
Intelligent Information Systems 9999
ISBN 666-666-666, pages 1–14

Personalized Search in Folksonomies

with Ontological User Profiles

Noriko Tomuro and Andriy Shepitsen

College of Computing and Digital Media
DePaul University
Chicago, Illinois, USA

Abstract

This paper presents a new method for search personalization in Folksonomies
which utilizes ontological user profiles. Notably, our method builds a folksonomy
tag ontology in which the tags are disambiguated – each node corresponds to a
single concept, and ambiguous tags are mapped to several nodes in the ontology.
Our method first creates a set of unambiguous tag clusters by using an algorithm
called DSCBC. Then we use a modified hierarchical agglomerative clustering al-
gorithm to construct a disambiguated tag ontology. Next we match the tag profile
of a target user against the ontology and derive an ontological profile of the user.
Finally we feed the user’s ontological profile into the modified FolkRank algorithm
and retrieve web resources which are ranked and personalized to the user. We
ran our system on data from two social tagging systems. The results showed our
method achieved significant improvements over other approaches.

Keywords: Search Personalization, Folksonomies, Clustering, Natural Language
Processing, FolkRank, Ontological User Profile

1 Introduction

Collaborative tagging systems, usually referred to as folksonomies, is a popular
new trend where Internet users apply descriptive tags to online resources. Central
to collaborative tagging are annotations - users assign personalized tags to Web
resources. The last few years has shown a rapid growth of various folksonomies.
Two popular folksonomies are Delicious 1 and Last.FM2. In Delicious, users book-
mark Universal Resource Locators (URLs). Last.FM allows users to upload, share
and tag media files. Folksonomies are found in other applications such as on-line
digital pictures, blogs and journal publications. The content of some of these re-
sources can be determined by computers and effectively processed by standard
search techniques, but some resources are particularly difficult to automatically
categorize. For example, it can be particularly difficult for standard search engines

1delicious.com/
2www.last.fm

2 Noriko Tomuro, Andriy Shepitsen

to describe or organize video and music resources. Folksonomies applications, how-
ever, rely on the users’ tags to determine the content of a resource. Thus, users
find it easier to locate resources of their interest in social tagging systems than
posting a query in standard search engines.

One of the main services provided by social tagging systems is searching.
Searching occurs when the user enters a tag as a query and a list of related re-
sources are returned to the user which are ranked by relevance. Even though
collaborative tagging applications have many benefits, they also present unique
challenges for Information Retrieval (IR). The core of many search engines is the
ranking algorithm. Most of the ranking algorithms currently used are those devel-
oped for IR and Library Sciences (LS). However, these algorithms are not easily
adaptable to Folksonomies. Most folksonomy applications permit uncontrolled
tagging - users are free to use any tag they wish to describe a resource. This is
often done to reduce the entry cost of using the application and make collabora-
tive tagging more user friendly. As a result, folksonomies contain a wide variety
of tags: from the factual (e.g., “Chess engine”) to the subjective (e.g., “cool”),
and from the semantically obvious (e.g., “Poland”) to the utterly opaque (e.g.,
“PS023”). Moreover, tag redundancy in which several tags have the same meaning
or tag ambiguity (polysemy) in which a single tag has many different meanings can
confound effective IR. The task of combating noise is made even more difficult by
capitalization, punctuation, misspelling and other discrepancies, which are typical
in most of the contemporary Folksonomies.

Data mining techniques such as clustering can provide a means to overcome
these problems. Through hierarchical agglomerative clustering, we can build tag
ontological structures created by a “collective mind” of many users contributing
to the Folksonomy. After matching the obtained ontology against the user profile
the system may determine the user interest presented by ontological profile, which
can then be used for search personalization. In turn, personalization is used to
overcome the problems of tag ambiguity and redundancy. In this work, we develop
a modified hierarchical agglomerative clustering algorithm to automatically build-
ing tag ontologies for social tagging systems. The aim is to construct an ontology
in which the tags (as nodes in the ontology) are disambiguated, then to use the
ontology to infer a more accurate profile of the users interest and retrieve/rank
the relevant resources that are better personalized to the user.

