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Abstract

This paper presents a new clustering al-
gorithm called DSCBC which is designed
to automatically discover word senses for
polysemous words. DSCBC is an ex-
tension of CBC (Pantel and Lin, 2002),
and incorporates feature domain similar-
ity: the similarity between the features
themselves, obtained a priori from sources
external to the dataset. By incorporating
the feature domain similarity in cluster-
ing, DSCBC produces monosemous clus-
ters (a cluster in one domain), thereby dis-
covering individual senses of polysemous
words. For evaluation, we apply the algo-
rithm to Japanese and English adjectives,
and compare the derived senses against
manually created lexicons. The results
show significant improvements over other
clustering algorithms including CBC.

1 Introduction

Automatic acquisition of word senses from cor-
pora has been an active topic of research in Nat-
ural Language Processing (NLP). Most conven-
tional thesauri are manually compiled by lexicog-
raphers, therefore often contain inconsistencies.
Word senses are also sometimes too fine-grained
or specific, and not based on the common usage of
the language, as frequently pointed out for Word-
Net (Miller, 1990). A better approach is to auto-
matically derive word meanings from real data.

In the NLP research, many techniques have
been developed which discover word senses or se-
mantic classes from corpora (e.g. (Hindle, 1990;
Lin and Pantel, 2001)). However, most of them
have focused on nouns, which are largely monose-
mous, so the applicability of those techniques to
polysemous words such as verbs and adjectives
is unknown. Walde (2006) and Boleda et al.

(2004) present clustering experiments which au-
tomatically derive semantic classes for German
verbs and Catalan adjectives respectively. How-
ever, they both use standard clustering methods
(such as K-means) only, and no attempt is made
to develop new techniques tailored to polysemous
words.

Pantel and Lin (2002) develop a clustering algo-
rithm called CBC (Clustering By Committee), and
report a superior performance of CBC over other
clustering algorithms in discovering word senses
from texts. However, their results are shown again
mostly for nouns, and in fact, the algorithm does
not include any special considerations to avoid
generating polysemous clusters: a cluster in which
several word meanings are mixed in. The problem
of polysemous clusters also exists in other cluster-
ing algorithms when data contains many polyse-
mous words. Indeed, some of the semantic classes
derived in (Walde, 2006) are polysemous clusters.

In this paper, we present a new clustering al-
gorithm called DSCBC, which is specifically de-
signed to automatically discover senses of polyse-
mous words (but works for monosemous words as
well). DSCBC is an extension of CBC, and incor-
porates feature domain similarity: a prior knowl-
edge about the similarity between features them-
selves. For example, if data instances x and y are
represented by features f 1 and f 2, the feature do-
main similarity refers to the similarity between f 1
and f 2 (not between x and y). Feature domain sim-
ilarity is obtained a priori from sources external
to the dataset(s) used at hand. By incorporating
the feature domain similarity in clustering, we are
able to group data instances which have features
in the same or similar domain, thereby producing
monosemous clusters.

To test the effectiveness of DSCBC, we apply
the algorithm to Japanese and English adjectives.
In this work, we use abstract nouns as the fea-
tures to represent adjectives. From a large cor-



pus, we collect many instances where adjectives
modify abstract nouns (e.g. “happy feeling”) and
construct a dataset for each language. Then af-
ter applying the algorithm, we compare the au-
tomatically derived word senses against manu-
ally created lexicons (Daijirin for Japanese and
WordNet for English). The results show signifi-
cant improvements by DSCBC over other cluster-
ing algorithms in discovering polysemous adjec-
tive senses.

2 Semantic Categories of Adjectives

In linguistics, there is a large body of work on ad-
jectives. However, the attention they have received
is much less than that for nouns and verbs. Like-
wise in NLP, there exist little other works which
tackled adjectives specifically. Adjectives are usu-
ally considered in the context of nouns which they
modify, and thought to add only auxiliary infor-
mation to the nouns. Moreover, adjectives are gen-
erally difficult to incorporate in NLP applications
because of their polysemous nature: not only do
adjectives change or shift meanings depending on
the nouns they modify (e.g. “warm temperature”
vs. “warm person”), they are often used metaphor-
ically (e.g. “dark conversation” – a discussion on
grim topics, or to talk pessimistically). Most of
the recent work on adjectives in NLP has focused
either on specific applications (e.g. classifying
documents according to subjectivity or sentiment
(Wiebe, 2000)), or on specific types of adjectives
(e.g. event adjectives (Lapata, 2001) and gradable
adjectives (Hatzivassiloglou and Wiebe, 2000)).

