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ABSTRACT
Using principles from Expected Utility Theory, we analyze
the criteria that a customer agent in agent-based automated
contracting would use in making decisions during the bid-
ding cycle. We use the University of Minnesota's MAGNET

automated-contracting environment as a framework for this
analysis. Two decisions must be made by a customer agent
during this process: deciding the composition of the Request
for Quotes, and evaluating and awarding bids. We show how
principles from Expected Utility Theory can be applied in
a mixed-initiative environment, where user preferences con-

trol the decision-making process, and user decisions are �nal.
Finally, we show how the market infrastructure can support
agent decision-making by gathering and analyzing statistical
data on activities in the market.

1. INTRODUCTION
Firms can cut costs and improve eÆciency by moving online.
Instead of ful�lling orders from warehouses, companies will
look for manufacturers that can build on demand in order
to meet consumers demand for make-to-order products.

More production processes will be outsourced to outside con-

tractors, making supply chains longer and more convoluted.
The increased complexity will be compounded by acceler-
ated production schedules which demand tight integration
of all processes. Thus, the �eld is ripe for the introduction
of systems that enable automated contracting among man-

ufacturers, part suppliers, and specialized subcontractors.

Deciding what to outsource and to whom, ensuring that
the tasks are done in the proper sequence (parts cannot be
painted before they are �nished) and that the �nal product
is ready within the time constraints, is currently the job

of a human decision-maker. The decision-maker also keeps
track of any delays from suppliers that could jeopardize the
completion of the tasks, and renegotiates with them or other
suppliers as needed.

Most current e-commerce systems rely on auctions, but com-
panies usually work with prequali�ed suppliers and buyer-
supplier relationships depend on factors such as quality,
delivery performance, and 
exibility as opposed to just
cost [11]. These factors must be taken into account while
negotiating contracts.

In addition, contracting is only a step in the process of
producing goods. When component parts have to be as-
sembled and there are time dependencies among the opera-
tions, scheduling becomes a major factor. A schedule with

slack between tasks is less risky than a tight schedule, but
in made-to-order products speed is the essence and taking
extra time might prevent a supplier from getting a contract.
After contracts have been awarded, there is one more com-
plication. A late delivery of a component part might produce
a cascade of devastating e�ects on the rest of the contracted

work. This has to be considered at the time the contract is
negotiated.

The University of Minnesota's MAGNET system [7] is de-
signed to automate this decision making process as much
as desired by the decision-maker. We describe an expected-

utility approach that makes e�ective use of the capabilities
of a distributed community of agents engaged in negotiation
over contracts, by using them to support human decision-
making. Agent interactions are mediated through an inde-
pendent market infrastructure which, among other services,
provides a domain ontology, a contracting protocol, authen-

tication services, and tracks the requests, commitments, and
progress towards task completion among the agents.

In this paper we focus in particular on two decision processes
that take place during the bidding cycle:

1. The �rst decision is to determine the speci�c contents
of a Request for Quotes (RFQ) at the start of a bid-
ding cycle. This decision determines how much time
suppliers are given to submit bids, and it determines
an approximate schedule by setting limits on the start
and end times for each individual task.

2. At the conclusion of the bidding cycle, the agent
must decide whether to award bids, and which bids to
award. Evaluation of bids is complicated. Bids have
multiple attributes, including cost, duration, and time
constraints. Finding the best combination of bids re-
quires not only deciding what to optimize (cost, time,

minimize the number of suppliers, give priority to spe-



ci�c suppliers, satisfy pre-existing contracts, etc) but

also assessing risk. Selecting more reliable suppliers
or dealing only with prequali�ed suppliers is a way of
reducing risk, but might increase cost.

