CSC 594 Topics in AI – Applied Natural Language Processing

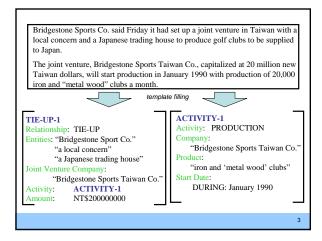
Fall 2009/2010

9. Information Extraction

Information Extraction (IE)

 Identify specific pieces of information (data) in an unstructured or semi-structured text

- Transform unstructured information in a corpus of texts
 or web pages into a structured database (or templates)
- Applied to various types of text, e.g.

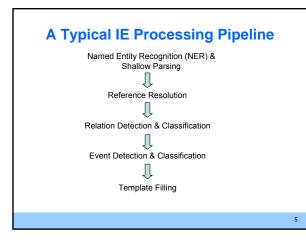


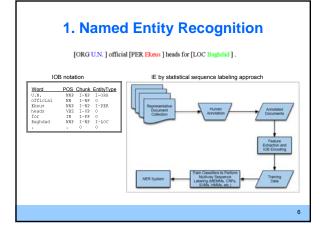
Why Information Extraction (IE)?

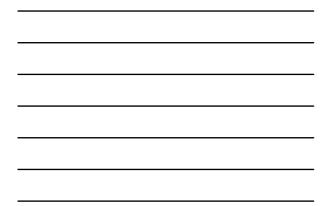
Science

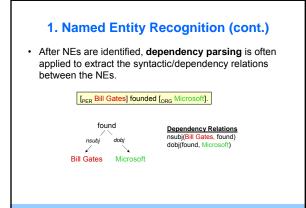
- Grand old dream of AI: Build large knowledge base (KB) and reason with it. IE enables the automatic creation of this KB.
- IE is a complex problem that inspires new advances in machine learning.
- Profit
 - Any companies interested in leveraging data currently "locked in unstructured text on the Web".
 - Not yet a monopolistic winner in this space.
- Fun!
 - Build tools that we researchers like to use ourselves: Cora & CiteSeer, MRQE.com, FAQFinder,...
 - See our work get used by the general public.

Source: Andrew McCallum, UMass Amherst









2. Reference Resolution

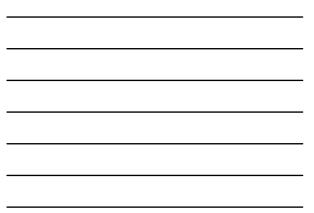
- Two types of references:
 - Anaphora resolution
 - Identify what a pronoun refers to (an entity that appeared earlier in the text) – "he", "she", "it", "they"
 - Co-reference resolution
 Identify what a noun (or noun phrase) refers to

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. Logue, a renowned speech therapist, was summoned to help the King overcome his speech impediment...

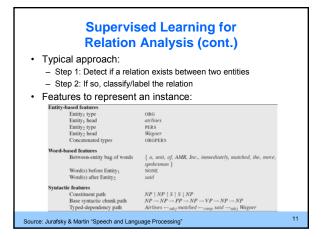
Reference resolution is an important step in IE and a very difficult problem in NLP. However, we don't cover it in this class.

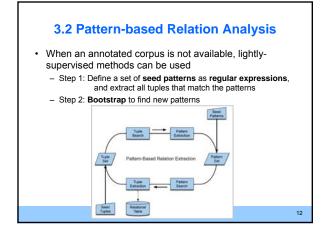
8

3. Relation Detection Identify the semantic relations between named entities • (or domain elements) Relations include: - General relations such as "part-of" and "employs" - Domain-specific relations Semantic relations with examples and the NE types they involve Relations Affiliations Examples Types married to, mother of spokesman for, president of owns, invented, produces $PER \rightarrow PER$ $PER \rightarrow ORG$ $(PER \mid ORG) \rightarrow ART$ Personal nal Artifactual Geospatial near, on outskirts southeast of $LOC \rightarrow LOC$ $LOC \rightarrow LOC$ Proximity Directional Part-Of Organizational a unit of, parent of Political annexed, acquired $ORG \rightarrow ORG$ $GPE \rightarrow GPE$ q Source: Jurafsky & Martin "Speech and Language Processing"