Traditionally, meanings of a polysemous word
are enumerated in dictionaries. For example,
WordNet lists ten senses for “warm”. Distinguish-
ing different senses of polysemous words is a dif-
ficult problem for any part of speech. However for
adjectives, salient homonym-level meanings are
distinguishable based on the domains of the co-
occurring nouns (Justeson and Katz, 1995).

Note that the premise of sense enumerability
can be argued. Notably, Pustejovsky (1995) pro-
poses a generative view of adjectival meanings:
meanings of adjectives are fundamentally indiffer-
entiable, and a specific meaning is generated (by
coercion) when an adjective is combined with a
noun in the context. However, knowing the spe-
cific meaning of an adjective in the given context
would greatly help the understanding of the sen-
tence in NLP tasks and applications, such as in-

formation extraction and question-answering. Our
work in this paper aims to acquire such specific
adjectival meanings that arise in the context as ab-
stract semantic categories or classes of adjectives,
automatically from corpora. Then the derived se-
mantic adjectival categories can be used in con-
structing lexicons as well as investigating the pol-
ysemy of adjectives linguistically.

3 Datasets

In this work, we use abstract nouns as the fea-
tures to represent adjectives, such as “gentle
personality” (as versus concrete nouns such as
“gentle goats”). Previous studies in linguistics
have shown that, when an abstract noun is mod-
ified by an adjective, it often correlates with the
semantic class of the adjective (e.g. “gentle” as a
personality adjective) (Takahashi, 1975). There-
fore, abstract nouns provide the meanings of ad-
jectives literally and immediately, while with con-
crete nouns, the meanings must be inferred.

In the current work, we applied our sense dis-
covery algorithm to two datasets. The first dataset
is Japanese, extracted from a large volume of
Japanese newspaper articles, and containing a
large number of examples of adjectives with co-
occurring abstract nouns. This dataset was pre-
viously used in (Kanzaki et al., 2004). From the
original dataset, we randomly selected 1500 in-
stances/adjectives to create the dataset. The num-
ber of co-occurring nouns/features was 361.

The second dataset is English, extracted from
the Web n-gram corpus created by Google Inc.
(Brants and Franz, 2006). This corpus contains
English word n-grams (uni-grams to five-grams)
and their frequency counts obtained from pub-
licly accessible Web pages containing approxi-
mately 1 trillion word tokens. To extract adjec-
tives co-occurring with abstract nouns, we first
translated the nouns used in the Japanese dataset
into English, and obtained a set of 277 English ab-
stract nouns.1 Then we extracted instances of the
forms ’Adj AbN’ and ’AbN BE Adj’ (where BE

stands for a copula verb, for instance “nature is
gentle”) from the bi-grams and tri-grams respec-
tively.2 Note that, although neither pattern guaran-

1Since there were several cases where two or more
Japanese nouns corresponded to the same English noun (and
less number of cases the other way around), the number of
the English nouns was less than that of the Japanese nouns.

2The part of speech for Adj was checked against WordNet
– we extracted instances where the word at the respective Adj



tees the matched AbN is truly the noun which the
Adj modifies, no outstanding spurious instances
were observed. There were over 15000 adjec-
tives which co-occurred with the selected abstract
nouns in the corpus. Then we randomly selected
1500 of them to create the dataset.

Besides language, the two datasets have a
marked difference: the Japanese dataset is rela-
tively sparse, while the English dataset is very
dense. This is probably because newspapers use
adjectives less than other genres, while web pages
include a variety of genres and authorship.

For both datasets, we represented each adjec-
tive by a feature vector, where a feature was an
abstract noun co-occurred with the adjective. The
value was the Mutual Information (MI) computed
from the frequency counts in the respective cor-
pus.3 The MI between two words x and y, denoted
I(x,y), is defined as:

I(x,y) = log
p(x,y)

p(x)p(y)

where p(z) is the probability of a word z, and
p(x,y) is the joint probability of x co-occurred
with y. MI indicates the mutual dependence be-
tween two random variables, where I(x,y) = 0 if
x and y are independent, or a positive value oth-
erwise. In our case, I(x,y) essentially indicates
how well a feature noun predicts (or is correlated
with) a given adjective. MI has been often used
in NLP as a way to put weights on feature values
(e.g. (Hindle, 1990)).

4 Clustering By Committee (CBC)
Clustering

Our sense discovery algorithm is an extension of
Clustering By Committee (CBC) Clustering (Pan-
tel and Lin, 2002). We introduce CBC and dis-
cuss its limitations in this section, then describe
the modifications we made to CBC to derive our
algorithm in the next section.

