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Abstract

Recommender systems based on collaborative
filtering usually require real-time comparison
of users’ ratings on objects. In the context of
Web personalization, particularly at the early
stages of a visitor’s interaction with the site
(i.e., before registration or authentication), rec-
ommender systems must rely on anonymous
clickstream data. The lack of explicit user
ratings and the shear amount of data in such
a setting poses serious challenges to standard
collaborative filtering techniques in terms of
scalability and performance. Offline cluster-
ing of users transactions can be used to im-
prove the scalability of collaborative filtering,
however, this is often at the cost of reduced
recommendation accuracy. In this paper we
study the impact of various preprocessing tech-
niques applied to clickstream data, such as clus-
tering, normalization, and significance filter-
ing, on collaborative filtering. Our experimen-
tal results, performed on real usage data, in-
dicate that with proper data preparation, the
clustering-based approach to collaborative fil-
tering can achieve dramatic improvements in
terms of recommendation effectiveness, while
maintaining the computational advantage over
the direct approaches such as the k-Nearest-
Neighbor technique.

1 Introduction

In today’s highly competitive e-commerce environment,
the success of a site often depends on the site’s ability
to retain visitors and turn casual browsers into poten-
tial customers. Automatic personalization and recom-
mender system technologies have become critical tools
in this arena since they help tailor the site’s interaction
with a visitor to his or her needs and interests. Cur-
rent technologies for personalization rely on explicit or
implicit expressions of user interests (such as product
clickthroughs or purchases, product ratings, or profile in-
formation obtained through a registration process). Ob-
taining such information about users, usually requires

fairly deep interactions of these users with the site, even
for first-time visitors.

To engage visitors at a very early stage (for exam-
ple before registration and identification), personaliza-
tion tools can only rely on the visitors’ clickstream data
and on very short user histories. Yet, this type of anony-
mous personalization is desirable since personalized in-
teractions with a visitor at this stage makes it more likely
that the visitor will stay and engage at a deeper level.

One of the most successful and widely used technolo-
gies for building personalization and recommendation
systems is collaborative filtering (CF) [4; 17]. Given
a target user’s record of activity, CF-based techniques,
such as the k-Nearest-Neighbor (kNN) approach, com-
pare that record with the historical records of other users
in order to find the top k users who have similar tastes or
interests. The mapping of a visitor record to its neigh-
borhood could be based on similarity in ratings of items,
access to similar content or pages, or purchase of simi-
lar items. The identified neighborhood is then used to
recommend items not already accessed or purchased by
the active user. Thus, there are two primary phases in
collaborative filtering: the neighborhood formation phase
and the recommendation phase.

The CF-based techniques suffer from some well-known
limitations [13]. For the most part these limitations are
related to the scalability and efficiency of the kNN ap-
proach. Essentially, kNN requires that the neighbor-
hood formation phase be performed as an online process,
and for very large data sets this may lead to unaccept-
able latency for providing recommendations. A num-
ber of optimization strategies have been proposed and
employed to remedy this shortcoming [1; 11; 14; 18;
19]. These strategies include similarity indexing and di-
mensionality reduction to reduce real-time search costs,
as well as offline clustering of user records to reduce
the online component of the system to search within a
matching cluster.

In the context of personalization using anonymous
clickstream data, our goal is to provide meaningful rec-
ommendations to users at the earliest stage possible in
their interactions with the site. In this setting, collabo-
rative filtering faces some additional challenges. These
challenges emanate from the characteristics of Web us-



age data, including the following;:

e available feature values are not item ratings, rather
they are either binary (indicating a visit or a non-
visit for a particular pageview) or they are a func-
tion of the time spent on a particular pageview;

e while the user-item matrix in this setting is gen-
erally more dense than in the case of user ratings,
predictions still have to be based on very short user
histories (trails), sometime involving no more than
2-3 clickthroughs;

e in case of binary feature values, a one (i.e., a visit to
a page) is not necessarily an indication of interest
in that item;

e the sequential nature of the clickstream makes the
order in which pages are visited potentially (but,
not necessarily) relevant in making predictions; and

e the number of user records (and items) can be far
larger than the standard domains for CF where
users are limited to purchasers or people who have
rated items (thus, making optimization even a more
important criteria).