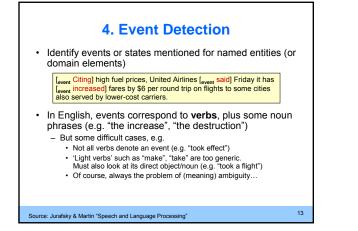


3.1 Supervised Le Relation Ana	-	
Training data:		
 Use a corpus annotated with NEs ar 	d relations	
 An instance indicates two arguments the relation involved 	s, their roles, and the type o	of
Domain	$\mathscr{D} = \{a, b, c, d, e, f, g, h, i\}$	
United, UAL, American Airlines, AMR	a, b, c, d	
Tim Wagner	e	
Chicago, Dallas, Denver, and San Francisco	f,g,h,i	
Classes		
United, UAL, American, and AMR are organizations	$Org = \{a, b, c, d\}$	
Tim Wagner is a person	$Pers = \{e\}$	
Chicago, Dallas, Denver, and San Francisco are places	$Loc = \{f, g, h, i\}$	
Relations		
United is a unit of UAL	$PartOf = \{(a, b), (c, d)\}$	
American is a unit of AMR		
Tim Wagner works for American Airlines	$OrgAff = \{(c, e)\}$	
United serves Chicago, Dallas, Denver, and San Francisco	Serves = { $\langle a, f \rangle$, $\langle a, g \rangle$, $\langle a, h \rangle$, $\langle a, i \rangle$ }	
Source: Jurafsky & Martin "Speech and Language Processing"		









Event Detection (cont.)

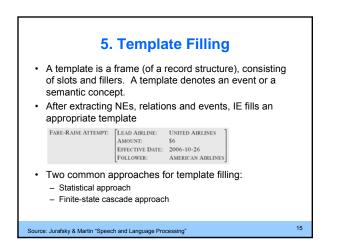
 Both rule-based and statistical ML approaches have been used for event detection

· Features to represent an event instance:

Feature	Explanation
Character affixes	Character-level prefixes and suffixes of target word
Nominalization suffix	Character level suffixes for nominalizations (e.g., -tion)
Part of speech	Part of speech of the target word
Light verb	Binary feature indicating that the target is governed by a light verb
Subject syntactic category	Syntactic category of the subject of the sentence
Morphological stem	Stemmed version of the target word
Verb root	Root form of the verb basis for a nominalization
WordNet hypernyms	Hypernym set for the target

14

Source: Jurafsky & Martin "Speech and Language Processing"



5.1 Statistical Approach to Template Filling

- Again, by using a sequence labeling method:
 - Label sequences of tokens as potential fillers for a particular slot
 - Train separate sequence classifiers for each slot
 - Slots are filled with the text segments identified by each slot's corresponding classifier
 - Resolve multiple labels assigned to the same/overlapping text
 - segment by adding weights (heuristic confidence) to the slots
 - State-of-the-art performance F1-measure of 75 to 98
- However, those methods are shown to be effective only for small, homogenous data.

Source: Jurafsky & Martin "Speech and Language Processing"

5.2 Finite-State Template-Filling Systems

- Message Understanding Conferences (MUC) the genesis of IE
 - DARPA funded significant efforts in IE in the early to mid 1990's.
 MUC was an annual event/competition where results were presented.
 - Focused on extracting information from news articles:
 - Terrorist events (MUC-4, 1992)
 - Industrial joint ventures (MUC-5, 1993)
 - Company management changes
 - Information extraction of particular interest to the intelligence community (CIA, NSA). (Note: early '90's)

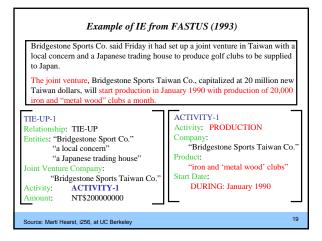
17

Source: Marti Hearst, i256, at UC Berkeley

Finite-State Template-Filling Systems (cont.)