4.1 The CBC Algorithm

CBC is an unsupervised clustering algorithm
which automatically derives a set of committees.
A committee is a cluster of words which are very

position is recorded as an adjective in WordNet.
3Actually for the English data, we took the log of base 10

of the frequency counts, since the values were significantly
higher and their range was much wider than the Japanese
dataset.

Phase I: Find clusters.
Let L be a list of clusters, initially empty.
For each word w ∈W in the dataset,

Select a set c of at most n words from W
which are the most similar to w, and
add c to L if it is not already in L.

Sort L in the descending order of the scores of
the clusters.(1)

Phase II: Find committees.
Let C be a list of committees, initially empty.
For each cluster c ∈ L (in the sorted order),

Compute the centroid of c.(2)

If it is not similar to any other committee
in C, add c to C.

Phase III: Assign words to committees.
For each word w ∈W ,

Select all committees in C whose centroids
are similar to w.

Figure 1: The CBC Algorithm

similar to each other – similar in notion to a syn-
onym set (synset). As with synset, each committee
corresponds to a word sense. In CBC, a committee
is represented by the centroid vector of the word
vectors which comprise the cluster. The algorithm
automatically derives committees by first finding a
tight cluster of words which are similar to a given
word, for every word in the dataset, then select-
ing a subset of the derived clusters whose centroid
vectors are dissimilar/orthogonal to each other as
committees. After obtaining the committees, CBC
discovers the senses of a word by assigning the
word to its most similar committees – all commit-
tees with which the similarity is above a threshold,
and removing the features of the selected commit-
tees from the word as they are selected.

Figure 1 shows the overall steps of the CBC
algorithm. A cluster found in Phase I is tight in
that it consists of at most n similar words (where
n = 10 is used in (Pantel and Lin, 2002)). Then,
clusters are selected into the set of committees
in the descending order of their scores (indicated
with (1) in the algorithm). This way, CBC guaran-
tees that only the tight clusters which are also well
scattered in the feature space are selected as com-
mittees. The score of a cluster c is computed as
|c|× avgsim(c), where |c| is the number of words
in c, and avgsim(c) is the average pairwise similar-
ity between the words in c. Note that throughout



the CBC algorithm, the cosine coefficient (Salton
and McGill, 1983) is used to measure the similar-
ity between vectors, and MI is used to compute the
values in the word vectors.

4.2 Limitations of CBC

Pantel and Lin (2002) applied this CBC algorithm
to a large corpus (a parsed TREC collection), and
reported its superior performance over other stan-
dard clustering algorithms as well as their prede-
cessor algorithm called UNICON (Lin and Pantel,
2001). However, one problem with CBC is that it
does not work well for polysemous words despite
its claimed utility. The reason is because the algo-
rithm uses the centroid to represent a committee
(indicated with (2) in the algorithm). Consider the
adjectives “warm” and “cold”. These words have
similar sense patterns, in particular, they both have
the senses of temperature and personality. Many
other adjectives which elaborate temperature such
as “cool” have those two meanings as well – the
pattern of temperature-personality is rather regu-
lar in adjectives (i.e., systematic polysemy (Puste-
jovsky, 1995)). Since their word vectors are simi-
lar, they are most likely grouped in the same clus-
ter. And if this cluster is selected as a committee
(where the algorithm has no mechanisms besides
cosine to prevent it), the committee centroid will
end up having both senses, thus failing to separate
the two individual senses.

For CBC to produce monosemous commit-
tees, either the data contains mostly monosemous
words, or sense patterns of the polysemous words
in the data are not regular so that they won’t consti-
tute tight clusters. In the case of adjectives, words
are highly polysemous,4 and there are many pat-
terns of polysemous senses that are regular.

The problem of polysemous clusters also arises
in other clustering algorithms when the data con-
tained many polysemous words. The problem will
happen in other methods besides clustering in the
same way as well. For example, Principal Compo-
nent Analysis (PCA) finds a set of principal com-
ponents (linear combinations of features) which
account for the variance in the data. Principal
components are orthogonal to each other, and in
that sense, CBC has the same objective as PCA.
However again, features involved in the regular

4In WordNet, the proportion of polysemous words is 31%
for adjectives, as compared to 16% for nouns. In our English
dataset, 723 (= 48%) of the 1500 adjectives had more than
one sense in WordNet.

polysemy patterns of the polysemous words are
grouped into the same principal component, re-
sulting in a heterogeneous, polysemous compo-
nent in PCA.

