
Search in Social Tagging Systems Using Ontological User Profiles

Andriy Shepitsen and Noriko Tomuro
College of Computing and Digital Media

DePaul University
Chicago, Illinois, USA

ashepits@cdm.depaul.edu, tomuro@cs.depaul.edu

Abstract

In this paper we present a modified hierarchical agglomera-
tive clustering algorithm for building tag ontologies for social
tagging systems. The modified algorithm first uses a cluster-
ing algorithm called Domain Similarity Clustering By Com-

mittee (DSCBC) (Tomuro et al. 2007) to derive a set of tag
committees. We apply DSCBC to the tags entered by the
users of social tagging systems and derive (un-ambiguous)
committees of tags. Using the committees, a tag ontology is
constructed in which an ambiguous tag is separated into mul-
tiple, disambiguated tags/nodes. Then a tag profile of a given
user is matched against the ontology, and an ontological pro-
file of the user is created. Finally a preference vector is fed
into the (modified) FolkRank algorithm (Hotho et al. 2006a),
and the web resources ordered based on the user’s preferences
are returned. We run our system on the data from two so-
cial tagging systems and compare the results with other algo-
rithms. The results showed our algorithm achieved marked
improvements over other algorithms.

Introduction

In recent years, there has been a rapid growth in social tag-
ging systems – so-called Folksonomies where users assign
keywords or tags to web resources for future references or
collaboration with other users. Web resources are virtu-
ally any kind of information available on the Internet, rang-
ing from web-pages (Delicious, Connotea), scientific arti-
cles (Bibsonomy) to media resources (Last.fm, Youtube)).
One of the main services provided by social tagging sys-
tems is searching. Search mainly happens when the user
enters a tag as a query, and a list of related resources, which
are also ranked by relevance, is returned to the user. The
core of the search engine is the ranking algorithm. Most
of the ranking algorithms currently used in the social tag-
ging systems are those developed for Information Retrieval
(IR). However, those algorithms cannot be easily adapted
for Folksonomies. The main reason is because most social
tagging systems allow unrestricted tagging – users are free
to choose any words or set of characters to formulate tags.
Although those problems exist in IR as well, they are much
more salient in social tagging systems due to their open na-
ture.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this work, we develop a modified hierarchical agglom-
erative clustering algorithm for automatically building tag
ontologies for social tagging systems. The aim is to con-
struct an ontology in which the tags (as nodes in the ontol-
ogy) are disambiguated, then to use the ontology to infer a
more accurate profile of the user’s interest and retrieve/rank
the relevant resources that are better personalized to the user.
In our previous work (Shepitsen et al. 2008), we used a
hierarchical agglomerative clustering algorithm to build a
tag hierarchy and showed improved results for personaliz-
ing search and retrieval in Folksonomies. The work here
is our continuing effort, focusing on the construction of a
disambiguated ontology and the modification of the ranking
algorithm.

To construct a disambiguated ontology, we employ a clus-
tering algorithm called Domain Similarity Clustering By
Committee (DSCBC) (Tomuro et al. 2007) to first derive a
set of tag committees. Then we organize the tag committees
into a ontology by using a modified hierarchical agglomer-
ative clustering algorithm. Afterwards, for a given user, we
compute a preference vector based on his tag profile. Finally
we feed the preference vector to the modified FolkRank al-
gorithm (Hotho et al. 2006a) to retrieve and rank the rel-
evant web resources which reflect the user-specific prefer-
ences. We tested our system on the data from two social
tagging systems and compare the results with other algo-
rithms, in particular the original FolkRank algorithm (which
uses binary preference vectors) and ranking using a vec-
tor space model. The results showed our system achieved
marked improvements over other algorithms by the use of
disambiguated ontology.

Related Work

The first attempt for automatically creating an ontological
structure from Web documents appeared in (Sanderson and
Croft 1999). The main idea for determining the child-parent
relation is subsumption: a term is a child of another term if
the set of documents in which the (child) term occurred is
a subset of the set of documents in which the (parent) term
occurred. They reported that in 70% of the cases the derived
hierarchy coincided with the judgement by the experts.

Mika (Mika 2007) proposed an automatic creation of tags
in Folksonomy networks based on the co-occurrences be-
tween the resources and users. He used a graph clustering



technique to connect tags which were used by the same users
and for the same resources. Here, a connection essentially
represents a user community of like-minded users. How-
ever, the derived graph/network was rather “flat” with sev-
eral densely interrelated communities, thus in our opinion,
not a true ontology.

Manually created ontologies have been widely used in IR
systems as well. The most well-known ontology would be
WordNet (Miller 1995). WordNet has been used in many
IR and Natural Language Processing (NLP) tasks, such as
query expansion (Moldovan and Mihalcea 2000), word
sense disambiguation (Banerjee and Pedersen 2002) and se-
mantic indexing (Mihalcea and Moldovan 2000). However,
not only do manually constructed ontologies require a large
amount of time and effort to build, they also tend to contain
inconsistencies. There has been much work in NLP focusing
on automatically deriving ontologies from empirical data.