In our previous works (Shepitsen et al., 2008), (Gemmell et al., 2008), we used
a standard hierarchical agglomerative clustering algorithm to build a tag hierarchy.
Although we were able to show an improved performance over other algorithms
for personalizing search and retrieval tasks, for user profiles we only used flat,
unstructured vector of tags.

The work presented here is an extension of our earlier work with a focus on
constructing a disambiguated ontology and improving the ranking algorithm. To
construct a disambiguated ontology, we employ a clustering algorithm called Do-
main Similarity Clustering By Committee (DSCBC) (Tomuro et al., 2007) to
first derive a set of tag committees. A tag committee is a cluster of tags that have
similar meanings. DSCBC was originally developed in Natural Language Process-
ing (NLP) to automatically derive unambiguous clusters of word meanings from
ambiguous words. Thus, a tag committee in this work is a group of tags where

Personalized Search in Folksonomies 3

members share the same or very similar concept in one of their meanings. Using
the tag committees, we organize tags into an ontology by using a modified hierar-
chical agglomerative clustering algorithm. The core of modification is that we add
the ambiguous tags to multiple places in the ontology according to the number of
senses they have.

NLP

NLP

POS

CRFTagger

Hidden_Markov_Mod

Speech_segment

Text_segmentation

Hyphenation

Hyphenation

Segment_algorithm
Text_Mining

Biomedical_NLP

Chilibot

LitInspector

Security_TXT

ECHELON

Big_Brother

SPSS_tgs

Online_Media

YouTube

Acad_Application

OTMI JISK

JISK

DTD
NIH

User Profile

Activation nodes

0.681 0.681

0.589

1.738

1.576

0.541

0.541

0.808

0.150

0.150
0.150

0.464

0.464

1.06

1.287

0.310

0.310

0.58

0.58

1.23
0.978

0.452

Figure 1: Ontological user profile in Folksonomies

For example, a tag “NLP” is ambiguous – it could mean “Natural Language
Processing” or “Neuro-Linguistic Programming”. Therefore the tag “NLP” will be
added to two places in the ontology with different resource features. In addition,
we did not use the step threshold, typical for standard hierarchical agglomerative
clustering, but join the most similar tag/cluster pair in every iteration. Thus, we
get an ontological tree instead of “lattice” which is more appropriate for search
personalization. Then for a target user, we compute a preference vector based on
his/her tag profile, matching it against the whole ontology and spreading interest
weights up and down the tree. Values in a preference vector indicate the vari-
ous degrees of the users interest distributed in the ontology. An example of an
user ontological profile is depicted in figure 1. The depicted ontological structure
has been created by hierarchical agglomerative clustering applied for folksonomy
dataset. For instance, if tags “Text Mining” and “NLP” were connected by an
edge it means that those tags were frequently used for the same resources by
many Folksonomy users. Suppose we got a test user who has three tags in his
profile “NLP”, “Hyphenation” and “JISK”. We start matching the user profile
with formulated ontology sequentially for every tag. Initial node interest scores
are equal to zero. We start from “NLP” tag by assigning interest score equal to
one. “NLP” tag has three children - “Text segmentation”, “Speech segment” and
“POS”, so the interest score will be distributed equally among those children. In

4 Noriko Tomuro, Andriy Shepitsen

addition, in this example we used a damping coefficient equal to 0.5, so each child
node of “NLP” tag will get 0.17 interest score (0.33*0.5). Each child node will
transfer obtained weight further in the structure to its children and so forth. The
same approach was used during transferring weight up in the ontological tree. In
this example, tag “Text Mining” will get 0.5 from “NLP” and transfer it further
to the network. So the process is similar to the transferring activation by nerve
cells in the biological organism. The final weights near the nodes characterize
the degree of the user interest after sequentially activating interest score inside
this restricted part of ontology with the user who has in his profile tags Hyphen-
ation, NLP and JISK. Notice, that some activation point tags have interest score
greater than one, because the activation happens sequentially one tag after an-
other and tags “strengthen” each other. For instance, we may conclude that the
tag “Text segmentation” got a comparatively high weight because it is between
the two tags in the ontological structure that appeared in the user profile (NLP
and Hyphenation). Finally we feed the preference vector to the modified FolkRank
algorithm (Hotho et al., 2006a) to retrieve and rank the relevant web resources
which reflect the user-specific preferences. We tested our system on the data from
two social tagging systems and compare the results with other algorithms, in par-
ticular the original FolkRank algorithm (which uses binary preference vectors),
ranking using a vector space model and also ranking based on committee-based
preference vector without building the ontological profiles. Our results showed
marked improvements over the above mentioned algorithms.