5 Domain Similarity CBC (DSCBC)
Clustering for Polysemous Words

5.1 Feature Domain Similarity

To overcome the polysemous cluster problem dis-
cussed above, we developed a new metric which
measures the similarity between the features them-
selves, which we call the Feature Domain Simi-
larity. This is the primary characteristics and the
contribution of our algorithm.

Consider the following data:

a b c d
x: 1 1 0 0
y: 1 0 1 0
z: 1 0 0 1

where x, y, z are data instances, and a, b, c, d are
features. In most clustering algorithms, features
are assumed to be independent to each other, or
their dependencies are ignored. So in the exam-
ple, x is equally likely clustered with y or z, be-
cause the similarity between x and y, and x and
z are the same (based on the Euclidean distance,
for example). However if we have a priori, gen-
eral knowledge about the features that b’s domain
is more similar to that of c than to d, it is bet-
ter to cluster x and y instead of x and z, because
the {x,y} cluster is “tighter” than the {x,z} cluster
with respect to the domains of the features.

Feature domain similarity can be obtained from
any linguistic resources (but should be external to
the dataset(s) to be used in the experiments). For
Japanese, we used the case frame data extracted
automatically from the Web (Kawahara and Kuro-
hashi, 2006). In our work, features are abstract
nouns. So for each abstract noun (e.g. kimochi
“feeling”), words which appeared in various case
frame relations with the noun (largely verbs and
adjectives, e.g. kimochi ni naru “come to bear
feeling”, kimochi wo tsutaeru “convey feeling”)
were used to represent the noun.5 Then the co-
sine coefficient was used to compute the similarity
between the nouns. For English, we used javasim-
lib:6 a Java-based tool which computes the simi-
larity between words (or synsets) over the Word-

5http://reed.kuee.kyoto-u.ac.jp/cf-search/
6http://wordnet.princeton.edu/links#extensions



Net hierarchies based on an information theoretic
metric (Seco et al., 2004). Given two words or
synsets, javasimlib returns a value between 0 and
1, where 1 indicates the highest similarity. For
each noun, we considered the top (at most) two
senses in the calculation in order to avoid spuri-
ous results arising from rare or unimportant senses
encoded in WordNet. Then we defined the simi-
larity between two nouns as the maximum value
between their top two senses, that is,

f dsim(a,b) = arg max
i, j∈{1,2}

jsim(a#i,b# j)

where a, b are nouns, f dsim(a,b) denotes the fea-
ture domain similarity between a and b, a#i is the
ith sense of a, and jsim(x,y) is the similarity be-
tween two synsets x and y returned by javasimlib.
Then for each dataset, we computed all pairwise
similarities between the nouns/features and stored
them in a matrix.

Next, we defined a notion of domain tightness
for a single word vector. This metric indicates how
“tight” the vector is with respect to the domains of
its features (i.e., the degree of monosemy). For
a given word vector v, the domain tightness of v,
denoted dt(v), is define as:

dt(v) =
1
n ∑

a,b∈F ;a6=b

v(a)+ v(b)
2

f dsim(a,b)

where F is the set of features used to represent
v, v(x) is the value in v for the feature x ∈ F ,
f dsim(a,b) is the feature domain similarity be-
tween a and b described above, and n is the num-
ber of pairwise combinations of the features in F
where their feature-values are greater than zero
(i.e., n = count(〈a,b〉 : v(a) > 0 and v(b) > 0)).
Thus it is the average feature domain similarity be-
tween two non-zero features in v, weighted by the
average of the two feature-values.

Finally, we defined a new similarity metric be-
tween two word vectors that incorporates the fea-
ture domain similarity, which we call dsSim, as
follows. For given word vector v1 and v2, the sim-
ilarity between them, denoted dsSim(v1,v2) is:

dsSim(v1,v2) = w0 × cos(v1,v2)+w1 ×dt(v3)

where cos(v1,v2) is the cosine between v1 and v2,
v3 is a vector in which v1 and v2 are merged (i.e.,
v3 = v1 + v2), and w0,w1 are weights which sum
up to 1. We used w0 = 0.95 and w1 = 0.05 in

our experiments. This new measure is essentially
based on cosine, added with the domain tightness
of the merged vector. We looked at the merged
vector, because a cluster centroid is a vector in
which all member word vectors are merged (and
averaged), and that’s precisely what we wanted to
improve upon CBC – the domain tightness of the
cluster/committee centroids.