Ontological Search in Folksonomies

Annotations for Folksonomies

In this paper, we use the following notation to define Folk-
sonomies. A Folksonomy D is denoted as a four-tuple

D = 〈U, R, T, A〉 (1)

where U is a set of users, R is a set of resources, T is a set
of tags, and A is a set of annotations where each annotation
is defined by a three-tuple consisting of a (specific) user, a
tag and a resource:

A ⊆ {〈u, r, t〉 : u ∈ U, r ∈ R, t ∈ T} (2)

Modern approaches of Ranking in Folksonomies

Most of the Folksonomies use a vector space model with dif-
ferent modification as the ranking algorithm. For this reason,
we will use the vector space model as a baseline in evaluat-
ing our proposed approach. Each user, u, is represented as a
vector over the set of tags which the user had used to anno-
tate resources. The value for the ith tag ti is a weight on the
tag w(ti), corresponding to the importance of the particular
tag to the user. A resource is also be represented as a vector
over the set of tags (the tags which were used by the users
to annotate the resource). To calculate the values in the vec-
tor, a variety of measures could be used. The tag frequency,
tf, for a tag, t, and a resource, r, is the number of times the
resource has been annotated with the tag.

Tag frequencies can also be weighted. The tf*idf (term
frequency * inverse document frequency (Salton and Buck-
ley 1988)) from IR can be modified for Folksonomies to re-
flect the relative distinctiveness of the tags.

For either representation, a similarity measure between a
query, q, represented as a vector over the set of tags, and a
resource, r, also represented as a vector over the set of tags,
must be calculated. Here we use Cosine similarity, which is
commonly used in IR.

Note that, during the building of the tag ontology, we em-
pirically discovered that tf produced a better result for mea-
suring the similarity in constructing an ontology, while idf

yielded a better result for generating weights for the vector
space model that was used for the final ranking.

For the retrieval and ranking algorithms, the FolkRank
algorithm, which was adapted from the Google PageRank
algorithm in IR to Folksonomies, has been reported to pro-
duce a superior performance over the vector space model
(Hotho et al. 2006b). FolkRank algorithm uses preference
vectors for a given user and tags in order to personalize
search results. The results reported in (Hotho et al. 2006b)
showed that the FolkRank algorithm generated more rele-
vant ranking compared to other techniques developed for
Folksonomies. It significantly outperformed the two most
popular techniques - the vector space model and K-Nearest
Neighbor.

In this work, we modified the FolkRank algorithm in two
ways. First, we modified the representation of the adja-
cency matrices (which indicate the co-occurrences of tags
and users, users and resources, tags and resources) to be
directed (from undirected in FolkRank). For example, for
the connection from tag ti to resource rj , we multiplied the
value (a weight calculated based on the level of importance
of ti and rj , as used in PageRank) by the proportion of the
users who used ti for rj over all users who used ti for any re-
source. With this normalization we obtained non-symmetric
adjacency matrices, thereby solving the problem of weights
bouncing back during iteration in the FolkRank algorithm.

Second, we modified the formulation of preference vec-
tors. Intuitively filling the preference vector with zeros ex-
cept for the target query tag and the user does not reflect
completely the user interest in Folksonomies. Using the dis-
ambiguated ontology of tags, after matching it against the
user profile we were able to formulate the preference vec-
tor which reflected the user’s interest in Folksonomies more
accurately.

Finding Unambiguous Tags Ontology

One of the main obstacles for effective information retrieval
is the abovementioned problem of tags ambiguity. There are
a lot of tags which have multiple meanings. For example,
“Sicilian” could mean resources with about Sicilian Mafia,
or information about tourist facilities of the Italian island, or
a popular chess opening. In our previous work (Shepitsen
et al. 2008), during the automatic building of ontologies, we
only considered the most popular sense of an ambiguous tag
and ignored all other senses. For instance, “Java” was added
as its most popular sense - as a computer language, and other
meanings (coffee or a geographic location) were discarded.

In this work, we adapted a clustering algorithm called
DSCBC from our previous work in NLP (Tomuro et al.
2007). The DSCBC algorithm is shown in Algorithm 1.
By using DSCBC, we can identify ambiguous tags as those
which belong to more than one cluster/committee. Note that
the algorithm contains several parameters, some of which
control the tightness of a cluster (i.e., within-cluster simi-
larity) and the distinctness of a cluster (i.e., between-cluster
similarity). Those parameter values were were found empir-
ically during the test runs of our experiment.



