=5.

area of 10 meters by 15 meters. The robot’s server was con-
nected to an off-board Windows NT workstation via a radio
modem. A human judge was positioned at the workstation.
When a vision routine recognized an object in an image,
the area where the object was recognized was whitened and
displayed at the judge’s workstation along with the informa-
tion on the recognized object type and the model ID. The
robot would pause, pending the judge’s evaluation. If the
whitened area covered a region with no object or the wrong
type of object, the match was incorrect. If the whitened
area covered less than half of a correct object, the match
was incorrect. When the whitened area covered at least half
of a correct object, the judge would measure the distance
between the robot’s gripper and the object. If the measured

distance was within 20 centimeters of the distance predicted
by the model that found the best match, the match was eval-
uated as correct. Thus, correct matches were those where
the best matching model covered at least half of a correct
object type and the distance was within 20 centimeters of
the distance predicted by the model.

The evaluation was done on 182 images of various ob-
jects taken from different distances, under different light-
ing conditions, and with different occlusions. The follow-
ing metrics were evaluated: the EHD, the CHD, the color
histogram metric, and normalized correlation [9]. The nor-
malized correlation similarity between a bit model and the
region of a bit image covered by the model is the sum of the
products of the corresponding bits normalized by the size of
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the model.
We used the following values to compute the EHD:

ehd(S; T; cI = 1; cD = 1;K = :5). The small value of K
was chosen because many images taken by the robot con-
tain multiple objects. Thus, the degree of approximation
was minimized to avoid false positives as much as possible.
This is because if an image contains a single object, a cor-
rect model is likely to give a large matching score on the
subimage containining the object even if the corresponding
bits are misaligned. On the other hand, in images with mul-
tiple objects, the value of K should be small, because large
values may lead to numerous false positives. The model
shift parameters C and R were set to 1. The threshold for
all metrics was .6. This threshold was chosen after prelimi-
nary experiments, because it gave the best performance for
all the compared metrics.

The experiment was to answer the following two ques-
tions about the robustness of each metric. First, how likely
is it that an object is correctly recognized in an image that
contains it? The answer to this question estimates how well
a metric detects objects when they are present in images.
Second, how likely is it that an object is not recognized in an
image that does not contain it? The answer to this question
estimates a metric’s likelihood of avoiding false positives.

Formally, an image is said to contain an object O at
the distance D and with the tilt T if the image is taken
when the camera’s tilt is T and O is in the image at the
distance D from the robot. Let 1 � N � 5. Let
REC(O;D; T;N) be the event when the metric correctly
recognizes O at D and with T within the first N matches.
LetNREC(O;D; T;N) be the event when the metric does
not recognizeO atD and with T within the firstN matches.
This event occurs when no matches of the object are made.
Let IC(O;D; T ) be the event when the image contains O
at D and with T . Let NIC(O;D; T ) be the event when the
image does not contain O at D and with T .

The answer to the first question above is approximated
with P1 = P (REC(O;D; T;N)jIC(O;D; T )). The an-
swer to the second question above is approximated with
P2 = P (NREC(O;D; T;N)jNIC(O;D; T ). An ideal
metric has P1 = 1 and P2 = 0. Different metrics can be
compared in terms of how close they come to the ideal. We
estimated these probabilities by computing the ratio of the
numbers of images satisfying the required properties. P 1

was estimated as the ratio L1=L2, where L1 is the number
of images that contain O at D and with T and where the
metric correctly recognizes O within the first N matches at
D and with T , and L2 is the number of images that contain
O at D and with T . P2 was estimated in a similar fashion.

Figures 7 to 10 contain experimental data. Each cell con-
tains P1 and P2 values, in that order, separated by a colon.
In each table, columns 1 to 4 present data for N = 1, and
columns 5 to 8 present data for N = 5. Overall, P1 values

for the EHD are best overall, while those for the normal-
ized correlation are worst. The CHD does well on pepsicans
and root beer cans, but performs worse on coffee cups and
crumpled pieces of paper. The EHD has the same tendency
but shows improvement over the CHD, because, unlike the
CHD or normalized correlation, the EHD can handle mis-
aligned objects and models. The EHD performs better on
images with multiple objects where the object contours are
not well defined due to occlusions. The EHD and CHD
do equally well on images with single objects where object
contours are well delineated. The color histogram metric
does well on objects that are close to the robot. However, its
performance degrades as the objects get further away from
the robot. The EHD tends to be more robust than the color
histogram metric in the presence of occlusions and changes
in lighting. The color histogram metric did not recognize
a number of objects in images where the lighting condi-
tions were different from the lighting conditions of the im-
age from which the models were taken.

