Shock Information Extraction system

11/23/2009 Mohammed Alshayeb Sean Neilan Laura Christiansen

Goal of Project:

- Using abstracts of research papers to extract findings reported in biomedical texts.
- Most 'findings' concern causation (e.g. "X caused Y", "X influenced Y").

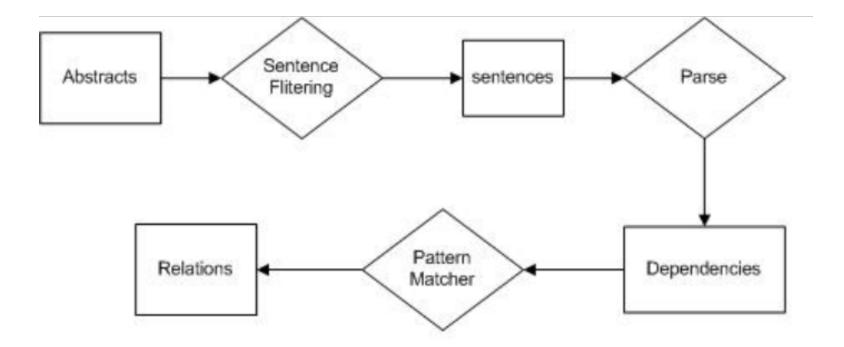
Data Set

- We collected the abstracts submitted to the 2009 conference, pre-processed them by Metamap to extracted the named entities of certain semantic types.
- Semantic types are: 0. Drug/Chemical Compound/Therapeutic Modality
- 1. Molecule
- 2. Cell Type
- 3. Condition
- 4. Experimental Platform

The processing of abstracts by Shock IE System

- Step 1 (Sean): Text is fed into MetaMap. Goal: some of the words in the text should be replaced with named entity categories, plus these named entities' parts of speech.
- Step 1 Alt (Laura): Replace MetaMap with a trainable NER solution, in order to allow for the correction of NER errors.
- Step 2 (Sean & Mohammed): Output from Step 1 is fed into Stanford Dependency Parser (aka Stanford Partial Parser).
- Step 3 (Mohammed): The output of the Stanford Parser will be fed into a pattern matcher or rule-based system. This system will try to match either the sentence structure or the dependencies against patterns to produce a set of propositions expressed by the sentence.

IEShock Chart



Step 1 Alt: Initial Work

- Looked at biomedical NER tools

 AbGene, AllAGMT, GAPSCORE, ABNER
- Modified ABNER source code for Shock Project

 Tested MALLET v1.4 and v2.0
 Created lexical scanner code with JLex
 Added additional orthographic rules for NER
 - Ex: Picking out entities with suffixes -cytes, -cyte, virus, -oid, -mRNA, -ase, -some, and -sis

Step 1 Alt: Testing

- Program can now run as a substitute first step but needs evaluation
- Assign abstracts to n stratified folds
 - Compute entity distribution for abstracts
 - Modified k-means algorithm assigns to folds
- Run n-fold cross validation

 Use ABNER to train and test based on folds
 Calculate and output accuracy results

Sample Prelim Testing Output

RESULTS FOR DATASET OF 10 ABSTRACTS:

Instances of		Instances of DRUG_CHEMICAL_CO	MPOUND_THERAPEUTIC_MO	DALITY:
DRUG_CHEMICAL_COMPOUND_	THERAPEUTIC MODALITY: 174	76		
0.21508034610630408%	- –	0.24281150159744408%		
Instances of CELL TYPE:	108	Instances of CELL_TYPE:	54	
0.1334981458590853%	100	0.17252396166134185%		
Instances of CONDITION:	382	Instances of CONDITION:	148	
0.4721878862793572%	002	0.4728434504792332%		
Instances of GENE:	50	Instances of GENE:	7	
0.06180469715698393%		0.022364217252396165%		
Instances of MOLECULE:	95	Instances of MOLECULE:	28	
0.11742892459826947%	00	0.08945686900958466%		

PRELIM DATA FOR 3 FOLDS (Stratified Cross-Validation)

Fold 1: Abstracts: 0 3 6 Instances of	
DRUG_CHEMICAL_COMPOUN	D_THERAPEUTIC_MODALITY: 53
0.2314410480349345%	
Instances of CELL_TYPE:	20
0.08733624454148471%	
Instances of CONDITION:	119
0.519650655021834%	
Instances of GENE:	26
0.11353711790393013%	
Instances of MOLECULE:	11
0.048034934497816595%	