Input: Set of tags t ∈ T. Tuning coefficients:
n - number of the most similar tags chosen for the target
tag
q - number of features for finding the centroid
sim - the similarity threshold for adding tags to
committees
Output: Set of tags t ∈ T with reference of each ti to

list of Committees to which ti belongs
Phase I. Finding set of clusters L
foreach ti ∈ T do

Select a set k of n most similar tj : i 6= j
add k into L, if it is not already in L.

end
Phase II. Find Communities C
foreach c ∈ C do

Find the centroid of c using only q features shared
by most of tags in the cluster
Add c in L if its similarity to every cluster is lower
than s

end
Phase III. Assign tags to committees C
foreach t ∈ T do

Add t to set cluster C if the similarity is higher than
sim

end

Algorithm 1: Clustering tags using DSCBC

Modified Agglomerative Hierarchical Clustering
for Building Tag Ontology

In our previous work, we used a standard hierarchical ag-
glomerative clustering algorithm for building the ontolog-
ical tree. However, although we were able to improve a
personalized search for resources for a given tag using the
ontology, the derived structure did not resemble a standard
ontology such as Y ahoo (www.yahoo.com) or Open Direc-
tory Project (www.dmoz.org).

To construct an ontology which better matches human in-
tuitions, we first applied the DSCBC algorithm to the tags
and derived a set of committees. Here, the committees
are essentially representatives (or centroids) of the (disam-
biguated) ontological concepts. Then we assigned each tag
to committees. An ambiguous tag belongs to more than one
committee. Then we built an disambiguated ontology by
a modified Hierarchical Agglomerative clustering approach.
We first compute a pair-wise similarity between any two tags
and sort those pairs according to the similarity values. Then
initially we join the most similar pair and create a cluster.
Afterwards, we iterate through the whole collection and sub-
stitute all the instances of joined members (if they are not
ambiguous) by the obtained cluster and repeat the process
until the list of pairs is empty. When we process an am-
biguous tag, we first find its “core meaning” by finding the
committee to which the tag is most similar, then remove all
(non-zero) features (resources) that are encoded in commit-
tee from all instances left in the dataset. With this approach,
we can cover all senses of an ambiguous tag, for all such
tags, during ontology generation. For example, an ambigu-
ous tag “NLP” could be first added to the ontology with

Neuro-linguistic programming (as its first sense), then later
with resources related to Natural Language Processing.

Search in Folksonomies using Ontology

After the ontology is constructed, we search in the ontology
for the query tag entered by a specific user. We first match
the tree with the user’s profile and derive a score distribution
for the nodes in the tree which reflects the user’s general in-
terest. To do so, we use the tags in the user’s profile as initial
activation points, then spread the activation up and down the
ontology tree. Initially all nodes’ interest scores are set to
zeros. Then for each tag in the profile, we first add one to
the interest score of the node which the tag belongs to in the
tree. To spread activation from a given node, we use two
parameters: decay factor, which determines the amount of
the interest to be transfered to the parent/child of the current
node; and damping threshold - if the interest score becomes
less than this value we stop further iteration. The final score
of a node may become more than one as a result of spread-
ing activation when there are tags in the user profile that are
close to each other in the nodes in the ontology tree. The
resulting score distribution of the tree is effectively person-
alized to the user’s interest.

Using this personalized ontology, we search the tree for
a query tag (of this user). In the same way as the tags in
the profile, we spread activation over the ontology from the
node to which the tag belongs to, but this time we add a
weight to emphasize the relative importance of the query tag
compared to the tags from the profile. In the experiment, we
used 3.5 and 1.8 for Delicious and Last.fm respectively. The
resulting scores of the ontology nodes are collected in a vec-
tor, which makes the preference vector for the user for the
query tag. Finally, we feed the preference vector to the mod-
ified FolkRank algorithm and get the ranked list of resources
with their relevance scores.

Experimental results
We evaluated our modified FolkRank algorithm using data
from two real collaborative tagging systems. The first one
is Delicious where users annotate web pages. The dataset
contains 29,918 users, 6,403,442 resources and 1,035,177
tags. There are 47,184,492 annotations with one user, re-
source and tag. We randomly picked 10% of users with all
their tags and resources. The test dataset consists of 2900
users 113,443 tags and 583,137 resources.

We also tested our algorithm on the data from Last.fm,
where users assign tags for musical resources: songs, al-
bums and artists. From the Last.mm dataset, we randomly
chose 2,900 users which used 37,913 tags for 261,123 media
resources.

