
Measuring the Accuracy of Sessionizers for Web Usage Analysis

Bettina Berendt, Bamshad Mobasher, Myra Spiliopoulou, Jim Wiltshire

Humboldt-University Berlin, Inst. of Pedagogy and Informatics, berendt@educat.hu-berlin.de;

DePaul University, Dept. of Computer Science, mobasher@cs.depaul.edu;

Humboldt-University Berlin, Fac. of Economics, Inst. of Information Systems,

myra@wiwi.hu-berlin.de;

IBM eBusiness Solutions Center, jwiltshire@us.ibm.com

Abstract

Companies with web presence rely on web usage analysis to obtain insights on customer

behavior, associations among products, impact of advertisement banners, web marketing

campaigns and product promotions. The validity of these results depends heavily on the

accurate reconstruction of the visitors' activities in the web site. To this end, many sites

employ cookies that distinguish among di�erent users coming from the same proxy server

or anonymizer. However, the set of activities thus grouped together refer to the whole

lifetime of a cookie at the user's host. The activities performed during each visit to the

web site, the \sessions", are not grouped properly, thus prohibiting the monitoring of

changes in the user's behaviour and in her interaction with the site during each session.

The reconstruction of user sessions, the so-called \sessionizing" is blurred by client

caches and multiple instantiations of the user's browser. Sessionizing tools exploit infor-

mation on the site's topology and statistics on its usage, in order to assess the correct

contents of a user session. These tools are based on heuristic rules and on assumptions

about the site's usage, and are therefore prone to error.

In this study, we provide a formal framework for the evaluation of the accuracy of

sessionizing tools. We introduce a set of measures that compute the extent to which

real sessions are successfully reconstructed by di�erent sessionizers. The wide range of

measures proposed re
ects the fact that some web usage analysis applications require exact

reconstruction of a session, while for others ordering and page revisits are not important.

On the basis of these measures, we compute and evaluate a number of sessionizing

tools using the log data of a real web site.

1 Introduction

Web mining is rapidly becoming a cutting edge technology, in much the same way as \data

mining" a few years ago. Web site owners analyze the usage of their sites to gain insights

about the image of their company among their potential customers, about the contact and

the conversion eÆciency of their site, about the success of their o�erings and the ROI of

their electronically purchased products, about the pro�les and the navigational behavior of

the users. The validity of the results of this analysis depends on the quality of the original

data. The quality of web usage data is a�ected by diÆculties in (a) distinguishing among

di�erent visitors of the site and (b) identifying when a user has abandoned the site and (c)

reconstructing all activities of the user in the site.

1

The e�ect of the �rst ambiguity can be best understood if we draw a parallel from market

basket analysis. Imagine a supermarket, in which most customers shop for themselves and

for their friends. Some put into their cart the purchases for themselves and for their friends

indistinguishably, while others use one basket for themselves and one for each of their friends

but occasionally mix things so that baskets attain approximately the same weight. Draw-

ing conclusions about the buying behavior of individuals in this store would lead to grossly

erroneous results.

The e�ect of the second and third ambiguities is more apparent if we look closer at the

behaviour of people inside a conventional store, say a bookstore. When does a person enter the

store, how long does she take before choosing something to buy, what books does she consult?

The act of buying books and paying for them is recorded, but this act does not imply that

the customers leave the store. Furthermore, there is no recording about the people that do

not buy anything. Hence, even simple statistics like ratio of buyers to visitors or average

visiting time in the store cannot be computed safely. Although a Web server records many

of the activities performed by a site visitor, it neither records them all, nor can it name the

last one.

Source of the above ambiguities is the HTTP standard speci�cation about the information

that can be recorded for each client request [FGM+99]. This information is not always

suÆcient to distinguish among users accessing a site from the same host or through the same

proxy, nor to detect the end of a visit. Tools have soon been devised to overcome these

shortcomings, including cookies, timeout-based sessionizing mechanisms and topology-aware

heuristics [CMS99]. However, all these tools are of heuristic nature and their output is a guess

on the identi�cation of a user and/or the end of a visit. Before performing statistical analysis

on data prepared by these heuristics, it is imperative to quantify the error they introduce.

In this study, we respond to this necessity, which is often overseen. We propose a formal

framework, in which we measure the performance of heuristics that identify the end of a

site visit and reconstruct its contents, a process often called \sessionizing". To this purpose,

we have designed a comprehensive set of measures, intended for a variety of web mining

applications. On the basis of these measures, we compare the output of the heuristics for a

real web site, and we identify the characteristics of the site and of its usage that are expected

to most a�ect the performance of each heuristic. Thus, our measurements can be generalized

and conclusions on the applicability of each heuristic in a given type of site can be drawn.