2 Related Work

The closest re-ranking/recommendation algorithm to the one presented in this
work appeared in (Middleton et al., 2004) presenting the algorithm for using on-
tological profiles and generating recommendations. The authors used a scientific
publication ontology for expressing the broadness of the user scientific interest.
Afterwards, the collaborative filtering recommender was used to generate recom-
mendations. The recommendation generated with ontological user profiles was
more relevant than the ones obtained with “flat” user vectors. However, the au-
thors used an ontology of scientific papers manually created by experts – which
simply is not the case with Folksonomies. In addition, the authors used an explicit
user feedback, which is also not viable with existing social tagging systems.

One of the first attempts for automatically creating an ontological structure
from Web documents appeared in (Sanderson and Croft, 1999). The main idea for
determining the child-parent relation is subsumption: a term is a child of another
term if the set of documents in which the (child) term occurred is a subset of the
set of documents in which the (parent) term occurred. The authors tested their
algorithm by posting a random query term and examined the first 500 returned
documents from a large corpora. They reported that in 70% of the cases the
derived hierarchy coincided with the judgment by the experts.

In our previous work (Shepitsen et al., 2008), (Gemmell et al., 2008), we
used a hierarchical agglomerative clustering algorithm to build a tag hierarchy for
Folksonomies. To build a hierarchy bottom-up, we gradually decreased a similarity

Personalized Search in Folksonomies 5

threshold to join tags/clusters whose similarity were above that the threshold.
Then we used the obtained ontology to personalize search and retrieval for a target
user. However, in our previous algorithms we did not present users with ontological
profiles for expressing their interest, but used ontological tree as a method to find
relevant branches for cluster extraction. This work is our continuing effort toward
improving the relevance of the search results in Folksonomies. To the best of our
knowledge, our system was the first in using an automatically constructed tag
ontology in a ranking algorithm for Folksonomies.

Manually created ontologies have been widely used in IR systems as well. The
most well-known ontology would be WordNet (Miller, 1995). WordNet has been
used in many IR and NLP tasks, such as query extension (Moldovan and Mihal-
cea, 2000), (Sieg et al., 2004), word sense disambiguation (Banerjee and Pedersen,
2002), clustering (Hotho et al., 2006a) (Pedersen et al., 2004) and semantic index-
ing (Mihalcea and Moldovan, 2000). However, manually constructed ontologies
are subjective and known to contain inconsistencies. In addition, the manual cre-
ation of ontologies requires a lot of resources and does not react fast enough on
changes. A better approach would be to automatically derive ontologies from
empirical data.

3 Search Personalization Algorithm in Folksonomies

3.1 Annotations for Folksonomies

In this paper, we use the following notation to define Folksonomies. A Folksonomy
D is denoted as a four-tuple

D = 〈U, R, T, A〉 (1)

where U is a set of users, R is a set of resources, T is a set of tags, and A is a set
of annotations where each annotation is defined by a three-tuple consisting of a
(specific) user, a tag and a resource:

A ⊆ {〈u, r, t〉 : u ∈ U, r ∈ R, t ∈ T} (2)

3.2 Modern approaches of Search Ranking in Folksonomies

Folksonomies may very in the way they ranked the returned results. Although
very few social tagging systems/companies have disclosed the detailed information
on their techniques, we hypothesize that the search engine in Delicious returns
mainly the most recent resources for a query tag. In F lickr, the ranking seems to
combine the number of tags and comments assigned to the picture. On the other
hand, Last.fm seems to use a vector space model for ranking resources.

Each user, u, is represented as a vector over the set of tags (the tags which the
user had used to annotate resources). The value for the ith tag ti is a weight on
the tag w(ti), corresponding to the importance of the particular tag to the user.