- FASTUS system in MUC-5
 - A cascade of transducers, where each level is a finite-state automata which extracts a specific type of information
 - The task was to fill hierarchically linked templates

No.	Step	Description		Template/Slot	Value	
1	Tokens:	Transfer an input stream of characters into a token sequence.	1	RELATIONSHIP: ENTITIES:	TIE-UP "Bridgestone Sports Co."	
2	Complex Words:	Recognize multiword phrases, numbers, and proper names.		ACTIVITY:	"a local concern" "a Japanese trading house" PRODUCTION	
3	Basic phrases:	Segment sentences into noun groups, verb groups, and particles.	3	PRODUCT: RELATIONSHIP:	"golf clubs" THE-UP	
4	Complex phrases:	Identify complex noun groups and complex verb groups.		JOINTVENTURECOMPANY: AMOUNT:	"Bridgestone Sports Taiwan Co." NT\$20000000	
5	Semantic Patterns:	Identify semantic entities and events and in- sert into templates.	4	ACTIVITY: COMPANY: STARTDATE:	PRODUCTION "Bridgestone Sports Taiwan Co." DURING: January 1990	
6	Merging:	Merge references to the same entity or event from different parts of the text.	5	ACTIVITY: PRODUCT:	PRODUCTION "iron and "metal wood" clubs"	
<u> </u>		-				
S	ource: Marti Hearst,	i256, at UC Berkeley				18



Evaluating IE Accuracy

- · Precision and Recall:
 - Precision: correct answers / answers produced
 - Recall: correct answers / total possible correct answers
- F-measure:

Source: J. Choi, CSE842, MSU

$$F = \frac{(\beta^2 + 1)P * R}{r^2}$$

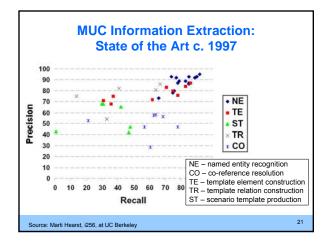
$$(\beta^2 P + R)$$

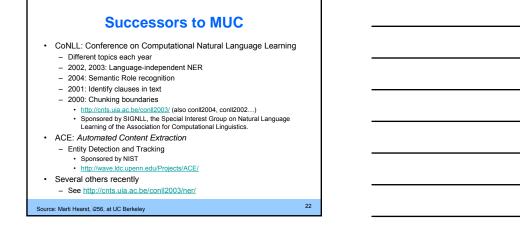
where β is a parameter representing relative importance of P and R.

When P and R are equally important, $\beta = 1$ and we get the F1 measure: $F1 = \frac{2*P*R}{P + R}$

$$P + R$$

20



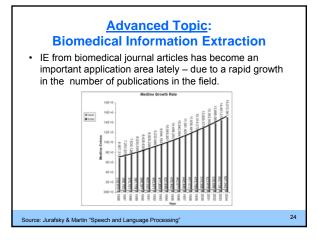


23

State of the Art Performance: examples

- Named entity recognition from newswire text
 Person, Location, Organization, ...
 - F1 in high 80's or low- to mid-90's
- Binary relation extraction
 - Contained-in (Location1, Location2)
 - Member-of (Person1, Organization1)
- F1 in 60's or 70's or 80's
- Web site structure recognition
 Extremely accurate performance obtainable
 - Human effort (~10min?) required on each site