5.2 The DSCBC Algorithm

In addition to feature domain similarity, we also
incorporated a few more ideas which may help de-
rive monosemous committees. One idea is to limit
the number of features to be used in the commit-
tee centroids. By taking the top k features, only
the most salient features are kept (which hopefully
are features in one domain), and other insignificant
features are discarded. Another idea is to use only
the features that appeared with the majority of the
words which make up the committee.

Furthermore, we derived the committees incre-
mentally in two steps: first produce committees
from the original dataset, then derive the final set
of committees from those produced in the first
step. This hierarchical scheme is aimed to find the
second or higher-order features (such as those in a
transitive similarity relation).

We present our algorithm named DSCBC (for
Domain Similarity CBC) in Figure 2. Overall,
it applies the (modified) Phase I and II of CBC
twice successively. The modifications to the orig-
inal CBC are: (1’) use the new similarity measure
dsSim instead of cosine to compute the scores of
the derived clusters; and (2’) remove from com-
mittee centroids the features which co-occurred
with less than σ percent of the member words or
which are not in the top k features. All other parts
of the algorithm are unchanged from CBC.

Note that DSCBC may still group “warm” and
“cold” in the same cluster. However, such a cluster
would have a lower dsSim value (hence the clus-
ter score) because the domains of temperature and
personality are not similar themselves, thus is less
likely to be selected as a committee. If it were,
features in less dominant domains (i.e., extended
meanings) are discarded because only the top k
features are retained in the centroid, thereby re-
sulting in a monosemous committee. In this sense,
a DSCBC committee is not equivalent to a synset –
rather, it is a list of features (abstract nouns) which
explicitly describe the semantic domain(s) of the



Step 1: Derive committees from data.
Apply Phase I and II of CBC to the dataset
using:

- dsSim in computing avgsim(c)(1
′)

- the top k features that are also shared by
more than σ percent of the words in the
committee to represent its centroid.(2

′)

Step 2: Derive committees from committees.
Repeat Step 1, but with the committees
derived in Step 1.

Step 3: Assign words to committees.
Apply Phase III of the CBC algorithm to the
dataset using the final set of committees
derived in Step 2.

Figure 2: The DSCBC Algorithm

cluster.
In summary, the key to overcome the polyse-

mous cluster problem is to use externally obtained
information about the similarity/dependency be-
tween features and incorporate the information in
the clustering process.

5.3 Related Work
There are only few other works which attempted
to automatically derive semantic categories of ad-
jectives. Tanaka and Hirai (2001) used Latent Se-
mantic Analysis (LSA) to cluster (Japanese) ad-
jectives. However, they used individual senses of
the adjectives recorded in a dictionary (Kojien) as
the data instances, thus did not deal with the poly-
semy of adjectives.

Hatzivassiloglou and McKeown (1993) cluster
adjectives by their properties or scales. For ex-
ample, a set of adjectives {cold, cool, warm} is
a linguistic scale which indicates a variation in
the intensity of temperature. They extracted in-
stances of adjective-noun pairs from a parsed cor-
pus, and used Kendall’s τ coefficient as the sim-
ilarity measure and a hill-climbing partitive algo-
rithm to cluster the extracted adjectives. However,
their work focuses only on scalar adjectives, and
does not concern groupings which indicate non-
scalar properties (such as personality).

6 Evaluation

To evaluate our algorithm DSCBC, we applied
it to the two datasets described earlier and com-
pared the results with other clustering algorithms,
in particular CBC, a graph-based clustering and K-

means. For the graph and K-means algorithms,
we used a tool called CLUTO.7 Also for those
two algorithms, we made some modifications so
that they do soft-clustering (which assigns an in-
stance to one or more clusters) in order to make
them comparable with CBC and DSCBC. To make
modifications, we closely followed the way de-
scribed in (Pantel and Lin, 2002): first apply the
algorithm to the dataset and obtain clusters, then
apply MK-means (Zhong and Ghosh, 2003) using
the centroids of those clusters as the initial cen-
troids. MK-means is a generalized version of the
standard K-means algorithm, and assigns each in-
stance to one or more clusters with which it has the
similarity greater than a pre-specified threshold.
As with K-means, MK-means performs several it-
erations until a pre-specified number of iterations
is reached. In our experiments, we set the maxi-
mum number of iterations to be 5, as with (Pantel
and Lin, 2002).

Furthermore, since DSCBC is an extension of
CBC with the domain feature similarity, we also
implemented the versions of the graph and K-
means algorithms which extend the base algo-
rithms in the same way. So in all, we compared
a total of six algorithms: DSCBC, CBC, DSGr,
Gr, DSKmeans and Kmeans.