We expect that fully autonomous behavior will often be im-

practical or unacceptable because human notions of util-
ity tend to be inconsistent and diÆcult to model [1], be-
cause of risk factors that cannot easily be quanti�ed, or
simply because decision making is the responsibility of a
person. In some domains, where speci�cations and business
relationships are in place among the negotiating entities,

fully autonomous behavior may be acceptable. The level
of autonomy of the agent should be adjustable. A mixed-
initiative agent should allow a human decision-maker to ac-
cept or override recommendations, and it should analyze
and present decision criteria clearly and concisely. Our pre-
liminary study sheds some light on how to guide a decision-

maker through the important decisions in the bidding cycle.

We start by describing the information content in the inter-
action between agents during the bidding process. Then we
describe how the principles of Expected Utility Theory can
be applied to the MAGNET domain. Next we describe the

utility-based decision process and its application to the two
decision problems listed earlier. Along the way, we make
note of the statistical data the agent needs to support its
decision processes, data that the MAGNET market can be
con�gured to collect and analyze. Finally, we relate our

work to other published work.

2. AGENT INTERACTIONS IN MAGNET
The MAGNET environment is a distributed set of objects
that can support electronic commerce in a variety of do-

mains, from the simple buying and selling of goods to sit-
uations that require complex multi-agent negotiation and
contracting.

Each Market within MAGNET is a forum for commerce in

a particular business area, and includes a set of domain-
speci�c services, as shown in Figure 1.

Figure 1: The Structure of a MAGNET Market

An important component of each market is a set of cur-
rent Market Sessions in which the actual agent interactions
occur. Each session is initiated by a single agent for a par-
ticular purpose, and in general multiple agents may join an
existing session as clients. The session enforces the proto-
col rules, and maintains its internal state according to the

protocol activity and the passage of time. The architectural

components of MAGNET and some details of its implemen-

tation are described in [7].

Within this architecture, an agent has three basic functions:
planning, negotiation, and execution monitoring. Within
the scope of a negotiation, we distinguish between two agent
roles, the Customer and the Supplier. A Customer is an

agent who has a goal to satisfy, and needs resources outside
its direct control in order to achieve its goal. The goal may
have a value that varies over time; for present purposes, we
assume that value drops to a negligible amount after the
goal deadline. A Supplier is an agent who has resources and
who, in response to a request for quotes, may o�er to provide

resources or services, for speci�ed prices, over speci�ed time
periods.

The market contains an Ontology that describes the types
of tasks or goods that the market deals in. Each descrip-
tion not only describes the item, but also contains statistics,

including details like the number of suppliers that typically
will bid on the item, and how long the task typically takes.
The market also keeps a Registry of suppliers that have ex-
pressed an interest in participating in market activities, and
maintains performance statistics that customers can use in
their decision processes.

The interaction between customer and supplier agents starts
with a Request for Quotes (RFQ) issued by the customer,
followed by a set of bids submitted by interested suppliers,
and concludes with a set of bid awards issued by the cus-

tomer. After contracts are awarded, the execution phase
starts.

For the purpose of this analysis, we are primarily concerned
with the decisions the customer must make during the bid-
ding cycle, and we will not consider plan execution,

The exchange of messages between agents is designed to
simplify negotiations without loss of generality. It is mod-
eled after the leveled commitment protocol proposed by San-
dohlm [19].

� The customer issues an RFQ which includes a speci�-
cation of each task, and a set of precedence relations
among tasks. For each task, a time window is speci-

�ed giving the earliest time the task can start and the
latest time the task can end.

� A supplier's bid includes a price for the task, a portion
of the price required to be paid as a non-refundable
deposit at the time the bid is awarded, an estimated

duration for the task, and a time window within which
the task can be started.

� When the customer awards a bid, it must pay the de-
posit and specify the actual time, within the supplier's
speci�ed time window, at which it wishes to begin the
task.

� When the supplier completes a task, the customer
must pay the remainder of the price, beyond the de-
posit, as speci�ed in the awarded bid.

� If the supplier fails to complete a task, the price is for-
feit and the deposit must be returned to the customer.
A penalty may also be levied for non-performance, but

we ignore this complication at this point.