As a basis for comparison we used ranking based on pure
vector space model, the original FolkRank algorithm with
binary preference vector. In addition, we used tag clusters
generated by DSCBC without building an ontology - if the
target tag belongs to a committee, all members of the com-
mittee get a 1 in the preference vector. If the target tag be-
longs to several committees, we increase the weight only for
the cluster with the highest user interest. For each commit-
tee, c, the user’s interest is calculated as the ratio of times the



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

TopN

F
-v

a
lu

e
Ranking with Ontological
Preference Vector

Ranking with Preference
Vector formulated with
DSCBC committees

Ranking with Binary
Preference Vector

Ranking with Vector
Space Model

Figure 1: F-values for Delicious Social Tagging System

0

0.05

0.1

0.15

0.2

0.25

0.3

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

TopN

F
-v

a
lu

e

Ranking with Ontological
Preference Vector

Ranking with Preference
Vector formulated with
DSCBC committees

Ranking with Binary
Preference Vector

Ranking with Vector
Space Model

Figure 2: F-values for Last.fm Social Tagging System

user, u, annotated a resource with a tag from that committee
over the total number of annotations by that user. We used
the “leave one out” method to generate a test dataset. For
every test user, we remove one tag and all resources associ-
ated with that tag. The list of resources was our relevant set,
which we try to predict using the modified FolkRank algo-
rithm. Then the target tag was used as a query to the search
engine and a list of returned resources was used like returned
set. As the measure of effectiveness, we computed F-values
for both datasets. The F-value is defined as standard:

F =
2 · Precision · Recall

Precision+Recall
(3)

The results of the experiments are shown in Figures 1 and
2. All of the tuning coefficients were set to those that yielded
the highest recall during our preliminary test runs. We also
used 5-fold cross validation where, in each fold/iteration,
80% of the data was used for building ontology and the re-
maining 20% was used in testing. The final recall and preci-
sion values were calculated as the average over 5 iterations.

The results showed that, for both datasets, the modified
FolkRank algorithm with ontologically generated preference
vector outperformed the vector space model and FolkRank
original algorithm. In addition, it also showed better results
compared to the version where preference vectors were ob-
tained by using only the DSCBC committees. The results
showed the effectiveness of using disambiguated ontologies
for reflecting the users’ information needs in Folksonomies.

Conclusions and Future Work

In this paper, we developed a modified hierarchical agglom-
erative clustering algorithm which uses the DSCBC algo-

rithm to construct a disambiguated ontology from ambigu-
ous tags. The obtained ontology, after matching with the
user profile, effectively reflects the users’ information needs.
Our results showed ranking much more relevant to the users’
interest compared to the vector space model and the standard
binary preference vector formulation technique.

For future work, we plan to investigate ways to tune the
parameters in the DSCBC algorithm to improve the quality
of the derived committees. Another important topic of future
research is to build a more complete ontology with various
relations between tags, in addition to the hierarchical rela-
tion. We anticipate that the incorporation of other relations
would enhance the current system by generating preference
vectors which reflect the users’ preferences even better.

References

Banerjee, S., and Pedersen, T. 2002. An Adapted Lesk Al-
gorithm for Word Sense Disambiguation Using WordNet.
Lecture Notes in Computer Science, 136–145.

Hotho, A.; Jaschke, R.; Schmitz, C.; and Stumme, G.
2006a. Folkrank: A ranking algorithm for folksonomies.
Proc. FGIR 2006.

Hotho, A.; Jaschke, R.; Schmitz, C.; and Stumme, G.
2006b. Information retrieval in folksonomies: Search and
ranking. The Semantic Web: Research and Applications
4011:411–426.

Mihalcea, R., and Moldovan, D. 2000. Semantic indexing
using WordNet senses. In Proceedings of ACL Workshop
on IR & NLP, 35–45.

Mika, P. 2007. Ontologies are us: A unified model of social
networks and semantics. Web Semantics: Science, Services
and Agents on the World Wide Web 5(1):5–15.

Miller, G. 1995. WordNet: a lexical database for English.
Communications of the ACM 38(11):39–41.

Moldovan, D., and Mihalcea, R. 2000. Using WordNet
and lexical operators to improve Internet searches. Internet
Computing, IEEE 4(1):34–43.

Salton, G., and Buckley, C. 1988. Term-weighting ap-
proaches in automatic text retrieval. Information Process-
ing and Management: an International Journal 24(5):513–
523.

Sanderson, M., and Croft, B. 1999. Deriving concept hi-
erarchies from text. In In Proceedings of the 22nd annual
international ACM SIGIR conference on Research and De-
velopment in Information Retrieval, 206–213.

Shepitsen, A., Gemmell, J., Mobasher, B. and Burke, R.
2008. Personalized recommendation in social tagging sys-
tems using hierarchical clustering. In Proceedings of the
2008 ACM conference on Recommender systems, 259–266.
ACM New York, NY, USA.

Tomuro, N., Lytinen, S., Kanzaki, K. and Isahara, H. 2007.
Clustering Using Feature Domain Similarity to Discover
Word Senses for Adjectives. In Proceedings of the 1st
IEEE International Conference on Semantic Computing
(ICSC 2007), 370–377.