For the parameters in the DS extended algo-
rithms (DSCBC, DSGr, DSKmeans), for the En-
glish dataset, we set k = 10 and 6, and σ = 0.8 and
0.6 in Step 1 and Step 2 respectively. We reduced
k from Step 1 to Step 2 in order to refine the salient
features. For σ , we used somewhat higher values,
especially in Step 1, because the dataset was rel-
atively dense (since word usage is extremely di-
verse in web pages). For the Japanese dataset, we
set k = 6 in both steps, and σ = 0.4 and 0.2 in
Step 1 and Step 2 respectively. We used the same
k and lower σ values because the Japanese dataset
was rather sparse. We decided on those parameter
values based on our intuitions and quick prelimi-
nary inspections; they were not optimized for any
specific algorithm tested.

6.1 Derived Committees

First we examined the committees derived by
the algorithms. Table 1 shows some statis-
tics. DSCBC produced 38 committees for both
datasets (coincidentally), while CBC produced 35
and 50 committees for the Japanese and English

7http://glaros.dtc.umn.edu/gkhome/views/cluto



Table 1: Some Committee Statistics

Total Ave Ave Ave
# # Domain Cosine

comm. feat. Tightness
(p-value) (p-value)

Japanese
DSCBC 38 5.7 0.172 (–) 0.026 (–)
CBC 35 5.8 0.138 (*) 0.025 (0.447)
DSGr 38 6.0 0.153 (0.08) 0.069 (*)
Gr 35 6.0 0.154 (0.09) 0.056 (*)
DSKmeans 38 6.0 0.146 (*) 0.044 (*)
Kmeans 35 6.0 0.142 (*) 0.037 (*)
English
DSCBC 38 3.3 0.470 (–) 0.010 (–)
CBC 50 4.9 0.196 (*) 0.012 (0.18)
DSGr 38 6.0 0.224 (*) 0.018 (*)
Gr 50 6.0 0.221 (*) 0.022 (*)
DSKmeans 38 6.0 0.209 (*) 0.012 (0.20)
Kmeans 50 6.0 0.198 (*) 0.011 (0.37)

dataset respectively. Other DS algorithms (DSGr
and DSKmeans) and non-DS algorithms (Gr and
Kmeans) were pre-specified to produce the same
number of committees as DSCBC and CBC re-
spectively. The average number of (non-zero) fea-
tures was 5.7 and 3.3 by DSCBC, and 5.8 and 4.9
by CBC, for Japanese and English respectively.
For all other algorithms, the average number of
features was 6 (= k, as described in section 5.2).

The column “Ave Domain Tightness” indicates
the average domain tightness (dt) of the commit-
tees derived by each algorithm. Here, a higher
value means the feature domain similarity of the
committees are overall more similar, therefore the
committees are less polysemous. As you can see,
DSCBC showed the highest tightness (0.172 and
0.470 respectively). The results by all other algo-
rithms, including other DS algorithms, were much
lower than DSCBC, and the differences were sta-
tistically significant, as evidenced by the p-values8

(where a symbol (*) indicates < 0.05). As a note,
the domain tightness was in general much lower
for the Japanese dataset. It is probably due to
the difference in the sources used to compute the
feature domain similarity – for Japanese, the case
frame relations were collected from the Web and
the words were not disambiguated, so the data is
somewhat noisy, whereas for English we used the
first two senses of a word in javasimlib.

The column “Ave Cosine” indicates the aver-
age pairwise cosine between the committees for

8The p-values shown in Table 1 are obtained by one-sided
t-tests against DSCBC.

Japanese
{shinjo “feeling”, kimochi “feeling”, kibun “mood”,

kanjo “emotion”, omoi “feeling”}
{imiai “meaning”, shikisai “tint”, imi “meaning”,

sokumen “side”, men “side”}
{kibo “scale”, gaku “amount”, ryo “volume”,

kazu “quantity”, aida “interval”, deido “degree”}
{kuuki “air”, kikou “climate”, tenki “weather”,

seikaku “personality”, imeji “image”}
English

{smell, aroma}
{appearance, look}
{quantity, amount, number}
{attitude, countenance, nature}
{day, shade, room, light, face, color}

Figure 3: Example DSCBC Committees

each algorithm. Here, a lower value means the
committees are dissimilar to each other, thus scat-
tered well in the feature space. The result shows
that DSCBC had the lowest value, although the
differences were not statistically significant in
some cases. As for the graph and K-means al-
gorithms, the graph in general seems to produce
more monosemous but more correlated clusters
than K-means, as observed for both datasets.