Once bids have been awarded, a secondary protocol allows

agents to negotiate schedule changes. This avoids outright
failure and reduces risk for both parties, at the cost of com-
plicating the behavioral requirements of agents during plan
execution.

3. A MOTIVATING EXAMPLE
Assume Acme Widgets asks its agent to �nd the resources
to prepare a display for a trade show in two weeks. Acme's

sales department estimates they can book sales during the
show that will result in $10 000 in pro�t (not including the
cost of the display), if the display is ready in time.

There are three tasks to be done, and there is some uncer-
tainty in the abilities of the suppliers to deliver on time.

We ignore the uncertainty in the pro�t number. Figure 2
shows the �nancial situation of the customer agent as the
plan progresses. Deposits on all tasks (d1 + d2 + d3) are
paid when bids are awarded at the conclusion of the bidding
cycle, and payments for each of the tasks, i.e. the agreed
cost minus the deposit, (c1 � d1 etc.) are made as the tasks

are completed. Note that if a task n is not completed, then
the deposit dn is returned to the customer. When the plan
is complete, the value V of the goal accrues.
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Figure 2: Financial position during project

Assuming that the customer has received multiple bids that
specify di�erent costs, deposits, and time parameters, the

customer's decision process will attempt to award a com-
bination of bids that maximizes its expected utility at the
completion of the project. Because that expected utility in-
volves some probability of loss as well as a probability of
gain, we must deal with the risk posture of the person or or-

ganization on whose behalf the agent is acting. To do this,
we will use the notion of marginal expected utility, which is
the expected change in a decision maker's overall utility due
to some decision.

We are interested in automating (completely or in part) the

process of decision making, so we need to specify more pre-
cisely what we want to compute before explaining how we
expect to perform the computation.

4. EXPECTED UTILITY
If an automated agent is to produce plans that are accept-
able to a human decision-maker, our agent must model two
concepts: (1) decision-making in an environment of uncer-

tainty, and (2) risk aversion.

To model these concepts, we will use Expected Utility The-

ory (EUT) [1]. EUT models decision-making under uncer-
tainty by using probabilities and a construct known as a util-
ity curve, U(W ), a function that maps a level of \wealth" to
a level of utility. According to EUT, a decision-maker who
is faced with an opportunity consisting of a set of n wealth-
based outcomes will calculate the expected utility over the

set of outcomes:

E(U) =

nX
i=1

U(Wi)pi (1)

where pi is the probability of outcome i, and Wi is the re-
sulting wealth of the decision-maker if outcome i is realized.
Stated another way, the decision-maker weighs the utility of
each outcome within the opportunity. To make her decision,
the decision-maker compares this expected utility, E(U), to
her current utility, U(W0), where W0 represents her current

wealth. If the opportunity's expected utility, E(U), exceeds
her current utility, U(W0), she will pursue the opportunity.
Similarly, a decision-maker faced with multiple opportuni-
ties can decide which (if any) she will pursue by comparing
the expected utilities of the opportunities and her current

level of utility.

EUT also models the phenomenon of risk aversion. A
decision-maker is said to be risk-averse if she will reject an
opportunity that has a positive expected value. In e�ect,
the decision-maker is risk-averse if there exists an oppor-

tunity that has a positive expected value but an expected
utility which is lower than the decision-maker's current level
of utility. To model this, EUT stipulates two additional ax-
ioms pertaining to the shape of the decision-maker's utility
curve: (1) the �rst derivative of U with respect to W is pos-
itive, i.e. a decision-maker always prefers more wealth to

less wealth, and (2) the second derivative of U with respect
to W is negative, i.e. each successive increment in wealth
yields less additional (but still positive) utility.

It is this second axiom that represents risk aversion. To
see how this creates risk averseness, consider the following

inequality derived from the second axiom.