This paper is organized as follows. In the next section we discuss the sources of error for

heuristics applied to identify users (like cookies) and for heuristics deployed to reconstruct the

activities of a user during one visit to a site. We concentrate on the second group of heuristics,

assuming a reliable user identi�cation, and we give an overview of such heuristics. We then

present our framework for the comparison of heuristics on the basis of a set of measures. We

propose more than one measure of comparison, because di�erent web mining applications

concentrate on di�erent facets of user behaviour. In section 4, we compare the performance

of the heuristics for a real web site. The last section concludes our study.

2 Identifying users and reconstructing their sessions

The analysis of web usage does not require knowledge about a user's identity. However, it

is necessary to distinguish among di�erent users. The information available according to the

HTTP standard is not adequate to distinguish among users from the same host, proxy or

2

anonymizer. The most widespread remedy amounts to the usage of cookies. A cookie is a

small piece of code associated with a web site; it installs itself in the user's host and associates

a cookie identi�er with the user's browser. This identi�er is suÆcient to recognize the user

that launches each URL request, as soon as the same browser is being employed.

Cookies have several drawbacks. First, they are not always welcome: Many users see a

privacy threat in them, while others are concerned about compromising the security of their

host by letting an alien piece of software install itself in it. Second, a cookie is associated

with the user's browser: If the user decides to operate multiple browsers, she is perceived as

multiple persons by the web server. Third, a cookie provides for user identi�cation across

multiple visits to the site, but has no means of recognizing the end of a visit and the beginning

of the next, i.e. of the borders of user \sessions", nor of reconstructing all activities performed

by the user.

In this study, we concentrate on the problem of reconstructing a user's session, i.e. the

group of activities performed by the user from the moment she entered the site to the moment

she left it. We assume that user identi�cation is already performed in a reliable way. The

error introduced by heuristics for user identi�cation and its impact on session reconstruction

errors will be investigated in a forthcoming paper.

2.1 The notion and content of a session

In accordance with W3C [W3C99], we term as \session" or \visit" the group of activities

performed by a user from the moment she enters the site to the moment she leaves it. Since

a user may visit a site more than once, the Web server log records multiple sessions for each

user. We use the name \user activity log" for the sequence of logged activities belonging

to the same user. Thus, \sessionizing" is the process of segmenting the user activity log of

each user into sessions. A tool that implements this process is a \sessionizing heuristic": it

reconstructs a session on the basis of assumptions about user behaviour.

The contents of a (re)constructed session depend on the requirements of the mining ap-

plication. In many applications, including market basket analysis and establishment of usage

pro�les, the expert is interested in the pages being accessed during a session but not in the

order of access, nor on revisitations. Hence, a session is a set of activities. If the naviga-

tional behaviour of users is studied, the order of access is of interest. Then, a session must

be modelled as a sequence of activities. If the e�ect of revisitations is of interest, e.g. to

investigate the causes of disorientation, then it is necessary to expand each session with the

pages revisited but not recorded, due to caching.

2.2 Sessionizing heuristics

A sessionizing heuristic partitions the user activity log into a set of \constructed sessions",

thereby deciding which activities of the same user belong together. Contrary to it, a \real

session" contains the activities that the user performed together according to a reference

model, which in our experiments is provided by the Web server of the test site. The quality

of a heuristic is evaluated by juxtaposing its constructed sessions to the real ones, comparing

them in terms of a measure and deriving a quality value.

We distinguish between time-oriented heuristics that rely on the temporal properties of

the user activity log and navigation-oriented heuristics that derive their sessionizing rules

from assumptions on the way users navigate.

3

2.2.1 Time-oriented heuristics

Time-oriented heuristics consider boundaries on the time spent on a page or in the entire site

during a single visit.

Catledge and Pitkow [CP95] measured mean inactivity time within a site, and came to a

value of 9.3 minutes; adding 1.5 standard deviations they got a 25.5 minute cut-o� for the

duration of a visit. This has been rounded up to 30 minutes in most applications, de�ning

the maximal length of a session [CMS99, SF99].

During a visit, the time spent by a user to read and process the contents of any single

page varies within certain limits. If a long time elapses between one request and the next, it

is likely that the latter request is the �rst of a new visit. Obviously, the page stay time varies

with the contents of the page and the nature of the application. Heuristics of this type are

used in [CMS99, SF99].