~u = 〈w(t1), w(t2)...w(t|T |)〉 (3)

6 Noriko Tomuro, Andriy Shepitsen

A resource is also be represented as a vector over the set of tags (the tags which
were used by the users to annotate the resource). To calculate the values in the
vector, a variety of measures could be used. The tag frequency, tf, for a tag, t,
and a resource, r, is the number of times the resource has been annotated with
the tag. We define tf as:

tf(t,r) = |{a = 〈u, r, t〉 ∈ A : u ∈ U}| (4)

Tag frequencies can also be weighted. The tf*idf (term frequency * inverse
document frequency (Salton and Buckley, 1988)) from IR can be modified for
Folksonomies to reflect the relative distinctiveness of the tags. We define tf*idf
as:

tf*idf(t,r) = tf(t,r) ∗ log(N/nt) (5)

where N is the total number of resources, and nt is the number of resources to
which the tag was applied.

For either representation, a similarity measure between a query, q, represented
as a vector over the set of tags, and a resource, r, also represented as a vector over
the set of tags, must be calculated. Here we use the Cosine similarity, which is
defined as standard:

cos(q,r) =

∑

t∈T tf(t,q) ∗ tf(t,r)
√

∑

t∈T tf(t,q)
2
∗

√

∑

t∈T tf(t,r)
2

(6)

Note that, during our experiments, we empirically observed that tf produced
a better result for measuring the similarity in constructing an ontology, while idf
yielded a better result for generating weights for the vector space model that was
used for the final ranking.

For the retrieval and ranking algorithms, the FolkRank algorithm (Hotho
et al., 2006b), which was adapted from the Google PageRank algorithm in IR
to Folksonomies, has been reported to produce a superior performance over the
vector space model. The FolkRank algorithm uses the notion of authority in
ranking: users who used “authoritative” tags for “authoritative” resources are
authoritative themselves, and the same principle holds for tags and resources. So
the three dimensions of folksonomies effectively reinforce each other and converge
to an optimal point in the three-dimensional space.

FolkRank also incorporates the principle of random surfer, just like PageRank
does: a user normally follows the links but occasionally jumps to other random
pages.

−→w ←− d−→wA + (1− d)−→p (7)

where −→w is the weights of the vector with u, r, t dimensions, A is the adjacency
matrix of size u, r, t by u, r, t, d is the damping coefficient which controls the effect
of random surfing, and −→p is the preference vector which indicates the interest of the
specific user (to tags or resources, whichever is applicable to the adjacency matrix
at hand). In FolkRank, a preference vector contains 1s for the target object(s) and

Personalized Search in Folksonomies 7

zero in all other slots. The preference vector in the algorithm is used to effectively
influence the topic ranking indirectly. The final ranking scores/weights of the
retrieved results are determined by the formula tf ∗ (−→wp −

−→w), where wp is the
weight vector found without a preference vector (and w is the vector found with
preferences). By subtracting w from wp, popular resources which do not have any
relation to the query are mutually canceled and are pushed down in the ranking.
Thus, the FolkRank algorithm is effectively able to personalize the retrieved results
(for tags or resources) by the use of preference vectors.

3.3 Modification of FolkRank Algorithm

According to the results reported in (Hotho et al., 2006b), the FolkRank algorithm
generates the more relevant ranking compared to other techniques developed for
Folksonomies. It significantly outperforms the two most popular techniques - the
vector space model and K-Nearest Neighbor.

In this work we modified the FolkRank algorithm for further improve its ef-
fectiveness. First of all, we modified the principle of formulation of the adjacency
matrix in FolkRank, while keeping the PageRank’s principle which defines the
amount of transferred authority to be dependent on the number of outgoing links
from the page. For example, there are two web-pages A and B, both of which
have references to the page C. According to PageRank, the amount of authority
transfered from A and B to C depends on the number of outgoing links from
those web-pages. We suggest to use the same principle in the FolkRank algorithm
during building the adjacency matrix. For example, for a connection between a
tag ti and a resource rj, we propose to normalize the number of users u, who
used tag ti and resource rj with the number of u which used tag ti for any re-
source. For instance, if the tag “Apple” was used by 10 users for the web-resource
store.apple.com but 100 users in total used that tag for any other resources, then
the value in the adjacency matrix on the intersection of the tag “Apple” and the
resource store.apple.com should be 0.1. The same principle holds for all other
relations among users, tag and resources, in computing the adjacency matrix. We
use the following formula to compute the connection ri −→ tj:

ri −→ tj =

U
∑

i=1

(< u, ri, tj >: u ∈ U)