Our objective in this paper is to assess the effective-
ness of collaborative filtering applied to anonymous us-
age data. To improve the scalability of CF we first
perform clustering on user sessions to form candidate
neighborhoods. This clustering is performed offline and
independent of any targeted user. The recommendation
engine will then compare a portion of an active user’s
session to representatives for the discovered clusters in
order to obtain recommendations. We call these cluster
representatives aggregate usage profiles.

Our expectation is that, while improving scalability,
CF in conjuction with aggregate usage profiles would
lead to a drop in the accuracy of predictions when com-
pared to the direct approach (i.e., kNN without cluster-
ing). Thus, our primary focus will be on various data
preparation procedures, such as normalization and sig-
nificance filtering, which can potentially improve the ef-
fectiveness of the clustering approach to collaborative
filtering in the context of anonymous clickstream data.
Our experimental results indicate that with proper pre-
processing, CF based on usage profiles, can achieve ef-
fectiveness in par with the direct approach, while dra-
matically improving the scalability. The practical signif-
icance of these results is that they show how effective, yet
anonymous, Web personalization can be achieved based
solely on users’ clickstream data, particularly at early
stages in their visits.

2 Personalization Based on Anonymous
Web Usage Data

In recent years there has been an increasing interest
in personalization based on Web usage mining as a
way to remedy shortcomings of existing approaches [6].
These shortcomings include reliance on subjective user

profiles which may be prone to biases, or on stand-
ing profiles which may become outdated with changing
user needs or interests. In particular, Web usage min-
ing has been suggested as an enabling mechanism for
improving and optimizing the structure of a site [12;
15], improving the scalability and performance of Web-
based recommender systems [6; 9], and discovering bet-
ter e-business intelligence for the purpose of online mar-
keting [2]. For an up-to-date survey of Web usage mining
techniques and systems see [16].

Generally speaking, usage-based Web personalization
systems involve 3 phases: data preparation and trans-
formation, pattern discovery, and recommendation. Of
these, the latter is a real-time component, while the
other two phases are performed offline. The pattern
discovery phase may include the discovery of associa-
tion rules, sequential navigational patterns, clustering of
users or sessions, and clustering of pageviews or prod-
ucts. A general framework for usage-based Web person-
alization was presented in [6]. In [8], this framework
was extended to incorporate text and content mining for
more effective and useful recommendations. The rec-
ommendation engine considers the active user session in
conjunction with the discovered patterns to provide per-
sonalized content. The personalized content can take the
form of recommended links or products, or targeted ad-
vertisements tailored to the user’s perceived preferences
as determined by the matching usage patterns.

In the case of kNN-based collaborative filtering, there
is no offline pattern discovery component. Instead, the
active user session is compared directly with all other
user sessions previously recorded in order to form its
neighborhood. The recommendation set can then be de-
termined based on a weighted average of feature values
for items not already visited by the user. As noted ear-
lier, often in practice, the offline data preparation com-
ponent of the system may involve performing similarity
indexing or dimensionality reduction, in order to speed
up the online neighborhood formation and recommenda-
tion phases in KNN.

2.1 Data Preparation for Clickstream
Personalization

The starting and critical point for successful personal-
ization based on usage data is data preprocessing. The
required high-level tasks are data cleaning, user iden-
tification, session identification, pageview identification,
and the inference of missing references due to caching.
Transaction identification can be performed as a final
preprocessing step prior to pattern discovery in order to
focus on the relevant subsets of pageviews in each user
session. The difficulties involved in identifying users and
sessions depend greatly on the server-side technologies
used for the Web site. For Web sites using cookies or
embedded session IDs, user and session identification is
trivial. Web sites without the benefit of additional in-
formation for user and session identification must rely
on heuristics methods. We use the heuristics proposed
in [3] to identify unique user sessions from anonymous



usage data and to infer cached references.