Fold 3:

Fold 2:

Abstracts: 8 1 7 9

Abstracts: 2 4 5

Instances of DRUG_CHEMICAL_COMPOUND_THERAPEUTIC_MODALITY:

45

0.16853932584269662%	
Instances of CELL_TYPE:	34
0.12734082397003746%	
Instances of CONDITION:	115
0.4307116104868914%	
Instances of GENE:	17
0.06367041198501873%	
Instances of MOLECULE:	56
0.20973782771535582%	

Sample ABNER Tagging

Initial|O studies|B-DRUG_CHEMICAL_COMPOUND_THERAPEUTIC_MODALITY in|O C57BL|O /|O 6|O mic e|O demonstrated|O that|O increasing|O or|O decreasing|O bioavailable|O IGF-I|O within|B-DRUG_CHEMICAL_COMPOUND_THERAPEUTIC_MODALITY muscle|B-CELL_TYPE by|O local|O administration|O of|O either|O Leu24|O Ala31|O IGF-I|O or|O IGF|O binding|O protein|O (|O IGFBP|O)|O -1|O ,|O respectively|O ,|O produced|O pro g.|O ,|O phosphorylation|O of|O 4|O E-BP1|O and|O S6K1|O)|O of|O protein|O synthesis|O . |O

Thus|O,|O muscle-directed|O IGF-I|O attenuates|O the|O sepsisinduced|O atrophic|O response|O apparently|O by|O increasing|O muscle|B-DRUG_CHEMICAL_COMPOUND_THERAPEUTIC_MODALITY protein|B-CONDITION synthesis|I-CONDITION and|O potentially|O decreasing|O proteolysis|O .|O

Sample Final Testing Output

CONFUSION MATRIX for FOLD 0

	DCCTM	CONDITION	CELL_TYPE	MOLECULE	GENE	OTHER
DCCTM	0	1	1	0	0	8
CONDITION	1	0	0	1	0	23
CELL_TYPE	0	1	0	0	1	3
MOLECULE	0	1	0	0	0	0
GENE	0	0	0	0	0	0
OTHER	25	84	25	33	12	830

CONFUSION MATRIX for FOLD 1

	DCCTM	CONDITION	CELL TYPE	MOLECULE	GENE	OTHER
DCCTM	0	0	0	0	0	6
CONDITION	6	1	1	1	0	16
CELL_TYPE	0	0	0	0	0	2
MOLECULE	0	0	0	0	0	1
GENE	0	0	0	0	0	0
OTHER	65	104	26	21	19	651

AVERAGE CONFUSION MATRIX

	DCCTM	CONDITION	CELL TYPE	MOLECULE	GENE	OTHER
DCCTM	0	1	0	0	0	8
CONDITION	2	1	0	0	0	17
CELL_TYPE	0	0	0	0	0	1
MOLECULE	0	0	0	0	0	0
GENE	0	0	0	0	0	0
OTHER	46	91	26	25	12	701

Sentence Filtering

- Find **Conclusion** word, then start filtering sentences.
- Select any sentence has two name entities.
- An interaction word that is a parent of both name Entities in a tree is saved to be used weighting and evaluation of the relations.
- TF implemented but not used.
- Replace pronoun by name entity (manually).

Parsing

- Parse candidates sentences by Stanford Parser and get dependencies.
- Parse single sentence at a time.
- By parsing single sentence, may cause missing relation with next sentence.
- Tree or checking the beginning of next sentence if we have conjunction and next sentence has name entity may solve it.

Pattern Matcher

Relative Frequency	Category	Lexico-Syntactic pattern	Rules
=~40%	Verb	E1 Verb E2 X established Y	nsubj(verb,NE1) dobj(verb,NE2)
=~25%	Infinitive	E1 to verb E2 X plans to acquire Y	xsubj(Verb,NE1) dobj(Verb,NE2)
16%	Verb+Prep	E1 Verb Prep E2 X moved to Y	nsubj(verb,NE1) prep(verb,NE2)
1%	Coordinate(V)	E (and ,) E2 Verb X,Y merge	nn(verb,NE1) oppos(verb,NE2)

meaning of dependencies type: http://nlp.stanford.edu/software/dependencies_manual.pdf

Pattern Matcher

- Same sentence can have more then one rule, which relation to select.
- If we know which rule have strong relation between named entities, we should apply it.
- Two Rules are used:
 - ConnectedRule: verb and matching name entities should be directly connect with a single edge.
 - NearestRule: verb and the matching name entities should be connected to each other, directly or indirectly with n edge hops, in either direction.