2.2.2 Navigation-oriented heuristics

Navigation-oriented heuristics take the linkage between pages into account. The rationale

behind their segmentation rules is that users usually follow hyperlinks to reach a page, rather

than typing URLs.

A heuristic proposed by Cooley et al. in [CMS99, CTS99] says that if the requested web

page is not reachable from previously visited pages, then it should be assigned to a di�erent

session. It must be noted that the hyperlink to the requested page P does not need to belong

to the page visited immediately before P ; the user may have moved backwards to another

page accessed earlier and followed a hyperlink to P . Since backward moves are not always

recorded in the Web server log due to caching, the original heuristic of [CMS99, CTS99]

reconstructs the backward move of the user and adds the corresponding page accesses to the

session.

The previous heuristic uses the topology of the web site graph. Consultation of the

site topology presupposes the availability of the site's graph in an appropriate format. A less

demanding heuristic proposed in [CMS99] relies on the exploitation of the referrer information

recorded in the Web server log (optional entry, according to the HTTP speci�cation): the

\referrer" of a URL request is the page from which the request was issued. According to this

heuristic, two consecutive URL requests A and B belong to the same session if and only if the

referrer URL in the request for B is the previously invoked URL A [CMS99].

Referrer-based heuristics are more restrictive than topology-based ones: If a pair of con-

secutive URLs A, B is classi�ed as belonging to one session by a referrer heuristic, it will

also be classi�ed as belonging to one session by a topology heuristic. This is because if B was

reached from A, there must have been a hyperlink from A to B. There are also cases where

there is such a hyperlink, but A is not B's referrer. Here, referrer-based heuristics would as-

sign the URLs to two sessions, topology-based heuristics would assign them to one session.

This makes referrer-based heuristics more suitable than topology-based heuristics for highly

connected sites.

The exploitation of referrer data for sessionizing becomes more complicated for sites using

frames. Then, a page consists of a set of frames, its \frameset", but the referrer-based heuristic

cannot know that because it only consults the Web server log for sessionizing. Upon a request

for this page, all frames of the frameset are loaded in sequel, all of them having the same

referrer. Since the referrer-based heuristic does not consider the site topology, it is not aware

4

of the fact that the frames belong to the same page. In the next section, we will describe how

this problem can be addressed.

2.3 A selection of sessionizing heuristics for evaluation

In the present study, we evaluate the performance of the following variations of the time-

oriented and navigation-oriented heuristics described thus far. Each heuristic h scans the

user activity logs to which the Web server log is partitioned after user identi�cation. For each

user activity log u with nu users, it outputs the constructed sessions Ch(u; 1); : : : ; Ch(u; nu)

comprising it.

h1: Time-oriented heuristic: The duration of a session may not exceed a threshold �.

Let t0 be the timestamp of the �rst URL request in a constructed session. A URL

request with timestamp t is assigned to this session i� t� t0 � �. The �rst URL request

with timestamp larger than t0 + � becomes the �rst of the next constructed session.

h2: Time-oriented heuristic: The time spent on a page may not exceed a threshold Æ.

Let t0 be the timestamp of the URL most recently assigned to a constructed session.

The next URL request belongs to the same session i� for its timestamp t00 it holds that

t00 � t0 � Æ. Otherwise, this URL becomes the �rst of the next constructed session.

h-ref: Referrer-based heuristic: Let p and q be two consecutive page requests with p

belonging to a session S. Let tp and tq denote the timestamps for p and q, respectively.

Then, q will be added to S, if the referrer for q was previously invoked within S, or if

the referrer is unde�ned and (tq � tp) � �, for a speci�ed time delay �. Otherwise, q

is added to a new constructed session.

To understand the details of the referrer-based heuristic, we need to take into account

the special role of the \unde�ned" referrer (here denoted by \-"). In many logs, this may

be recorded in various situations: (1) As the referrer of the start page, or of a page that

was entered after a brief excursion to a subsite or a foreign server. This may happen,

for example, because a site does not record external referrers. (2) As the referrer of a

typed-in or bookmarked URL. (3) When a frameset page is reloaded in mid session. (4)

For all these pages, when they are reached via the back button during the real session.

(5) In a frame-based site: as the referrer of the �rst frames that are loaded when the

start page containing the top frameset is requested.