U
∑

i=1

(< u, rj, t >: u ∈ U, t ∈ T)

(8)

With such normalization we can get a non symmetrical adjacency matrix, which
will solve the problem of weights bouncing back during iteration of the FolkRank
algorithm. In other words in our matrix the connection from A to B is not the
same as B to A.

The preference vector formulation in the initial FolkRank algorithm is also
the possibility to improve its effectiveness for increasing the ranking relevance.
Intuitively, even with a three dimensional ranking system, filling the preference
vector with zeros except for the target query does not reflect completely the user

8 Noriko Tomuro, Andriy Shepitsen

interest in Folksonomies. Moreover, this approach does not address the problem
of noise in ontologies caused by tag redundancy when several tags have the same
meaning, and tag ambiguity when a single tag has many different meanings.

Tag redundancy and tag ambiguity problems confound the effectiveness of rank-
ing algorithms. The task of combating noise is made even more difficult by capi-
talization, punctuation and misspelling. In our previous work, we tried to address
the problem of tag redundancy with a relative success, by merging tags in a cluster
and building the tags hierarchy (Gemmell et al., 2008), (Shepitsen et al., 2008).

However in our previous work, the ontology was not disambiguated, therefore
the results left a room for improvements. In this work, we addressed the problem
of tag ambiguity by employing a clustering algorithm called DSCBC and built an
ontology in which the tags were disambiguated. This process is discussed in detail
in the next section. Users’ preference vectors were obtained by matching the users’
tag profiles against the derived ontology. An example of a part of the ontology is
depicted in Figure 1.

Input: Set of tags t ∈ T, users u ∈ U and r ∈ R, Preference vector over
<U,R,T>

α, β, γ- tuning coefficients for controlling the speed and granularity of
algorithm convergence
simthr - the threshold determining the stopping condition of the algorithm
iteration.
n - number of iterations when we stop the further iteration.
d - damping factor
Output: Weight w1 < U, R, T > vector
−→w0 = −→w1;
while (n > 0) do
−→w1 ←− α ∗ d−→w1 + β ∗ −→w1 ∗A + (1− d)γ ∗ Pref. vector Normilize(−→w1)
if (sim(−→w0,

−→w1) > simthr) then
BREAK;

end
−→w0 = −→w1;
n = n− 1;

end

Algorithm 1: Modified FolkRank algorithm

3.4 Finding Ambiguous Tags with DSCBC Clustering Algorithm

One of the main obstacles for effective information retrieval is tag ambiguity, as
discussed in the previous section. There are a lot of tags which have multiple
meanings. For example, “run” could mean resources about jogging, or information
about Unix compiler, or a popular novel of Ann Patchett.

In our previous work, during the automatic building of ontologies, we only
considered the most popular sense of an ambiguous tag and ignored all other
senses. For instance, “Java” was added as its most popular sense - as a computer
language (For Delicios), and other meanings (coffee or a geographic location) was

Personalized Search in Folksonomies 9

discarded.

In this work, we adapted a clustering algorithm called DSCBC from our pre-
vious work in NLP (Tomuro et al., 2007). The DSCBC algorithm is shown in
Algorithm 2. In Phase I, a set of preliminary tag clusters are first created. In Phase
II, some of those tag clusters are selected as committees – those which are dissim-
ilar/orthogonal to all other committees selected so far. Then in Phase III, each
tag is assigned to committees which are similar to the tag. When an ambiguous
tag is assigned to one of more committees, each time the features of the assigned
committee are removed from the tag. Thus, ambiguous tags are identified as those
which belong to more than one committee. The tuning coefficients determine the
quality and the structure of obtained committees. The n parameter determines
the tightness of obtained committees and the degree of overlapping. In this work
this coefficient is very important as it influences the quality of the ontology, which
in turn has a great impact on the preference vector formulation. The q coefficient
influences the quality of cluster centroids, by the number of features. Although
using a larger number of features would be preferred to represent a centroid, it may
also decrease the number of resources assigned to the cluster, thereby diminishing
the generality of the clusters. The coefficient β directly controls the number of
overlapping tags among committees. All coefficients were found empirically during
the preliminary test runs of our experiments.