U(W0)� U(W0 �X) > U(W0 +X)� U(W0)

for X > 0: (2)

The magnitude of the decrease in utility from losing X al-
ways exceeds the magnitude of the increase in utility from
winning X, regardless of the initial level of wealth, W0. In a
sense, our decision-maker prefers avoiding losses over seek-
ing gains because losses result in potentially steep decreases

in utility in comparison to the increases in utility associated
with gains in wealth.

We use EUT to guide the agent in situations in which there
is a trade-o� between the overall cost of a plan and the like-
lihood of the plan succeeding. For example, the agent may

need to choose between suppliers, some of whom charge a
higher price but are more likely to complete the task suc-
cessfully; others of whom are less likely to complete the task
but who will charge less. By computing the expected utility
of the scenarios, the agent can choose from among them.

More speci�cally, in order to compute the customer's ex-



pected utility of a plan being executed by a set of supplier

agents, we treat the plan as a set of ordered task completion
events. Each event has a probability of succeeding, and at
the time of each event the customer must pay some sup-
plier. After completion of the last task, the customer gains
the bene�t of plan completion. If any task fails to com-
plete, we assume the plan is abandoned, and deposits paid

to downstream suppliers (suppliers who have not yet begun
processing their respective tasks) are forfeited. For n tasks,
this gives

E(U) = U(W0) +

nX
i=1

 
M(�zi)(1� pi)

i�1Y
j=1

pj

!

+M(V )

nY
j=1

pj (3)

whereM(x) is the change in utility due to a �nancial gain of

x, the pi are the success probabilities of the successive tasks,
the zi are the cumulative \debits" resulting from each task
completion (the di and ci of Figure 2) , and V is the net
\credit" that accrues on plan completion.

We call the function M(x) the marginal expected utility of

a gain of x. We introduce this notion to simplify thinking
about situations where we are only concerned about changes
in wealth due to some decision. Denoting with �Wi the
change in wealth relative to W0, for outcome i, Equation 1
becomes

E(U) = U(W0) +

nX
i=1

M(�Wi)pi (4)

It is important to understand that, for our purposes,
M(�W ) is really a qualitative concept, not a function we
expect to be able to compute exactly. Many functions have
been proposed [8], but little is known about how to elicit
preferences from a human user or organization that will yield
an accurate utility function. Instead, we recognize its exis-

tence and its general shape. To compute values, we will
bound M(�W ) with a linear function as an upper bound
(risk-neutral). This is fairly close to reality for small gambles
in any case.

We de�ne successful plan execution as \completed by the
deadline," and we de�ne successful completion of a task as
\completed without violating temporal constraints in the
plan." Note that a task can be completed successfully even
if it is not �nished within the duration promised by the
bidder, as long as the schedule has suÆcient slack to absorb

the overrun. If a plan is completed after its deadline, it
has failed, and we ignore any residual value of completed
work to the customer. We plan on extending our analysis
to more complicated cases, but we will use these de�nitions
as a starting point.

In the example of Figure 2, the expected utility E(U) for

Acme Widgets resulting from the endeavor is:

E(U) = U(W0) +M(�d2 � d3)(1� p1)

+M(�c1 � d3)p1(1� p2) (5)

+M(�c1 � c2)p1p2(1� p3)

+M(�c1 � c2 � c3)p1p2p3

+M(V )p1p2p3

where V is the $10 000 pro�t, dn is the non-refundable de-

posit that must be paid when bid n is awarded, cn is the
price that must be paid when task n is completed, and pn is
the probability that task n will be completed by the deadline
agreed to.

To compute the expression in Equation 5, the customer

agent needs to estimate, for each task and supplier, the prob-
abilities that the tasks will be completed on time. It then
must compute its marginal utility M(x) for each possible
outcome. Statistical information about tasks and suppliers
is available from the market, but the utility function depends

on the customer. A human decision-maker who trusts her
agent to make autonomous decisions will specify an analyti-
cal form for her own utility function. A decision-maker who
prefers to make decisions directly will use the agent to do
some computations and present alternatives and will keep
to herself the �nal decision.