Pageview identification is the task of determining
which page file accesses contribute to a single browser
display, and is heavily dependent on the intra-page struc-
ture, and hence requires detailed site structure infor-
mation. The significance of a pageview may depend
on usage, content and structural characteristics of the
site, as well as prior domain knowledge specified by the
site designer. For example, in an in an e-commerce
site pageviews corresponding to product-oriented events
(e.g., shopping cart changes) may be considered more
significant than others.

The above preprocessing tasks ultimately result in a
set of n pageviews, P = {p1,p2, -+, Pn}, and a set of m
user transactions, T' = {¢1,t2, -, t;m }, whereeach t; € T
is a subset of P. Conceptually, we view each transaction
t as an [-length sequence of ordered pairs:

t= <(pt1a W(pi)), (png(pg))v T (pfvw(pf)» )

where each p! = p; for some j € {1,---,n}, and w(pl) is
the weight associated with pageview p! in the transaction
t.

The weights can be determined in a number of ways,
however in the context of anonymous personalization,
the primary sources of data are server access logs. This
allows us to choose two types of weights for pageviews:
weights can be binary, representing the existence or non-
existence of a product-purchase or a documents access in
the transaction; or they can be a function of the duration
of the associated pageview in the user’s session. In the
case of time durations, it should be noted that usually
the time spent by a user on the last page visited in the
session is not available. We set the weight for the last
page to be the mean time duration for the page taken
across all sessions in which the page does not occur as
the last pageview.

For the clustering tasks as well as for collaborative
filtering based on the kNN technique, we represent each
user transaction as a vector over the n-dimensional space
of pageviews, where feature values are the weights of
these pageviews in the corresponding transaction. Thus
given the transaction t above, the [-length transaction

vector t is given by:

-
— t t P t
t= (W, Wy, W), )
where each wj, = w(p;), for some i € {1,---,n}, in case

p; appears in the transaction ¢, and wf,j = 0, otherwise.

Given this representation, the set of all user transac-
tions can be viewed as an m X n transaction-pageview
matrix.

Significance Testing

Using binary weights in the representation of user trans-
actions is often desirable due to efficiency requirements
in terms of storage and computation of similarity coeffi-
cients among transactions. However, in this context, it
becomes more important to determine the significance of
each pageview or item access. For example, a user may

access an item p only to find that he/she is not interested
in that item, subsequently backtracking to another sec-
tion of the site. We would like to capture this behavior
by discounting the access to p as an insignificant access.
In general, it is not sufficient to filter out pageviews with
small durations since the amount of time spent by users
on a page is not only based on the user’s interest on the
page. The page duration may also be dependent on the
characteristics and the content of the page. For exam-
ple, we would expect that users spend far less time on
navigational pages than they do on content or product-
oriented pages.

Statistical significance testing can help capture some
of the semantics illustrated above. Basically, the weight
associated with an item in a transaction should be 0, if
the amount of time spent on that item is significantly
below the mean time duration of the item across all user
transactions. More formally, for each transaction vector
t= (wh ,wt,, - wh ), where weights are time dura-
tions, we perform the following transformation:

szg(?) = <vfji [1<i< n>,

where,
L if zscore(w;’)i) >0
vpi ~ )0, otherwise
and
t .
. wy, — mean(p;)
zscore(w,, ) = ——————

o(pi)
The threshold 6 is the significance threshold, and
mean(p;) and o(p;) are the mean time duration and the
standard deviation for pageview p; across all transac-
tions, respectively.

The resulting binary transaction-pageview matrix can
then be used to perform similarity computations for clus-
tering and kNN neighborhood formation tasks.