Figure 3 shows some example committees de-
rived by DSCBC for both datasets. Most of the
committees seem to pick out a single semantic
domain fairly well, but some are still polyse-
mous clusters. For example, {kuuki “air”, kikou
“climate”, tenki “weather”, seikaku “personal-
ity”, imeji “image”} in Japanese is a mixture of
weather and personality (as we have been using as
an example in this paper). Similarly, {day, shade,
room, light, face, color} in English seems to
group different domains – probably caused by the
polysemy of color or luminance adjectives such as
“bright” and “dark”.

6.2 Assigned Word Senses
Next we inspected the senses/committees assigned
to words. For each word, the algorithms assign
one or more committees. Here, each committee
should correspond to a sense of the word. Figure 4
shows some examples of the assigned senses by
DSCBC. To determine whether or not a committee
indeed corresponds to a correct sense of a word,
we compared it against the sense encoded in man-
ually created lexicons as gold standards: Daijirin9

for Japanese, and WordNet for English. Then the
evaluation was measured with respect to precision
and recall.

9The web version available at http://dictionary.goo.ne.jp/



Japanese
atatakai “warm”

{kuuki “air”, kikou “climate”, tenki “weather”,
seikaku “character”, imeji “image”}
{hitogara “personality”, seishitsu “nature”,

monogoshi “manner”}
yawarakai “soft”

{kankaku “sensation”, kanshoku “touch”,
aji “taste”, yosa “merit”}
{hitogara “personality”, seishitsu “nature”,

monogoshi “manner”}
hiroi “wide”

{kibo “scale”, gaku “amount”, ryo “volume”,
kazu “quantity”, aida “interval”, deido “degree”}
{shiya “view”, kenchi “viewpoint”,

kanten “viewpoint”, kakudo “angle”}
English
“cold”

{complexion, color, face}
{attitude, countenance, nature}

“democratic”
{framework, concept, approach, idea, model}
{tendency, view, nature}

Figure 4: Example Sense Assignments by DSCBC

6.2.1 The English Dataset
For the English dataset, we first looked up each

of the 1500 adjectives in the dataset in WordNet
and obtained its senses/synsets. Then for each
synset, we mapped it to its related noun so that
we can utilize the WordNet noun hierarchy to
compute the similarity/correspondence.10 For a
given synset, we traversed the attribute relation
encoded in WordNet, for example, “warm#1” →
“temperature#1”. If the attribute relation was not
available, we traversed the derivationally related
form relation, for example, “warm#4” → “warm-
ness#1”. Word senses which are not indicated
with either relation were ignored in the evalua-
tion. The average number of senses (of the 1500
adjectives) which were associated with either rela-
tion was 1.63. Finally, we determined that an au-
tomatically derived committee corresponds to the
mapped noun synset if the average similarity be-
tween the nouns in the committee and the synset
is above a threshold, that is,

1
|c| ∑

f∈F(c)
jsim( f ,s)≥ θ

where c is a committee, f is an abstract noun
in F(c) (the set of (non-zero) features in c), s is
the mapped WordNet noun synset, jsim( f ,s) is
the similarity between f and s obtained through

10In WordNet, adjectives are not organized hierarchically;
instead they are simply categorized into two large groups (de-
scriptive and relational adjectives).

javasimlib, and θ is the threshold. For jsim( f ,s),
the top (at most) two senses were considered for
the feature noun f , and the maximum of the two
values returned by javasimlib ( jsim( f #1,s) and
jsim( f #2,s)) was used.

Then we computed the precision of an adjective
a as the ratio of the correctly assigned committees
of all committees assigned by the algorithm for a.
The precision of an algorithm was the average pre-
cision of all adjectives in the dataset.

The recall of an adjective a, on the other hand,
was computed as the ratio of the correctly discov-
ered senses of all senses encoded in WordNet for
a. This recall actually is a tough measure, because
the coverage of our dataset is much more limited
than WordNet. But we thought this measure could
provide some indication on the coverage of the al-
gorithms and be utilized to rank the algorithms.
The recall of the algorithm was the average recall
of all adjectives in the dataset.

Table 2 shows the precision, recall and F-
measure for the English dataset when θ = 0.25.
The F-measure was computed as standard:

F =
2RP

R+P

where R is the recall, P is the precision. As you
can see, DSCBC produced the highest precision as
well as recall. Also, the DS-extended algorithms
performed considerably better than their non-DS
counterparts for both precision and recall – ver-
ifying the positive effects made by the incorpora-
tion of domain feature similarity. Also notice CBC
showed a better performance over other standard
algorithms (graph and K-means), including their
DS-extended versions. This verifies that CBC is
indeed an effective tool for word sense discovery,
and that using CBC as the base algorithm for ex-
tension in our work was a good choice.