Input: Set of tags T. Tuning coefficients:
n - number of the most similar tags chosen for the target tag
q - number of features for finding the centroid
β - similarity threshold for adding tags to committees
γ - similarity threshold for assigning tags to committees
Output: Set of committees C. Set of tags T where each t ∈ T is assigned

to committees in C.
Phase I. Finding set of clusters L
foreach ti ∈ T do

Select a set k of n most similar tj : i 6= j
add k to L if it is not already in L.

end

Phase II. Find Communities C (C is initially empty set)
foreach c ∈ L do

Find the centroid of c using only q features shared by most of tags in
the cluster
Add c to C if its similarity (measured among centroids) to every other
cluster is lower than β

end

Phase III. Assign tags to committees
foreach t ∈ T do

Assign t to committee c in C if the similarity of t to centroids of c is
higher than γ

end

Algorithm 2: Clustering tags using DSCBC

10 Noriko Tomuro, Andriy Shepitsen

3.5 Modified Agglomerative Hierarchical Clustering

for Extracting Tag Ontology

In our previous work, we used a standard hierarchical agglomerative clustering
algorithm for building the ontological tree. However, the structure obtained from
such algorithm did not resemble a standard ontology, such as Y ahoo3 or Open
Directory Project 4. That is why we modified the standard approach and did
not use a similarity threshold for finding set tags/cluster to connect in cluster.
Otherwise we will get a network where the parent node could be presented by a
cluster rather than by a singular tag. That is why we sort pairs of tags or tag
clusters by similarities and join the pair on the top of the list.

In addition, on every joining step we control whether the tags are ambiguous.
Ambiguous tags should be included in ontology more than once, according to the
number of meanings they have. For realizing this approach, we save a list of tags
with a set of committees to which they belong. Afterwards, during a joining step
we check whether the tag is ambiguous (belongs to more than one committee).
When we join an ambiguous tag, we determine its current meaning and remove
the features of the current meaning from other instances of this tag in the list for
further clustering.

Therefore, ambiguous tags will be added to the ontology as many times as
many senses they have. As the result we obtain the disambiguated ontological
tree in Folksonomies, where the more general concepts are on the top of the tree
and more specific is closer to bottom. The example of the obtained tree is shown
at Figure 1. We can see in the figure that more specific nodes are located on the
lower “floors”.

3.6 Search Personalization with Ontology

Having an ontology built from Folksonomies we have the possibility to use it in
the ranking algorithm for the specific user exploiting the hierarchical structure of
the semantic networks.

Our approach offers the possibility to spread user interest from the target tag
to its parents, and they in turn spread it to their parents and siblings of the target
tag with some decay factor. As the result we can build a map of the user’s interests
and formulate an optimal preference vector.

Naturally, we should also use as an activation point the tags from the user
profile, because they are sources of the user’s interests. By processing the tags from
the user profile sequentially, we strengthen the nodes which lie on the intersections
of the user’s interests.

For instance, if the user has tags “swimming pools NY”, “flip turns”, “swim tips”,
“trade mill, “Arnold squat”, we may conclude that first - this user is interested in
swimming and in bodybuilding. Sequentially spreading the interest score degree
from those five tags, the algorithm will give a high weight to the sport nodes in
general. Therefore, the resources related to sport will be ranked higher as they
will be strengthened on every iteration of the FolkRank algorithm. In the first

3www.yahoo.com
4www.dmoz.org

Personalized Search in Folksonomies 11

Input: Set of tags T. Set of Committees C.
Output: An ontology of folksonomy tags
L is a list containing pairs of tag/clusters with associated similarity, initially
empty.
foreach ti ∈ T do

Find all tj (i 6= j) similar to ti;
add 〈ti, tj〉 pair in L, if it is not already in L.