The time delay � in the above de�nition is necessary to allow for proper loading of

frameset pages whose referrer is unde�ned, and to account for other situations resulting

in mid-session requests to have unde�ned referrers. In our current study we have used

a time delay of 10 seconds.

These heuristics are applicable across a wide range of site types. In particular, sites with

dynamically generated pages lend themselves to sessionizing. All the heuristics mentioned

above can be applied to sequences of such pages, because at least the URL stem is recorded

in the logs like any other URL. (In fact, sessionizing will often be easier for sites with dynamic

pages, because these sites are less a�ected by caching.) In addition, application-speci�c ver-

sions of referrer heuristics may become possible if the site's log �le can record the parameters

5

that control the generated pages in the URL query strings. For example, two consecutive

URLs can be assigned to the same session if the second query string contains all parameters

of the �rst plus some more, thereby re�ning the �rst (cf. [BS00]). (A site not recording the

parameters controlling dynamic pages (e.g. because POST is used as the request method),

may however encounter problems in mining and analysing the patterns within and across

the sessions constructed. This problem can require the integration of data from application

servers and databases, and potentially, some content generation.)

3 Measuring the Success of a Heuristic in Reconstructing a

Session

3.1 Basic entities

We denote by U the set of URLs in the web-site, including all static web pages and all URLs

that can be dynamically generated by di�erent parameter settings of scripts.

Then, the server log is a �le L of invocations of URLs in U . L can be regarded as a set.

However, its records are ordered by timestamp of the invocation, so that it is meaningful to

speak of the ith-entry in the log, referred to as L[i]. According to the HTTP speci�cations,

an entry l = L[i] 2 L contains information such as the requested URL, the timestamp of the

request, the host identi�er, the status of the request etc. Optionally, the referrer URL and

the agent used by the user are also recorded. We adhere to the notation l:url for referring

to the URL requested in the entry l 2 L, and use self-explaining names for all data �elds

recorded in the log.

As discussed in section 2.2, we distinguish between a \real session", namely a sequence of

URL requests performed by a user, and a \constructed session", namely a sequence of URL

requests reconstructed by a heuristic from the log data. The log L is partitioned into an

ordered collection of real sessions R. Each heuristic partitions L into an ordered collection

of constructed sessions C. The ideal heuristic would partition each log in such a way that

C = R.

Similarly to the notation for the log L, R[i] denotes the ith real session, while C[i] denotes

the ith constructed session.

3.2 Relationships between the logs and the sessions

A heuristic h is modeled as a partition scheme over L, mapping the entries of L into elements

of constructed sessions, such that:

1. Each entry in L is mapped to exactly one element of a constructed session.

2. The mapping is order-preserving.

Thus, each heuristic h produces a set of constructed sessions Ch. The ideal heuristic ih would

produce the set of real sessions, i.e. Cih = R.

Reconstructing a real session. A heuristic h builds constructed sessions. The measures

we propose in the following quantify the successful mappings of real sessions to constructed

sessions, i.e. the \reconstructions of real sessions".

6

De�nition 1 A real session is \completely reconstructed" if all its elements are contained

in the same constructed session.

More formally, the real session r having n elements r[1]; : : : ; r[n] is completely recon-

structed if there exists a constructed session c 2 C with m elements c[1]; : : : ; c[m] such that:

8i = 1 : : : n9j 2 f1; : : : ;mg : r[i] = c[j] (1)

In this study, we operate on data already segmented by users, where parallel or overlapping

activities of one user are always part of one real session. And the sessionizing heuristics we

employ treat two subsequent requests A,B by either assigning B to the same constructed

session as A, or they start a new constructed session starting with B. Therefore, constructed

sessions cannot contain gaps. I.e., it is not possible for a sequence of requests A,B,C from

one real session to be split up such that A,C are part of one constructed session and B part

of another. Therefore, we can deduce that a session r that is completely reconstructed by a

session c is also continuously reconstructed, i.e. that r is a subsequence of c.

3.3 Measures of goodness-of-�t

A measure M evaluates a heuristic h based on the di�erences between Ch and R. It assigns

to h a value M(h) 2 [0; 1] so that M(ih) = 1.

In our analysis, the set R is known. We consider di�erent heuristics and a variety of

measures assessing the quality of each heuristic. We distinguish between \categorical" and

\gradual" measures. Categorical measures count only the number of sessions constructed in

a certain way, and are normalized by the total number of sessions built. Gradual measures

also take into account how close a constructed session is to a real session.