Source: Marti Hearst, i256, at UC Berkeley



8

classes) in the biol	ogical domain
judo] and [population mara	concentrations were higher in both the [_{population} thon groups] than in [_{population} controls], and I [_{ANAT} LV] mass as well as with deceleration time.
Semantic class	Examples
Cell lines	T98G, HeLa cell, Chinese hamster ovary cells, CHO cells
Cell types	primary T lymphocytes, natural killer cells, NK cells
Chemicals	citric acid, 1,2-diiodopentane, C
Drugs	cyclosporin A, CDDP
Genes/proteins	white, HSP60, protein kinase C, L23A
Malignancies	carcinoma, breast neoplasms
Malignancies Medical/clinical concepts	annyotrophic lateral sclerosis
Malignancies Medical/clinical concepts Mouse strains	amyotrophic lateral sclerosis LAFT, AKR
Malignancies Medical/clinical concepts	annyotrophic lateral sclerosis

Biological NER (cont.)

• NER in this domain is particularly difficult because of the various forms which the names can take:

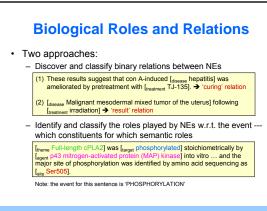
- e.g. "insulin", "ether a go-go", "breast cancer associated 1"
- Long names (thus multi-token boundary detection is needed)
- Spelling/typographical variations
- Abbreviations, symbols
- (Of course) Ambiguity (common meaning or domain concepts)

26

27

• Extracted NEs are often mapped to **biomedical ontologies** (e.g. Gene Ontology, UMLS)

Source: Jurafsky & Martin "Speech and Language Processing"



Automatic Role Labeling for Biological Domain

- Both rule-based and statistical approaches have been applied
- Medical ontologies (in particular the link/inference structures) are often utilized
- General results: The choice of algorithm is less important than the choice of features
- Note: NER methods utilize syntactic features -- but no large treebanks are available for biomedical domain
 → Off-the-shelf NER tools (trained with generic newswire exts) are often used.

28

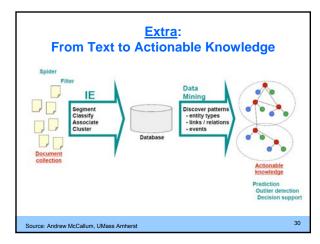
29

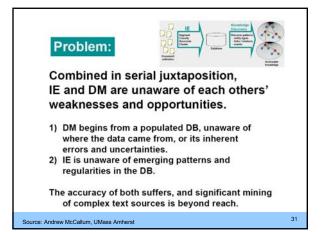
Source: Jurafsky & Martin "Speech and Language Processing"

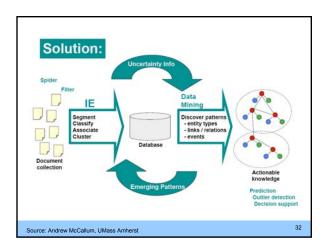
IE Techniques: Summary

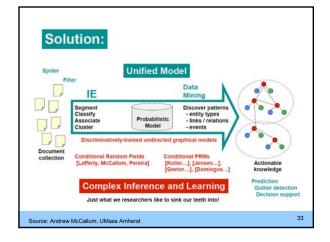
- Machine learning approaches are doing well, even without comprehensive word lists
 - Can develop a pretty good starting list with a bit of web page scraping
 - Lately Conditional Random Fields (CRFs) have shown superb performance over other sequence-labeling ML techniques
- Features mainly have to do with the preceding and following tags, as well as syntax and orthographic features of words
 - The latter is somewhat language dependent
- With enough training data, results are getting pretty decent on well-defined entities
- ML is the way of the future!

Source: Marti Hearst, i256, at UC Berkeley









Research Questions

- What model structures will capture salient dependencies?
- Will joint inference actually improve accuracy?
- How to do *inference* in these large graphical models?
- How to do *parameter estimation* efficiently in these models, which are built from multiple large components?
- How to do structure discovery in these models?

Source: Andrew McCallum, UMass Amherst

34