If the set of tasks includes potentially parallel activities, the
analysis becomes more complex. Di�erent possible sched-
ules may have di�erent marginal utility values, depending
on the relative costs and success probabilities of the individ-
ual tasks. Once a task starts, the customer is liable for its

full cost at completion, regardless of whether in the mean-
time the plan as a whole has been abandoned due to a failure
on some other branch of the plan.

As an example, consider the plan in Figure 3. In this plan,
depending on expected task durations, it may be possible to

complete task s2 before starting s5, or to delay the start of
s2 to after completion of either or both of s3 and s4. It may
even be possible to serialize s3 and s4 in either order if the
plan has suÆcient slack. Each of these orderings will yield
a di�erent value of E(U). For example, if s2 is expensive

relative to tasks s3 and s4, then it should be delayed until
after both s3 and s4 have been completed, if possible. This
will reduce the number of terms in Equation 3 in which the
cost of s2 appears.

s1 ��
��
��*

-
@
@@R

s2 HHHHHHjs3 -

s4 �
���

s5 - s6

Figure 3: Branching task network

The expected utility model requires knowing the probabili-
ties of the various events. The agent is likely to know (or be
able to learn from the market) some of those probabilities

better than others.



How sensitive is a risk estimate to uncertainty about the re-

liabilities of suppliers? One way to answer this is to look at
the partial derivatives of E(U) with respect to pk in Equa-
tion 3:

@E(U)

@pk
= �M(�dk)

k�1Y
j=1

pj

+

nX
i=k+1

 
M(�zi)(1� pi)

Q
i�1

j=1
pj

pk

!
(6)

+ M(V )

Q
n

i=1
pi

pk
:

If the upper bounds of any of the derivatives are negative,

then the message is that we are better o� abandoning the
plan, because a higher probability of success for that ele-
ment leads to a worse overall outcome. If any of the deriva-
tives are especially large, and the con�dence in the corre-
sponding probability estimates are low, then the decision
maker should be warned of the uncertainty and its potential

impact, and the agent should consider adding slack to the
schedule in order to allow for recovery.

Because of the temporal constraints between tasks, failure
to accomplish a task does not necessarily mean failure of the
goal. Recovery might be possible, provided that whenever

a supplier decommits there are other suppliers willing to do
the task and that there is suÆcient time to recover without
invalidating the rest of the schedule. This complicates the
selection of which bids to accept. The lowest cost combi-
nation of bids and the tightest schedule achievable is not
necessarily the preferable schedule because it is more likely

to be brittle.

5. DECISION PROCESSES OF THE CUS-
TOMER AGENT

As described earlier, there are two points in the bidding
cycle where the customer agent needs to take utility and
risk into account. One is during the composition of the
RFQ, where the tasks and time windows are speci�ed. The
other is during evaluation of bids, when decisions need to
be made regarding which bids to accept. Factors that must

be considered include the price, the time window speci�ed
in the bid, the reliability of the supplier, and the con�dence
we have in the reliability data.

5.1 Composing the Request For Quotes
When the customer composes the RFQ, the goal is to maxi-

mize the expected marginal utility of the plan at completion
time. The customer can't schedule tasks directly; instead,
it must issue a RFQ that is likely to garner a set of bids
from potential suppliers, that will then be composed into a
schedule. There are three time-related factors in the RFQ

that can a�ect the successful outcome:

1. the allocation of time between bidding and execution,
2. the allocation of time within the bidding cycle between

suppliers and the customer,
3. the time constraints on each task.

Suppliers need time to evaluate their resource availability

and compose bids, and the customer needs time to evaluate

bids. If more time is allocated to the bidding process, then

the time available for execution will be reduced, and the
risk of plan failure increased. If less time is allocated to the
bidding process, then either the suppliers, the customer, or
both will have less time to consider their options.