end

while L is not empty do
1. Sort L by the similarity of tags/clusters
2. Pop the pair with tag ti with the highest similarity from List L.
if ti belongs to more than one committee in C then

1. Find the most similar committee c by measuring ti pair
tag/cluster with committee centroid
2. Join ti with its tag/cluster partner
3. Remove all features intersecting with ti and the most similar
committee of its pair

end

else
1. Join ti with its tag/cluster
2. Substitute all instances of ti in L by the created cluster

end

end

Algorithm 3: Ontology Construction Algorithm

stage we build an ontological tree with abovementioned algorithm. Afterwards,
we match the tree with the user profile and generate the personalized interest score
distribution among nodes in the tree. We generate a preference vector from the
tag ontology, activate it with the query tag and load that profile into the extended
FolkRank algorithm which in turn generate the FolkRank weights. Finally, we
compute the vector space model weights for every resource and multiply them
with the FolkRank weights to find the final ranking coefficients.

4 Experimental results

We evaluated our modified FolkRank algorithm using data from two real-world
collaborative tagging systems. The first one is Delicious where users annotate
web pages. The crawled dataset contains 29,918 users, 6,403,442 resources and
1,035,177 tags. There are 47,184,492 annotations with one user, resource and tag.
We randomly picked 10% of users with all their tags and resources. The test
dataset consists of 2900 users 113,443 tags and 583,137 resources.

We also tested our algorithm on the data from Last.fm, where users assign tags
for musical resources: songs, albums and artists. From the Last.mm dataset, we
randomly chose 2,900 users which used 37,913 tags for 261,123 media resources.

As a basis for comparison we used ranking based on the pure vector space
model, and the original FolkRank algorithm with binary preference vector. In

12 Noriko Tomuro, Andriy Shepitsen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Recall

P
r
e

c
is

io
n

Ranking with Ontological

Preference Vector

Ranking with Preference

Vector formulated with

DSCBC committees

Ranking with Original

FolkRank algorithm

Ranking with Vector Space

Model

Figure 2: Recall vs. Precision for Delicious dataset

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

P
r
e

c
is

io
n

Ranking with Ontological

Preference Vector

Ranking with Preference

Vector formulated with

DSCBC committees

Ranking with Original

FolkRank algorithm

Ranking with Vector Space

Model

Figure 3: Recall vs. Precision for Last.Fm dataset

addition, we compared with the version where the tag clusters were generated by
DSCBC without building an ontology - if the target tag belongs to the committee
all members of that committee get a 1 in the preference vector. If the target tag
belongs to several committees, we increase the weights only for the cluster with the
biggest user interest. For each committee, c, the user’s interest is calculated as the
ratio of times the user, u, annotated a resource with a tag from that committee
over the total number of annotations by that user. We denote this weight as
uc w(u,c) and defined it as:

uc w(u,c) =
|{a = 〈u, r, t〉 ∈ A : r ∈ R, t ∈ c}|

|{a = 〈u, r, t〉 ∈ A : r ∈ R, t ∈ T}|
(9)

We used the “leave one out” scheme for generating a test dataset. For every test

Personalized Search in Folksonomies 13

users we remove one resource and all tags associated with that resource. The list
of tags was our relevant set, which we try to predict using the modified FolkRank
algorithm. As the measure of the effectiveness we used Recall and Precision for
both datasets. We sequentially tested all users and all their resources and found
the average of Recall and Precision.

The results of the experiments are provided in Figures 2 and 3. All the
tuning coefficients were empirically found on their optimal level for generating the
highest Recall in Folksonomies. The results showed that, for both datasets, the
modified FolkRank algorithm with the ontologically generated preference vectors
outperformed the vector space model and the original FolkRank algorithm. In
addition, it also showed that our proposed method produced better results as
compared to the version where preference vectors are formulated by using only the
DSCBC committees. The results showed the usefulness of building disambiguated
ontologies for reflecting the user information needs in Folksonomies.