3.3.1 Categorical Measures

According to Def. 1 on completely reconstructed real sessions, we de�ne a base categorical

measure:

� The measure Mcr grades a heuristic h by the number of completely reconstructed real

sessions contained in Ch divided by the total number of real sessions jRj.

From this, we establish several derivative categorical measures by examining the contain-

ment relationship between a real and a constructed session in more detail

1. The measure Mcr;start considers only completely reconstructed real sessions whose �rst

element is also the �rst element of the constructed session, i.e. each real session r for

which there is a constructed session c such that:

(8i = 1 : : : n9j 2 f1; : : : ;mg : r[i] = c[j]) ^ (r[1] = c[1])

2. The measure Mcr;end considers only completely reconstructed real sessions whose last

element is also the last element of a constructed session, i.e. each real session r for which

there is a constructed session c such that:

(8i = 1 : : : n9j 2 f1; : : : ;mg : r[i] = c[j]) ^ (r[n] = c[m])

7

3. The measure Mcr;start�end considers sessions that are reconstructed with correct starts

and ends, analogously to the previous measures. Mcr;start�end gives the number of

constructed sessions that are identical to the corresponding real session.

In Fig 1, we show the di�erent relationships between a real and a constructed session that

give rise to these measures.

constructed
 sessions

otherrequests in real session i

real sessions

otherrequests in constructed session j

(a)

r starts c

r is contained in c

r ends c

(b)

(c)

Figure 1: Possible relations between a real session r and a constructed session c that com-

pletely reconstructs r (examples).

The above categorical measures grade a heuristic by the number of real sessions contained

in the constructed sessions it has built. In an analogous way, we can de�ne measure that

grade a heuristic by the number of constructed sessions contained in the real ones. We do

not consider such measures any further.

3.3.2 Gradual measures

The categorical measures introduced in the previous paragraphs grade a heuristic by the

number of real sessions it has reconstructed in their entirety. In most cases, the sessions

constructed by a heuristic will overlap partially with the real sessions. Then, we are interested

in measuring the degree of overlap between real and constructed sessions.

De�nition 2 The \degree of overlap between a real and a constructed session" is the number

of elements they have in common divided by the total number of elements of the real session.

Formally, for a real session r with n elements and a constructed session c with m elements,

the degree of overlap dego(r; c) is the ratio:

dego(r; c) =
jfi 2 f1; : : : ; ngj9j 2 f1; : : : ;mg : r[i] = c[j]gj

n
(2)

8

The degree of overlap in Def. 2 refers to a particular constructed session. To compute the

degree of overlap for a real session, we need a function f that selects among the degrees of

overlap of the individual constructed sessions. For example, f can be de�ned as the average or

the maximum degree over all constructed sessions. In this study, we de�ne f as the maximum,

so that:

f(r; h; dego) = max
c2Ch

fdego(r; c)g (3)

Finally, to grade a heuristic on the degree of overlap, we need a function g that returns an

aggregate of the degrees of overlap computed for the real sessions. We can de�ne g as the

average degree of overlap achieved for a real session, or again as the maximum. We opt for

the former, so that for a heuristic h and its degree of overlap function dego:

g(h; dego) = avgr2Rff(r; h; dego)g (4)

On the basis of these de�nitions, we introduce the gradual measure: Mo(g) that grades a

heuristic h by the value of function g on the degree of overlap among the sessions in Ch:

Mo(g)(h) = g(h; dego)

and, substituting from Eq. 4:

Mo(g)(h) = avgr2Rff(r; h; dego)g

As an illustration, consider the example session pairs of Fig. 1. Their overlap values are

all 1.

However, these examples also illustrate that the length of the constructed sessions is not

taken into account, i.e. the parts of other sessions erroneously assigned to the current session

does not a�ect the value. We therefore also include the following measure:

De�nition 3 The \degree of similarity between a real and a constructed session" is the num-

ber of elements they have in common divided by the total number of elements of the union of

the real and the reconstructed sessions.

Formally, for a real session r with n elements and a constructed session c with m elements,

let wa = jfi 2 f1; : : : ; ngj9j 2 f1; : : : ;mg : r[i] = c[j]gj. The degree of similarity degs(r; c) is

the ratio:

degs(r; c) =
wa

n+m�wa

(5)

The measure Ms(g)(h) is de�ned analogously to Mo(g)(h).

Fig. 2 shows a real session that is not completely contained in a constructed session, but

overlaps it to a signi�cant degree.