We have studied allowing overlaps between the supplier and

customer portions of the bidding cycle [3]. The conclusion
was that this type of overlap allows suppliers to manipulate
the customer by adjusting the timing of their bid submis-
sions, although there may be time-critical situations where
the bene�ts of overlapping bidding and evaluation is worth
the extra cost.

How can a customer agent know how much time to allo-
cate to the supplier portion of the bidding process? The
customer's principal strategy in allocating time between it-
self and suppliers is to allocate just enough time to itself to
make a decision, and no more. This is because suppliers will

likely either not bid, or will raise prices, if they have to re-
serve resources while speculating on outstanding bids. Also,
any extra time spent in customer decision-making reduces
the time available for plan execution. We have attempted to
characterize our bid-evaluation process [4] in order to pro-
vide guidance for this time allocation problem.

The RFQ includes early start and late �nish times for each
task. Setting these \time windows" is the second major de-
cision the customer needs to make prior to soliciting bids.
At the conclusion of the bidding cycle, the agent will need to

compose the bids into a feasible schedule. The ability to do
that depends on suppliers returning bids that satisfy prece-
dence constraints in the plan. There are two decisions here:
the relative allocation of time among the tasks, and the ex-
tent to which the time windows of adjacent tasks (connected
by precedence relations) are allowed to overlap.

The MAGNET market provides three kinds of data about
each task type in its ontology that can be used to make
these decisions: (1) the number of bidders that are likely to
submit bids, (2) the expected duration, and (3) the amount
of variability in the duration data.

To construct the time windows, we construct an initial
schedule using the expected duration data, and set the initial
time windows using the Critical Path algorithm [12]. The
Critical Path algorithm walks the directed graph of tasks
and precedence constraints, forward to compute the earli-

est start times for each task, and then backward from the
goal time to compute the latest �nish and latest start times
for each task. The minimum duration of the entire plan is
called the makespan of the plan. The di�erence between the
goal time and the latest early �nish time is called the total

slack of the plan.

Then we adjust it based on bidder population and variability
data. The detailed relationships between the bidder count
and variability data and the optimal adjustments that need
to be made in the RFQ bids schedule are still under active

investigation. Our current approach is to increase relative
time allocation when duration data is more variable, and to
increase the overlap when the number of bidders is higher.



There is a tension between issuing a RFQ that will guaran-

tee the feasibility of any plan constructed with the resulting
bids, and issuing one that will solicit the maximum number
of bids. We assume that supplier's bids result from an eval-
uation of their current resource commitments, and therefore
larger time windows will result in more bids. Suppliers know
that more time 
exibility in their bids will give them a com-

petitive advantage [5].

5.2 Evaluating and Awarding Bids
Once bids have been received from suppliers, the customer's

goal is to �nd and schedule the combination of bids that
maximizes E(U), and award them. The problem is to �nd a
\good" mapping of bids to tasks and then �nd a schedule for
those bids that has a low risk of unrecoverable failure [4]. A
\good" mapping is one that covers all the tasks, is feasible in
terms of satisfying the temporal constraints, and is relatively

low-cost. Maximizing E(U) at this point is equivalent to
�nding a set of bids with the combination of cost and risk
factors that the user is most comfortable with [6].

MAGNET customer agents incorporate an adaptive anytime
search with multiple selectors and evaluators. The algorithm

adjusts itself to the problem size by using either a system-
atic iterative-improvement search, or a simulated-annealing
search [15] with adjustable beam width. Evaluators mea-
sure attributes of the bid-task mapping such as coverage,
feasibility, cost, and a variety of risk factors. Selectors up-
date a mapping by adding and removing bids. A random

selector just picks a random bid that is not part of the ex-
isting mapping and applies it. A focused selector chooses
a bid that is likely to improve some particular attribute of
the plan (but may not necessarily preserve other attributes)
like cost, coverage, or the amount of schedule slack for a

particular task.