The experiments suggest that the EHD performs at least
as well as or better than several model-based and sample-
based metrics discussed in the literature. For example,
Young et al. [1994] present an approach to object recogni-
tion based on a multi-layer Hopfield neural network struc-
tured as a cascade of several single layer Hopfield networks
with links between adjacent layers. The network is evalu-
ated on a set of 51 images of door keys. The success rate
on images with single objects is 82 percent and on images
with occluded objects is 31 percent. Although Young et al.
[1994] do not offer any distance information, both numbers
are, on average, below the recognition rates achieved by the
EHD.

Boykov and Huttenlocher [1999] present a Bayesian ap-
proach to object recognition that explicitly accounts for de-
pendencies between features of the object. The approach
is evaluated with Monte Carlo techniques to estimate Re-
ceiver Operating Characteristic (ROC) curves that plot the
probability of detection along the y-axis and the probability
of false alarms along the x-axis. The recognition rates of
the EHD are no worse than the rates reported by Boykov
and Huttenlocher [1999]. One advantage of the EHD is that
it does not require the expensive computation of the a priori
probabilities. It is difficult to make further content-based
comparisons, because Boykov and Huttenlocher use syn-
thetically generated images of very simple objects in their
experiments.

Chang and Krumm [1999] extend the normal color his-
togram [11] by adding geometric information to it and ob-
taining the color co-occurrence histogram. The color co-
occurrence histogram keeps track of the number of pairs
of colored pixels that occur at certain separation distances.
The recognition rates of the EHD are slightly better than
the recognition rates of the color co-occurrence histograms.
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One advantage of the EHDs is that their model libraries
are significantly smaller than the model libraries needed
for the color co-occurrence histograms. As with Boykov
and Huttenlocher’s approach, futher content-based compar-
isions are hard to make, because Chang and Krumm [1999]
use cartoon images for evaluation.

The P2 values in the tables indicate that none of the met-
rics were good at rejecting false positives. This result sug-
gests that individual cues from separate metrics are fallible
and ambiguous. The P2 values are the lowest for the color
histogram metric. However, all of them are above 50 per-
cent, which means that any metric has a better than random
probability to return false positives.

6 Future Work

Our future work will focus on two issues. The first issue
is the rejection of false positives. While the EHD metric
shows good recognition rates, its rejection of false positives
needs improvement. In a preliminary attempt to improve
the rejection of false positives, we combined the EHD with
the color histogram metric. The EHD ran first to return the
top 5 matches, i.e., image regions, each of which was sub-
sequently checked with the color histogram metric. While
the P1 values were not significantly different from the P1

values for the EHD, the P2 values were, on the average, 30
percent lower. This result suggests that combining metrics
is a promising approach for rejecting false positives.

The second issue concerns different computations of the
EHD itself. Currently, the EHD is computed by matching
horizontal bit strings of models and image regions. But for
some objects we may achieve better results by treating their
EHD models as sequences of vertical bit strings. We believe
that this technique may work well for taller objects, such as
doors and trash cans. Another aspect of the EHD compu-
tation worth investigating concerns the model shift param-
eters. Since EHD is well suited for approximate matches,
increasing the model shift parameters may well reduce the
computational cost of object recognition without decreasing
the acceptable recognition and rejection rates.

7 Conclusion

We presented a model-based object recognition metric inte-
grated with the control system of a mobile robot. The met-
ric draws on the information-theoretic framework of string
processing. We presented and analyzed the results of evalu-
ating the metric on several trash collection tasks. The met-
ric was found to perform at least as well as or better than
several model-based and sample-based object recognition
metrics described in the literature.
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