Normalization

There are also some advantages in using the fully
weighted representation of transaction vectors (based
on time durations). Omne advantage is that for many
distance- or similarity-based clustering algorithms, more
granularity in feature weights usually leads to more ac-
curate results. Another advantage is that, since relative
time durations are taken into account, the need for per-
forming other types of preprocessing, such as significance
testing, is greatly reduced.

However, as indicated by our experiments, raw time
durations may not be an appropriate measure for the
significance of a pageview. This is because a variety fac-
tors, such as structure, length, and the type of pageview,
as well as the user’s interests in a particular item, may
affect the amount of time spent on that item. Appro-
priate weight normalization can play an essential role in
correcting for these factors.

We consider two types of weight normalization ap-
plied to user transaction vectors: normalization across
pageviews in a single transaction and normalization of
a pageview weight across all transactions. We call these



transformations transaction normalization and pageview
normalization, respectively. Specifically, for transaction
normalization, we apply the following transformation to

; ot too ot .
each transaction vector t = <wp1 »y Wy s Wy, >

N .
normy(t) = (v, | 1<i<ny),
where,
w), — min {wzt,}
i 1<<n i
t >J >

pi . ) U

max qwj) ¢ — min Jwh

1<j<n UPIS agicn LR
On the other hand, pageview normalization is performed
as follows:

N

normy(t) = (v}

Ppi

1<i<n),

where,

) wp, — min {wj, }
" max {w}, } —min {w] }

Pageview normalization is useful in capturing the rel-
ative weight of a pageview for a user with respect to the
weights of the same pageview for all other users. On
the other hand, transaction normalization captures the
importance of a pageview to a particular user relative to
the other items visited by that user in the same transac-
tion. The latter is particularly useful in focusing on the
“target” pages in the context of short user histories. In
our experimental results we examine the impact of the
transformations described above on kNN as well as on
collaborative filtering based on aggregate usage profiles.

2.2 Collaborative Filtering with
Clickstream Data

Just as in the case of user transactions, a current user’s
active session can be viewed as an n-dimensional vec-
tor over the space of pageviews. In this case, also,
the weights associated with pageviews within the ac-
tive session can be binary or based on time dura-

(%

tions. Thus an active session vector is represented as
=

J— S S R S :
s= <wp1 T 1 > The types of transformations

discussed in the previous section for user transactions
can also be applied to this active session vector.

For a particular user a, the active session (;1 can
be incrementally updated as the user visits additional
items. One important consideration in Web personaliza-
tion based on clickstream data is which portion of the
user’s trail should be used to provide recommendations.
In general, it may not be appropriate to use the whole
clickstream trail for this purpose because most users nav-
igate several paths leading to independent pieces of in-
formation within a session. In many cases these “sub-
sessions” have a length of no more than 2 or 3 references.
We capture the user history depth within a sliding win-
dow over the current session. The sliding window of size
r over the active session allows only the last r visited
pages to influence the recommendation value of items in
the recommendation set.

The KINN-Based Approach

In the case of kNN, we measure the similarity or corre-
lation between the active session s and each transaction
vector ¢ (where ¢t € T'). The top k most similar transac-

N

tions to s are considered to be the neighborhood for the
session s, which we denote by NB(s) (taking the size k
of the neighborhood to be implicit):

NB(S):{tslatsw"'vtSk}'

A variety of similarity measures can be used to find
the nearest neighbors. In traditional collaborative filter-
ing domains (where feature weights are item ratings on
a discrete scale), the Pearson r correlation coefficient is
commonly used. This measure is based on the devia-
tions of users’ ratings on various items from their mean
ratings on all rated items. However, this measure is not
appropriate in the context of anonymous personalization
based on clickstream data (particularly in the case of bi-
nary weights). Instead we use the cosine coefficient, com-
monly used in information retrieval, which measures the
cosine of the angle between two vectors. The cosine coef-
ficient can be computed by normalizing the dot product
of two vectors with respect to their vector norms. Given

the active session s and a transaction ¢ , the similarity
between them is obtained by:

|
L
=+l
w ]

|t x]s|

In order to determine the which items (not already
visited by the user in the active session) are to be recom-
mended, a recommendation score is computed for each
pageview p; € P based on the neighborhood for the ac-
tive session. Two factors are used in determining this
recommendation score: the overall similarity of the ac-
tive session to the neighborhood as a whole, and the
average weight of each item in the neighborhood.