Used interactively, the MAGNET search engine is able
to produce recommended mappings that optimize di�erent
combinations of attributes, and explain to the user what
those attributes are. It is also able to take any given map-

ping as a starting point, �x parts of it under user control, and
then search for improvements to speci�c attributes of that
mapping. Figure 4 illustrates improvement curves obtained
on one set of experimental data with di�erent selectors [4].

As already mentioned, risk comes from multiple sources:

availability of suppliers, supplier reliability, type of task, in-
suÆcient time to recover from failures, etc. Di�erent sources
of information can be used to estimate risk, such as knowl-
edge accumulated by the agent and knowledge collected by
the market. Knowledge of the domain, or experience, could
inform the agent that some kinds of work are inherently

riskier than others. Examples might be tasks that are more
complex or involve more creative content. Experience with
suppliers could also lead the agent to ascribe a higher risk
to some suppliers than others.

The MAGNET market maintains several types of data on

each supplier and on each task type in support of risk eval-
uation.

� Performance to commitment Pc { The ratio of suc-

cesses to attempts, where the task was completed
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Figure 4: Simulated Annealing Improvement Curves

within the promised duration. It does not include bid
awards that were abandoned by the customer before
the task was started.

� Performance with overruns Pl { The proportion of at-
tempts that were completed late.

� Overrun duration tl { The lateness of late completions,
with respect to bid durations.

For each of these factors, the market maintains the sample

mean, sample size, and variance. This permits agents to
compute a con�dence interval, in order to be able to make
reports to the user of the form \there is a n% probability
that your risk is less than x."

To estimate the risk in a bid-task mapping, we compute a

lower bound of the risk R. This is the absolute value of
the negative part of the expected value computation, not
including the payo� for plan completion:

R =

�����
nX

i=1

 
�zi(1� pi)

i�1Y
j=1

pj

!����� (7)

These risk estimates cannot be produced without a �xed
schedule. This is because speci�c start times determine the

schedule slack available for recovery if a supplier misses a
deadline, and because they a�ect the ordering of parallel
tasks.

Clearly, minimizing risk by adjusting the start times of tasks
is a non-linear combinatorial optimization problem, since

the individual completion probabilities can be in
uenced by
the amount of slack available to recover from failure. Dif-
ferent approximations can be used, such as:

1. Allow the user to choose a con�dence level, and use
that to compute completion probabilities from market

data on the individual suppliers and tasks.



2. Estimate marginal completion probabilities given ad-

ditional time. We will use the performance with over-
run and overrun duration data, and assume that the
improvement in completion probability is linear in
time as shown in Figure 5.

3. Initialize the start times of each task to be as early as
possible, consistent with precedence constraints and

bid speci�cations. This is a heuristic driven by the
observation that later tasks tend to be riskier because
of the larger outlays later in the plan.

4. Use a greedy optimization technique such as Joslin and
Clements' \Squeaky Wheel" method [13] to reduce the
risk as computed by Equation 7.

5. Present the user with the choices, the risk data, and
the sensitivities from Equation 6.

performance
to commitment

performance
with overrun

bid
duration

completion
probability of

average overrun
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Figure 5: Estimating task completion probability

Risk can also be reduced by consolidating tasks with sin-
gle suppliers. Suppliers can bid on \packages" composed
of subsets of tasks from the RFQ. In general, the customer
is better o� from a risk standpoint if it takes these pack-
ages, assuming that the supplier is willing to be paid for

the whole package at the time of its completion. In some
cases, the customer may be willing to pay a premium over
the individual task prices in order to reduce risk. The ad-
vantage is greater toward the end of the plan than near the
beginning. To see why this is so, we restructure Equation 5
to consolidate tasks 2 and 3, without changing the costs and

deposit amounts:

E(U) = U(W0) +M(�d2 � d3)(1� p1)

+M(�c1)p1(1� p23) (8)

+M(�c1 � c2 � c3 + V )p1p23:

Notice that the fourth term from Equation 5 is missing, and
the third term represents a smaller outlay. Also, the prob-
ability factor in the last term may be larger, assuming that
the probability of the supplier delivering on the consolidated

task (p23) is nearly the same as delivering on a single task
(p2 or p3).