One thing to note about the results is that pre-
cision is overall rather low. The main reason
would be because we only examined a subset of
the WordNet senses. When an assigned sense in-
deed corresponded to a WordNet sense but if it is
not mapped to a noun synset in WordNet, the as-
signed sense ended up having no matches, thus ul-
timately was considered incorrect.

To investigate further, we also inspected the per-
formance of the algorithms with different values of
the threshold θ , since the determination of a cor-
rect assignment is dependent on this value. As θ

is raised, the precision and recall (thus F-measure)



Table 2: Precision, Recall and F-measure for the
English Dataset (when θ = 0.25)

Precision Recall F-measure
DSCBC 0.397 0.397 0.397
CBC 0.304 0.264 0.283
DSGr 0.214 0.251 0.231
Gr 0.192 0.202 0.197
DSKmeans 0.254 0.213 0.232
Kmeans 0.169 0.162 0.166

Figure 5: F-measure for varying θ for the English
Dataset

will decrease, because only the higher correspon-
dence values are considered as correct. Figure 5
shows the F-measure for varying θ for all algo-
rithms. DSCBC has the highest F-measure con-
sistently for all θ by a large margin. The DS al-
gorithms are showing a better performance over
their non-DS counterparts here as well for all θ ,
although the differences (between DSGr and Gr,
and DSKmeans and Kmeans) are not as dramatic
as the difference between DSCBC and CBC.

6.2.2 The Japanese Dataset
For the Japanese dataset, we were unable to do

an automatic evaluation, because word senses in
Daijirin are only enumerated with no particular
organization. Instead, we randomly selected 60
words from the dataset, and manually compared
the committees assigned by the algorithms against
the senses encoded in Daijirin. The average num-
ber of senses of the selected 60 words was 4.05.
For the algorithms, we focused on three algo-
rithms: DSCBC and CBC, plus Gr which showed
the tightest domain feature similarity among the
non-CBC algorithms according to our inspection.

For each algorithm, we manually matched up
the assigned committees to the word senses which
we determined are correct. To judge the correct-

Table 3: Precision, Recall and F-measure for the
Japanese Dataset

Precision Recall F-measure
DSCBC 0.571 0.576 0.574
CBC 0.532 0.440 0.482
Gr 0.590 0.449 0.511

Table 4: Average Ranks by Algorithm for the
Japanese Dataset

Recalled by Recalled by
All 3 Algo. At least 2 Algo.

DSCBC 1.302 1.190
CBC 2.206 1.638
Gr 2.492 1.802

ness, we looked at the top 3 features in a commit-
tee and determined correct if at least one of them
corresponded to the sense based on our linguis-
tic intuitions. Then we computed the precision as
the ratio of the correctly assigned committees over
all assignments (thus each sense assignment was
taken individually). Similarly we computed the
recall as the ratio of the correctly assigned com-
mittees over all word senses listed in the lexicon.
Table 3 shows the results. As you can see, DSCBC
produced the best result for this dataset as well.

To further investigate the quality of the derived
committees, we also ranked the committees as-
signed to the same word sense by the three algo-
rithms. Since not all word senses were discovered
by all three algorithms, we looked at the ones that
were recalled by all three and at least two algo-
rithms. Table 4 shows the average ranks by the
algorithms. Ranks were given in the descending
order (from 1 to 3), so a lower value means a
better correspondence to the lexicon senses. For
both cases, DSCBC had the lowest rank, suggest-
ing that DSCBC’s committees were the closest to
the gold standards. On the other hand, the quality
of the committees derived by Gr is not as good as
DSCBC or CBC – although Gr showed the highest
precision, its ranks were the lowest.

7 Conclusions and Future Work

In this paper, we presented a new algorithm for
discovering word senses for polysemous words,
and showed the improved performance over other
clustering algorithms. By incorporating the fea-
ture domain similarity, the algorithm produces
clusters which are more “tight” with respect to the



domains, that is, more monosemous clusters.
For future work, an immediate task is to do a

more thorough evaluation, manual as well as auto-
matic, including an investigation on exactly which
element(s) in the algorithm contributed the most
to the improved performance. Our preliminary
inspection indicates the feature domain similarity
was the most significant factor. Finally, we would
like to investigate the usefulness of the derived
word senses in practical applications such as word
sense disambiguation and question-answering.
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