5 Conclusions and Future Work

In this paper we presented a modified hierarchical agglomerative clustering algo-
rithm which uses the DSCBC algorithm to construct a disambiguated ontology
from tag datasets. The obtained ontology, after matching with the user profile,
effectively reflects the users’ information needs. The preference vectors are fed
into the modified FolkRank algorithm and showed its effectiveness in search per-
sonalization. Our experimental results showed ranking much more relevant to the
users’ interest as compared to the vector space model and the standard binary
preference vector formulation technique.

Our future research will focus on the further improvement of the cluster quali-
ties generated by the DSCBC algorithm. With that goal in mind, we are planning
to experiment probabilistic models to find the optimal committee properties such
as tightness, degree of tags overlap among committees and the distance among
committees themselves.

Building an ontology in Folksonomies is also our future area of research. We
believe that there is a possibility to further improve the subsumption relation
among tags, which in turn would generate a better ontology. We believe that
including the third (user) dimension in finding similarity and parent-child relation
may also increase the utility of the ranking algorithm.

We also believe that the FolkRank algorithm may be further improved by
including in the equation the date of annotation and putting more weights to those
users who used tags earlier than others. In addition, including a similar ontological
clustering approach for resources and users will probably further improve the the
relevancy of personalized ranks.

References

S. Banerjee and T. Pedersen (2002), An Adapted Lesk Algorithm for Word Sense
Disambiguation Using WordNet, Lecture Notes in Computer Science, pp. 136–145.

14 Noriko Tomuro, Andriy Shepitsen

J. Gemmell, A. Shepitsen, B. Mobasher, and R. Burke (2008), Personalization in
Folksonomies Based on Tag Clustering, Intelligent Techniques for Web Personalization

& Recommender Systems.

A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme (2006a), Folkrank: A Ranking
Algorithm for Folksonomies, Proceedings of FGIR, 2006.

A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme (2006b), Information Retrieval in
Folksonomies: Search and Ranking, The Semantic Web: Research and Applications,
4011:411–426.

A. Hotho, S. Staab, and G. Stumme (2003), Wordnet Improves Text Document Clus-
tering, in Proceedings of the SIGIR 2003 Semantic Web Workshop.

S. Middleton, N. Shadbolt, and D. De Roure (2004), Ontological User Profiling
in Recommender Systems, ACM Transactions on Information Systems, 22(1):54–88,
ISSN 1046-8188.

R. Mihalcea and D. Moldovan (2000), Semantic Indexing Using WordNet Senses, in
Proceedings of ACL Workshop on IR & NLP, pp. 35–45.

G. Miller (1995), WordNet: A Lexical Database for English, Communications of the

ACM, 38(11):39–41.

D. Moldovan and R. Mihalcea (2000), Using WordNet and Lexical Operators to Im-
prove Internet Searches, Internet Computing, IEEE, 4(1):34–43.

M. OConnor and J. Herlocker (2001), Clustering items for collaborative filtering, in
Proceedings of SIGIR-2001 Workshop on Recommender Systems.

T. Pedersen, S. Patwardhan, and J. Michelizzi (2004), WordNet:: Similarity-
Measuring the Relatedness of Concepts, in Proceedings of the National Conference

on Artificial Intelligence, pp. 1024–1025.

G. Salton and C. Buckley (1988), Term-weighting Approaches in Automatic Text
Retrieval, Information Processing and Management: An International Journal,
24(5):513–523.

M. Sanderson and B. Croft (1999), Deriving Concept Hierarchies from Text, in Pro-

ceedings of the 22nd annual international ACM SIGIR conference on Research and

Development in Information Retrieval, pp. 206–213.

A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke (2008), Personalized Recom-
mendation in Social Tagging Systems Using Hierarchical Clustering, in Proceedings of

the 2008 ACM Conference on Recommender systems, pp. 259–266.

A. Sieg, B. Mobasher, S. Lytinen, and R. Burke (2004), Using Concept Hierarchies
to Enhance User Queries in Web-based Information Retrieval, in Proceedings of the

IASTED International Conference on Artificial Intelligence and Applications.

N. Tomuro, S.L. Lytinen, K. Kanzaki, and H. Isahara (2007), Clustering Using
Feature Domain Similarity to Discover Word Senses for Adjectives, in Proceedings of

the 1st IEEE International Conference on Semantic Computing, pp. 370–377.