First we compute the mean vector (centroid) of
NB(s). The feature value for each pageview in the mean
vector is computed by finding the ratio of the sum of
the pageview’s weights across transactions to the total
number of transactions in the neighborhood. We denote
this vector by cent(NB(s)). For each pageview p in the
neighborhood centroid, we can now obtain a recommen-
dation score as a function of the similarity of the active
session to the centroid vector and the weight of that item
in this centroid. In our implementation, we have chosen

N

to use the following function, denoted by rec(s, p):

rec(?,p) = \/weight(p,NB(s)) X sim(?,cent(NB(s))),

where weight(p, N B(s)) is the mean weight for pageview
p in the neighborhood as expressed in the centroid vec-
tor. If the pageview p is in the current active session,
then its recommendation value is set to zero.

If a fixed number N of recommendations are desired,
then the top N items with the highest recommendation



scores are considered to be part of the recommendation
set. In our implementation, we normalize the recom-
mendation scores for all pageviews in the neighborhood
(so that the maximum recommendation score is 1), and
return only those which satisfy a threshold test. In this
way, we can compare the performance of kNN across
different recommendation thresholds.

The Clustering-Based Approach

Given the mapping of user transactions into a multi-
dimensional space as vectors of pageviews, standard clus-
tering algorithms, such as k-means, generally partition
this space into groups of transactions that are close to
each other based on a measure of distance or similarity.
Such a clustering will result in a set TC' = {c1,ca,- -+, cx }
of transaction clusters, where each ¢; is a subset of the
set of transactions T'. Ideally, each cluster represents a
group of users with similar navigational patterns. How-
ever, transaction clusters by themselves are not an effec-
tive means of capturing an aggregated view of common
user patterns. Each transaction cluster may potentially
contain thousands of user transactions involving hun-
dreds of pageview references. Our ultimate goal in clus-
tering user transactions is to reduce these clusters into
weighted collections of pageviews. We call these collec-
tions aggregate usage profiles.

In [9], we introduced and evaluated a technique for
the derivation of aggregate usage profiles from transac-
tion clusters. We call this method PACT (Profile Ag-
gregation Based on Clustering Transactions). This is the
approach we use in the current set of experiments. In the
simplest case, PACT generates aggregate profiles based
on the centroids of each transaction cluster, in much the
same way as described above for the neighborhoods of
an active session in the kNN approach.

In general, PACT can consider a number of other
factors in determining the item weights within each
profile, and in determining the recommendation scores.
These additional factors may include the link distance
of pageviews to the current user location within the site
or the rank of the profile in terms of its significance.
However, to be able to consistently compare the perfor-
mance of the clustering-based approach to that of kNN,
we restrict the item weights to be the mean feature val-
ues of the transaction cluster centroids. In this context,
the only difference between PACT and the kNN-based
approach is that we discover transaction clusters offline
and independent of a particular target user session.

To summarize the PACT method, given a transaction
cluster ¢, we construct a usage profile pr. as a set of
pageview-weight pairs:

pre = {(p, weight(p, pre)) | p € P,weight(p,pre) = p},
where the significance weight, weight(p,pr.), of the
pageview p within the usage profile pr, is:

1
weZght(p7pTC) = ﬂ : waﬁ
c
tece

and wzt, is the weight of pageview p in transaction ¢ € c.

The threshold parameter u is used to prune out very low
support pageviews in the profile.