When sessionizing a log that has already been partitioned into di�erent (real) users ac-

tivities, a complete reconstruction is desirable for two reasons. First, it correctly shows the

set of pages accessed together. This is appropriate for applications that group pages together

and associate objects [PE98, CTS99, ZXH98], because the exact succession, without any in-

termediate requests, is not of primary importance here. Second, a complete reconstruction

also maintains the order of page requests. This is appropriate for applications analyzing user

behavior, because here the exact sequence matters [Spi99, BBA+99, BL99, CY96].

9

otherrequests in real session i

constructed
 sessions

real sessions

otherrequests in constructed session j

Figure 2: Overlapping real and constructed sessions (example).

However, the di�erentiation in the proposed measures may be helpful to distinguish be-

tween heuristics depending on the goal of the data mining analysis. For example, an analysis

that investigates the main entry points to the site requires a sessionizing heuristic that per-

forms well on Mcr;start. A di�erent analysis may search for those pages where many users

leave the site, in order to improve these pages design. Such analysis requires a sessionizing

heuristic that performs well on Mcr;end. Even if two heuristics fare poorly on complete recon-

struction, the one that produces larger overlaps is likely to generate more constructed sessions

containing important information on associations between pages and objects.

4 Evaluation of the Heuristics

4.1 Description of the Test Site

The test data were from a university site and contained 174663 requests issued between the

18th and 29th of November, 2000. During that time, caching was disabled by the site to re
ect

the navigation behavior of users as accurately as possible.

The site is cookie-based, and the server generates session ids internally. This mechanism

starts a new real session each time a browser instance is activated (even if from the same

user). The session mechanism occurs whether or not there is a user cookie. We obtained a

set of 4400 users and 14279 real sessions. Removing the boundaries between real sessions, we

generated constructed sessions according to the di�erent heuristics.

The site is frame-based. It records referrers in the way described in section 2.3.

4.2 Experiments

In four experimental suites, both categorical and gradual measures were tested.

h1-30 was the \duration: total" heuristic with 30 minutes as cuto�, and h2-10 was the

\duration: time spent on a page" heuristic with a 10-minute cuto�. The 30-minute cuto� was

used based on the results mentioned in section 2. Heuristic h-ref was the referrer heuristic

described in the previous section. Also, experiments conducted with various thresholds (using

10 minute intervals from 10 to 60 minutes) show that these are appropriate choices for the

two temporal heuristics. (These threshold experiments show that the measures h1 and h2 are

not only useful for sessionization, but also to perform cross-validation and benchmarking, for

example to determine the optimum value for session timeouts.)

Figures 3 and 4 show the results for our test site, the heuristics de�ned in section 2, and

the measures de�ned in section 3.

10

Figure 3: Categorical measures for all the heuristics. (\s" = \start", \e" = \end").

4.3 Discussion

Our results need to be analyzed in two ways: First, there are a number of logical dependencies.

The measures Mcrs and Mcre add constraints to Mcr and can therefore not be higher. The

same holds for Mcrse compared to Mcrs or Mcre. Within the gradual measures, the overlap

measures must be higher than the similarity measures because they do not take into account

additional requests that have been erroneously assigned (cf. the discussion in section 3.3.2).

The results show that the simple rule of thumb, a 30 minute maximal duration for the

whole session, performs very well (h1-30). h2-10 produces results of similar quality. However,

h2-10 is slightly better on measures taking start- and endpoints into account. A likely reason

for this is that the data contain a number of subsequent very short sessions, e.g. with intervals

between a users requests like (10 sec { 20 sec { 10 sec { 11 min { 10 sec { 25 sec { 13 min {

...). While these requests all �t into one 30 minute total duration constructed session, h2-10

detects the comparatively long intervals between one real session's endpoint and the next

real session's startpoint. Conversely, all (or most of) these sessions correctly reconstructed

by h2-10 are also correctly reconstructed by h1-30, plus some more that were erroneously

segmented by h2-10. This explains the better performance of h1-30 on Mcr. (Note that Mcr

and also Mo favor \conservative" heuristics that insert few segmentations. The boundary

case of only one constructed session would yield the value 1 for both these measures.)