Algorithm

inputs: Abstracts tagged with NEs and Domains **outputs:** Binary relations between NEs

foreach: abstract do sentence filtering: foreach: sentence do dependency parsing: -apply Pattern matcher by applying all rules. -save relations end

end

Output

Sentence: Conclusion: These results suggest a role for oxidative stress in the MM-CONDITION/NN/consumption of MM-MOLECULE/NN/fibrinogen during hemorrhagic shock Dependency: nsubj(suggest-5, results-4) -- dobj(suggest-5, role-7) Match: suggest-5(results-4, role-7)

Sentence: Conclusions: These results support the use of PPG waveform analysis as a potential diagnostic tool to detect clinically significant hypovolemia prior to the onset of cardiovascular decompensation Dependency: nsubj(detect-18, use-7) -- dobj(detect-18, hypovolemia-21) Match: detect-18(use-7, hypovolemia-21)

Sentence: cells improve DNA Dependency: nsubj(improve-2, cells-1) -- dobj(improve-2, DNA-3) Match: improve-2(cells-1, DNA-3)

Sentence: John settlement with Jennifer Dependency: dep(John-1, settlement-2) -- prep_with(settlement-2, Jennifer-4) Match: settlement-2(John-1, Jennifer-4)

Sentence: Antibiotic moved to Cell Dependency: nsubj(moved-2, Antibiotic-1) -- prep_to(moved-2, Cell-4) Match: moved-2(Antibiotic-1, Cell-4)

Sentence: Chase,USBank merge Dependency: nn(merge-4, Chase-1) -- appos(merge-4, USBank-3) Match: merge-4(Chase-1, USBank-3)

Sentence: tpck/MM-MOLECULE/NN or L-NAME causes hemorrhagic_shock/MM-CONDITION/NN Dependency: nsubj(causes-4, tpck/MM-MOLECULE/NN-5) -- dobj(case-4,hemorrhagic_shock/MM-CONDITION/NN-7) Match: case-4(tpck/MM-MOLECULE/NN-5, hemorrhagic_shock/MM-CONDITION/NN-7)

Manually correct Metamap output using Djangology for use in Abner

- Metamap annotations aren't correct
 - Need correct annotations to produce a working pattern matcher & make Abner a replacement for Metamap
- To fix this
 - Import Metamap annotations into Djangology
 - Djangology, a web based annotator and annotation comparison tool
 - Manually correct metamap annotations
 - Since Djangology is web based, the task can be split amongst multiple people ;)
 - Automagically export corrected annotations into Abner input format

 Annotations then created by Abner can be continously corrected and used to retrain Abner with Djangology.

• Perhaps make Metamap better?

- May not actually be worth spending time on if
 Djangology makes correcting annotations fast enough.
- Tweak metamap output options? Nah.
- Create a Hidden Markov Model to detect annotation error patterns? Definitely.
 - (Only if making patterns to detect errors after correcting annotations is worth it.)

For everything else, there's Mastercard

• Metamap also incorrectly tags POS's

- POS tags of annotated phrases can be loaded into Djangology from Metamap, quickly corrected and exported into a form readable by the Stanford Parser
- POS tags created by Abner can also be corrected this way too.

More patterns

- Progress in making more patterns is limited by operation of Stanford Parser.
- It takes something like septic_shock/MM-CONDITION/NN and turns it into 3 words: septic_shock, '/' and MM-CONDITION/NN.

 To fix Stanford Parser, one must programmatically mark words as different POS's rather than tacking /NN for something like noun phrase on the end.

 \circ Putting a / between words messes it up.

- septic_shock/MM-CONDITION/NN will become MM-CONDITION and programmatically be known as a noun and be the phrase septic_shock in the pattern matcher.
- Once Stanford Parser is working correctly, will be possible to make more patterns
- Patterns to relations
 - Each pattern by itself doesn't become an outputtable relation.
 - For each pattern, one must write code that makes it a relation

The End