This process results in a number of aggregate profiles
each of which can, in turn, be represented as a vector
in the original n-dimensional space of pageviews. The
real-time component of the system can compute the sim-

ilarity of an active session s with each of the discovered
aggregate profiles. The top matching profile is used to
produce a recommendation set in a manner similar to
that for the kNN approach discussed above. If ﬁ" is the
vector representation of the top matching profile pr, we

compute the recommendation score for the pageview p
by

rec(;,p) = \/weight(p,pr) X sim(?,p_}),

where weight(p, pr) is the weight for pageview p in the
profile pr. As in the case of kNN, if the pageview p is
in the current active session, then its recommendation
value is set to zero.

Clearly, collaborative filtering based on PACT will re-
sult in dramatic improvement in scalability and compu-
tational performance, since most of the computational
cost is incurred during the offline clustering phase. We
would expect, however, that this decrease in computa-
tional costs be accompanied also by a decrease in rec-
ommendation effectiveness. Our goal is to improve the
effectiveness of PACT, through the preprocessing trans-
formations discussed above, while maintaining the com-
putational advantages.

3 Experimental Evaluation

For our evaluation we used the access logs from the Web
site of the Association for Consumer Research (ACR)
Newsletter (www.acr-news.org). In this section we mea-
sure and compare the performance to kNN and PACT
both with and without the application various transfor-
mations such as significance testing and normalization.

3.1 Experimental Setup

We selected a portion of the ACR log files, which after
preprocessing and removing references by Web spiders,
resulted in approximately 12,000 sessions. Support fil-
tering was used to eliminate pageviews appearing in less
than 0.5% or more than 80% of transactions (including
the site entry page). Furthermore, for these experiments
we eliminated short transactions, leaving only transac-
tions with at least 6 pageviews. Approximately 1/3 of
these transactions were randomly selected as the eval-
uation set, and the remaining portion was used as the
training set for profile generation and neighborhood for-
mation in PACT and kNN, respectively. The total num-
ber of remaining pageview URLs in the training and the
evaluation sets was 40. For the PACT method, we used
multivariate k-means clustering to partition the transac-
tion file. Overlapping aggregate profiles were generated
from transaction clusters using the method described
earlier.



Our evaluation methodology is as follows. For each
transaction ¢ in the evaluation set, we select the first n
pageviews in t as the surrogate for a user’s active ses-
sion window. The active session window is the portion of
the user’s clickstream used by the recommendation en-
gine in order to produce a recommendation set. We call
this portion of the transaction ¢ the active session with
respect to t, denoted by as;. Both of the CF-based tech-
niques take as; and a recommendation threshold 7 as
inputs and produce a set of pageviews as recommenda-
tions. We denote this recommendation set by R(as;, 7).
Note that R(ast, T) contains all pageviews whose recom-
mendation score is at least 7 (in particular, if 7 = 0,
then R(ast,7) = P, where P is the set of all pageviews.

The set of pageviews R(ast, T) can now be compared
with the remaining portion of ¢, i.e., with ¢ — as;, to
measure the recommendation effectiveness using 3 dif-
ferent metrics, namely, precision, coverage, and the F1
measure. The precision of R(as¢, ) is defined as:

_|R(ass, 7) N (t — asy)|
|R(a5ta7)| ’

precision(R(as¢, 7))

and the coverage of R(ass, ) is defined as:

_|R(ast, 7) N (t — asy)|
B |t — asq '

coverage(R(asy, T))

precision measures the degree to which the recommen-
dation engine produces accurate recommendations (i.e.,
recommends pageviews that will have be visited by the
user in the remaining portion of the user’s session). On
the other hand, coverage measures the ability of the rec-
ommendation engine to produce all of the pageviews that
are likely to be visited by the user. Ideally, one would
like high precision and high coverage. A single measure
that captures this is the F1 measure [5], defined in terms
of precision and coverage:

1 2 X precision X coverage

precision + coverage

The F1 measure attains its maximum value when both
precision and coverage are maximized.