The quality of h-ref turned out to be comparatively low. This indicates that the referrer

heuristic, in spite of the improvements to a naive version described above, still segments too

many real sessions. There are several conceivable reasons for this: (1) Real sessions composed

of temporally overlapping activities in di�erent browser windows, are segmented into separate

constructed sessions. However, this occurred only rarely (about 3% of the real sessions in our

sample contained such parallel activities). (2) Pages with unde�ned referrers (see section 2.3)

are regarded for too long. This causes the heuristic to construct a new session. Such errors

propagate: Once a frame is misclassi�ed, the subsequent pages will also be misclassi�ed. In

further work, the referrer heuristic should therefore be combined with temporal heuristics in

more ways than done here.

11

Figure 4: Gradual measures for all the heuristics.

The fact that the tested heuristics scored di�erently on the measures shows why it is

important to perform careful sessionizing for applications where it is important to avoid (a)

erroneous conclusions regarding sets of URLs accessed together based on constructed sessions

comprising several real sessions (produced if Mo is high, but Ms is not), and (b) erroneous

conclusions regarding navigation behavior, e.g. common entry or exit points for the site

(produced if Mcre, Mcrs, Mcrse are low).

Overall, we see that the 30-minute whole-session duration heuristic performs very well, is

robust, and is fully adequate for the type of site we have investigated.

4.4 Impact of caching on heuristic performance

In the current study, we have examined how the heuristics segment the sequence of requests

from the user activity log that is recorded by the web server. Due to caching, the information

recorded here may not contain all those pages that the user actually requested and saw.

Two questions arise. The �rst is in how far knowledge about these requests is essential for

the analysis of web usage. The answer to this depends on the type of analysis: On the one

hand, local caching does not a�ect the set of registered requests, as long as the usual browser

setting causes each page to be retrieved when it is �rst requested during a browser session.

On the other hand, repeated requests may be of interest during the analysis, because they

indicate backward moves performed by the users.

The second question, which is more central for the present study, concerns the possible

e�ects of caching on the performance of sessionizing heuristics, independently of whether the

subsequent analysis concentrates on sets or on sequences.

Local caching could a�ect some of the heuristics by arti�cially in
ating the temporal

interval between two subsequent requests A,B reaching the server: A user may re-examine

previously cached pages X1, ..., Xn, and during this time, no request reaches the server.

This re-examination process may take a while, in particular, when numerous pages are re-

quested by repeated use of the back button. The browser's back button is one of the most

popular navigation tools [TG97]. This may a�ect the referrer heuristic: If page B was indeed

12

requested from a previous page in the same real session (e.g., A), then B's referrer must be

in the set of pages of the current constructed session, or be \-". In other words, the re-

ferrer heuristic we have proposed does take caching into account. However, the time spent

re-examining X1, ..., Xn may be so long that a new constructed session is started with

request B. In principle, the temporal heuristics based on the maximal time spent on a single

page can be a�ected in the same way. However, this would require the re-examination of X1,

..., Xn for at least 10 minutes (as opposed to times of around 10 seconds in the referrer

heuristic). This seems comparatively unlikely. Apart from this, local caching would a�ect

real sessions as de�ned above in the same way as constructed sessions.

Proxy server caching introduces a further problem for referrer heuristics: a page seen by

a user may not be found in the set of pages in the session constructed so far, because it was

delivered to the user from the proxy server. Therefore, the referrer page of request B may be

de�ned, but not appear in the set of pages of the session constructed so far. Then, a new

constructed session is begun at B.

Bearing this in mind, the current solution appeared to be the best practically possible

way of dealing with the problem of caching. Studies of the quantitative impact of caching on

sessionizing heuristics will be the subject of further work. The only way to truly study the

impact of caching, is to deploy (at a very large scale) client-side agents that keep track of

users' actions.

5 Conclusions and outlook

In this study, we have proposed a formal framework for the comparison of session recon-

struction heuristics according to a set of measures. In the design of these measures, we

took the variety of web mining applications into account: Some measures are appropriate for

applications that discover correlations among pages or products o�ered on them; for these

applications, sessions can be regarded as simple sets of URL requests. Other measures are

intended for applications analyzing navigational behavior; they require speci�c information

on typical entry and exit points for the site. We have used the web server log of a real

frame-based site to compare the performance of several heuristics for each measure.

Our contribution is twofold. First, our results show the impact of the parameter settings on

each heuristic and depict the performance of all heuristics for measures designed for di�erent

mining applications. On the basis of these factors, the web mining analyst can select the

most appropriate heuristics to prepare the data for the mining application she is working on.

Second, our framework is the basis of a toolkit for the application and evaluation of data

preparation heuristics.