As the search for \good" mappings progresses, we use the
principle of dominance from Multi-Attribute Utility The-
ory [22] to determine which solutions are worth scheduling,

and ultimately which solutions to present to the user for
modi�cation and approval. Attributes can include cost, es-
timated risk, number of suppliers, expected completion time,
and others such as the use of a particular supplier, at the
option of the user. Solutions are added to or remain in the
list of candidate solutions only if they are not dominated by

other solutions in the list.

6. RELATED WORK
Markets play an essential role in the economy, and market-
based architectures are a popular choice for multiple agents
(see, for instance, [2, 16, 20, 23] and our own MAGMA
architecture [21]). Most market architectures limit the in-
teractions of agents to manual negotiations, direct agent-to-

agent negotiation [19, 9], or various types of auctions [24].

Auctions are becoming the predominant mechanism for
agent-mediated electronic commerce [10]. AuctionBot [24]
and eMEDIATOR [18] are among the most well known ex-
amples of multi-agent auction systems. They use economics

principles to model the interactions of multiple agents. Auc-
tions are not always the most appropriate mechanism for the
business-to-business transactions we are interested in, where
convenience of scheduling, reputation, and maintaining long
term business relations are often more important than cost.

Existing architectures for multi-agent virtual markets typ-
ically rely on the agents themselves to manage the details
of the interaction between them, rather than providing ex-
plicit facilities and infrastructure for managing multiple ne-
gotiation protocols. In our work, agents interact with each
other through a market. The market infrastructure provides

a common vocabulary, collects statistical information that
helps agents estimate costs, schedules, and risks, and acts
as a trusted intermediary during the negotiation process.

Most work in supply-chain management is limited to strict

hierarchical modeling of the decision making process, which
is inadequate for distributed supply-chains. Each organi-
zation in the supply-chain has its own set of objectives,
and should be considered as self-interested or even antag-
onistic as opposed to cooperative. A notable exception is
the MASCOT [17] agent-based system. The major di�er-

ence with our proposed work is that agents in MASCOT
coordinate scheduling with the user, but there is no explicit
notion of payments or contracts, and the criteria for accept-
ing/rejecting a bid are not explicitly stated. Their major
objective is to show the advantage of using lateral coordi-
nation policies that focus on optimizing schedules locally

through exchange of temporal constraints [14]. Our objec-
tive is to negotiate contracts with suppliers that optimize
customer's utility.

7. CONCLUSIONS AND FUTURE WORK
The MAGNET automated contracting environment is de-
signed to support negotiation among multiple, heteroge-
neous, self-interested agents over the distributed execution
of complex tasks. If such a system is to be used to augment

human decision-making, it must deal with the realities of
human notions of marginal utility. We have shown how a
marginal-utility approach can be used to support the two
primary decisions that must be made by a customer agent
during the bidding cycle. We have also discussed the types
of statistical data the market infrastructure needs to build

and maintain in order to provide the probability and timing
data the agents will need for these decision processes.

The MAGNET system has been under development since
early 1998. The distributed market infrastructure, includ-
ing much of the data-collecting capability described here, is

in place. The principal elements of a customer agent are



complete, including a highly adaptable search engine that is

designed to support mixed-initiative bid evaluation in this
environment.

Current e�orts include a user interface that will present risk
information and allow a user to interact with and override
agent recommendations, and use the search engine interac-

tively. We are also in the process of extending our simulation
environment to enable the full range of behaviors described
in this paper to be tested.

Additional study is needed to develop detailed strategies for
setting time windows in the call-for-bids, and to relax some

of the assumptions used in this analysis. This promises to
be a challenging area for both formal and empirical study.
There is also a need to ground this work with real-world
examples and data. Given such data, a valuable study would
be to compare the performance of human decision-makers
with and without the support of a MAGNET agent system.
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