Finally, for a given recommendation threshold 7, the
mean over all transactions in the evaluation set was com-
puted as the overall evaluation score for each measure.
We ran each set of experiments for thresholds ranging
from 0.1 to 1.0. The results of these experiments are
presented below.

3.2 Experimental Results

Since our focus is on collaborative filtering with click-
stream data based on very short user trails, in all of the
experiments we set the active session window size to 2.
This means that only the first two pageviews of each
evaluation transaction was used to generate recommen-
dations. For the kNN method we chose k = 20 which
seemed to provide the best overall results for the current
data set. Figure 1 depicts the performance of kNN based
on the precision and the F1 measures (we do not show
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Figure 1: Performance of kNN on clickstream data, using
binary weights, raw time weights, and normalized time
weights.

the coverage results as they can be inferred by observa-
tion from the other two measures).

Surprisingly, kNN achieved the best results with sim-
ple binary weights. Its performance was rather poor,
however, when raw time weights were used for feature
values. This can be attributed to the fact that, within
a certain range, there is great deal of variation in the
amount of time users spend on pages even when they
consider these pages significant. With raw term weights,
some users who should be considered close neighbors
could potentially be missed. In this respect, we expect
the clustering-based algorithms to perform better due
to a higher level of aggregation captured by clusters.
The results also indicate that weight normalization re-
sulted in marked improvement. Particularly, in the case
of pageview normalization, kNN achieved performance
in par with the binary case.
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Figure 2: Performance of PACT on clickstream data,
using binary weights, raw time weights, and normalized
time weights.

Figure 2 shows the normalization results for PACT.
In the binary case, PACT did worse than kNN in terms
of precision and coverage, while, as expected it per-
formed better using raw term weights. The most sig-
nificant observation here is that normalization dramati-
cally improved recommendation effectiveness, especially
at higher thresholds. In fact, with normalization, PACT
achieved similar performance as the best case in ANN.
Transaction and page normalization both gave similar
results. In general, however, the specific type of normal-
ization is highly dependent on the data distribution.

For the evaluation of significance filtering we chose
the value of the z-score factor to be 2.4 which provided
the best results. In other words, prior to conversion to
the binary representation, we filtered out pageviews from
transactions, if the time duration for those pageviews
was more than 2.4 standard deviations lower than the
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Figure 3: Performance improvement of PACT on click-
stream data when significance filtering is performed on
the transaction data.

mean. Figure 3 depicts these results. Just as the case
of normalization, significance filtering provides dramatic
improvements for PACT when compared to the binary
base case. The significance filtering results for kNN also
showed improvement, however, the best results were still
achieved with the binary data. We do not show these
results here.

Overall, these (and other) experiments show that
transformations such as pageview or transaction normal-
ization and significance filtering can have a great impact
on the effectiveness of clustering-based CF techniques,
and can be used to regain the loss of accuracy suffered
by these techniques relative to more direct approaches
such as kNN.



4 Conclusions

Many of the existing real-time Web personalization and
recommender systems are based on collaborative filter-
ing. Traditional collaborative filtering techniques, such
as, kNN suffer from limitations emanating from their
lack of scalability and effectiveness in the face of very
large and sparse data sets. Offline clustering of user
transactions can dramatically improve the efficiency of
such systems. However, this is often at the cost of de-
creased accuracy. In the case of anonymous Web usage
data, there is also the challenge of accurately predicting
user interests based on very short user clickstream trails,
and without the benefit of more intimate user informa-
tion.

In this paper, we have explored several data prepa-
ration techniques, namely, normalization of pageview
weights in user transactions and significance filtering,
and studied their impact on the effectiveness of collabo-
rative filtering on anonymous clickstream data. We have
provided detailed evaluation results, based on real usage
data, which show that with proper data transformation
at the preprocessing stage we can significantly improve
the effectiveness of collaborative filtering based on clus-
tering while retaining the computational advantage this
approach provides over the kKNN-based techniques.
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