In this study, we have concentrated on measuring the performance of alternative data

preparation heuristics in data already segmented into di�erent users' requests. We are cur-

rently working on evaluating the performance of the heuristics in settings where the recon-

struction of sessions also includes the assignment of requests to di�erent users. This is the

typical case for sites that employ neither cookie nor session id technology. One of the central

diÆculties here is that a sequence of requests from the same host and employing the same

agent must be split into di�erent users' activities. We expect that referrer heuristics will

perform better relative to temporal threshold heuristics, because only referrer heuristics can

sort a stream of activities that are parallel or overlapping in time into di�erent constructed

sessions.

13

Our future work includes the modeling and quanti�cation of the error introduced by each

heuristic and the measurement of its impact on the mining results, i.e. on the con�dence,

support and accuracy of the discovered patterns. Moreover, we intend to establish a wider

palette of data preparation heuristics and to further extend the set of performance evaluation

measures into a full-
edged toolkit, in which the performance of heuristics for web data

preparation can be compared on test data before they are used in the process of the analysis.

References

[BS00] Berendt, B. & Spiliopoulou, M. (2000). Analysis of navigation behaviour in web sites inte-

grating multiple information systems. The VLDB Journal, 9, 56{75.

[BL99] Jose Borges and Mark Levene. Data mining of user navigation patterns. In [MS99], 1999.

[BBA+99] A. G. B�uchner, M. Baumgarten, S. S. Anand, M. D. Mulvenna, and J. G. Hughes. Navi-

gation pattern discovery from internet data. In WEBKDD'99, San Diego, CA, Aug. 1999.

[CP95] Catledge, L. & Pitkow, J. (1995). Characterizing browsing behaviors on the world wide

web. Computer Networks and ISDN Systems, 27.

[CY96] J. Chen, M.-S. Han and P.S. Yu. Data mining: An overview from a database perspective.

IEEE Trans. on Knowledge and Data Engineering, 8(6):866{883, Dec. 1996.

[CMS99] Robert Cooley, Bamshad Mobasher, and Jaidep Srivastava. Data preparation for mining

world wide web browsing patterns. Journal of Knowledge and Information Systems, 1(1),

1999.

[CTS99] Robert Cooley, Pang-Ning Tan, and Jaideep Srivastava. WebSIFT: The web site informa-

tion �lter system. In [MS99], 1999.

[FGM+99] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.

Hypertext Transfer Protocol { HTTP/1.1. Technical report, The Internet Society, June

1999.

[MS99] Brij Masand and Myra Spiliopoulou, editors. KDD'99 Workshop on Web Us-

age Analysis and User Pro�ling WEBKDD'99, San Diego, CA, Aug. 1999.

ACM. Springer, LNCS series. Online archive of the extended abstracts at

http://www.acm.org/sigkdd/proceedings/webkdd99/.

[PE98] Mike Perkowitz and Oren Etzioni. Adaptive web pages: Automatically synthesizing web

pages. In Proc. of AAAI/IAAI'98, pages 727{732, 1998.

[PPR96] Pirolli, P., Pitkow, J. & Ro, R. (1996). Silk from a sow's ear: extracting usable structures

from the web. CHI-96, Vancouver.

[Spi99] Myra Spiliopoulou. The laborious way from data mining to web mining. Int. Journal of

Comp. Sys., Sci. & Eng., Special Issue on \Semantics of the Web", 14:113{126, Mar. 1999.

[SF99] Myra Spiliopoulou and Lukas C. Faulstich. WUM: A Tool for Web Utilization Analysis.

In extended version of Proc. EDBT Workshop WebDB'98, LNCS 1590, pages 184{203.

Springer Verlag, 1999.

[TG97] Linda Tauscher and Saul Greenberg. Revisitation patterns in world wide web navigation.

In Proc. of Int. Conf. CHI'97, Atlanta, Georgia, Mar. 1997.

[W3C99] World Wide Web Committee Web Usage Characterization Activity. W3C Working Draft:

Web Characterization Terminology & De�nitions Sheet. www.w3.org/1999/05/WCA-

terms/

14

[WYB98] Wu, K., Yu, P.S. & Ballman, A. (1998). Speedtracer: a web usage mining and analysis tool.

IBM Systems Journal, 37.

[ZXH98] Osmar Za��ane, Man Xin, and Jiawei Han. Discovering web access patterns and trends by

applying OLAP and data mining technology on web logs. In Advances in Digital Libraries,

pages 19{29, Santa Barbara, CA, Apr. 1998.

15

