CSC 594 Topics in AI – Applied Natural Language Processing

Fall 2009/2010

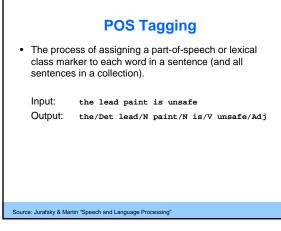
6. Part-Of-Speech (POS) Tagging

Grammatical Categories: Parts-of-Speech

- 8 (ish) traditional parts of speech
- Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc.
- Nouns: people, animals, concepts, things (e.g. "birds")
- Verbs: express action in the sentence (e.g. "sing")
- Adjectives: describe properties of nouns (e.g. "yellow")
- etc.

POS examples

 N V ADJ ADV P PRO DET 	noun verb adjective adverb preposition pronoun determiner	chair, bandwidth, pacing study, debate, munch purple, tall, ridiculous unfortunately, slowly of, by, to I, me, mine the, a, that, those



Why is POS Tagging Useful?

- · First step of a vast number of practical tasks
- Helps in stemming
- Parsing
 - Need to know if a word is an N or V before you can parse
 - Parsers can build trees directly on the POS tags instead of maintaining a lexicon
- Information Extraction
- Finding names, relations, etc.
- Machine Translation
- Selecting words of specific Parts of Speech (e.g. nouns) in pre-processing documents (for IR etc.)

Source: Jurafsky & Martin "Speech and Language Processing"

POS Tagging Choosing a Tagset

- To do POS tagging, we need to choose a standard set of tags to work with
- Could pick very coarse tagsets
 N, V, Adj, Adv.
- More commonly used set is finer grained, the "Penn TreeBank tagset", 45 tags
 PRP\$, WRB, WP\$, VBG
- Even more fine-grained tagsets exist

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	cating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	cat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	cats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	S
NNPS	proper noun, plural	Carolinas	#	pound sign	1
PDT	predeterminer	all, both	**	left quote	' or "
POS	possessive ending	's	T	right quote	'or"
PRP	personal pronoun	L you, he	0	left parenthesis	1.6. {. <
PRPS	possessive pronoun	your, one's)	right parenthesis	1.).]. >
RB	adverb	quickly, never		comma	
RBR	adverb, comparative	faster		sentence-final punc	12
RBS	adverb, superlative	fastest			5 4 mm
RP	particle	up, off			

Using the Penn Tagset

• Example:

- The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
- Prepositions and subordinating conjunctions marked IN ("although/IN I/PRP..")
- Except the preposition/complementizer "to" is just marked "TO".

Source: Jurafsky & Martin "Speech and Language Processing"

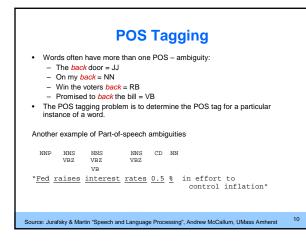
Tagged Data Sets Brown Corpus An early digital corpus (1961) Contents: 500 texts, each 2000 words long From American books, newspapers, magazines

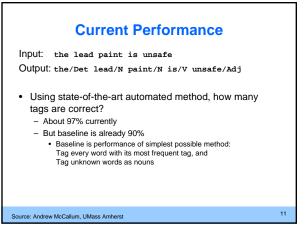
- Representing genres:
 Science fiction, romance fiction, press reportage scientific writing, popular lore
 87 different tags

- Penn Treebank
 - First large syntactically annotated corpus
 - Contents: 1 million words from Wall Street Journal - Part-of-speech tags and syntax trees

 - 45 different tags
 Most widely used currently

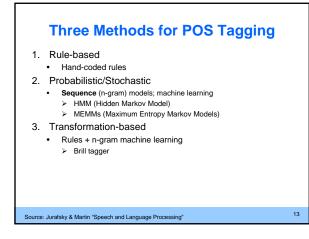
Source: Andrew McCallum, UMass Amherst





How Hard is POS Tagging? Measuring Ambiguity

		87-tag	Original Brown	45-ta;	g Treebank Brown
Unambiguous Ambiguous ()		44,019 5,490		38,857 8844	a E
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round, open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)



Rule-Based POS Tagging (1)

Make up some regexp rules that make use of morphology

>>> patterns = [
<pre>(r'^-?[0-9]+(.[0-9]+)?', 'cd'),</pre>	<pre># cardinal numbers</pre>
<pre>(r'(The the A a An an)\$', 'at'),</pre>	# articles / determiners
(r'un.*', 'jj'),	# adjectives
(r'.*\'s\$', 'nn\$'),	# possesive nouns
(r'.'s\$', 'nns'),	# plural nouns
(r'.*ing\$', 'vbg'),	# gerunds
(r'.*ed\$', 'vbd'),	# past tense verbs
([',', ','),	# comma
$(r^{(1)}(1))$	# other punctuation
(r'.*', 'nn')	# nouns (default)
1	

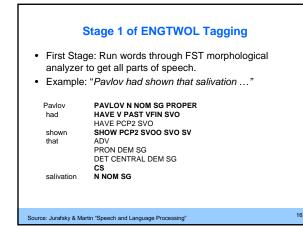
14

15

Source: Marti Hearst, i256, at UC Berkeley

>>> regexp_tagger = tag.Regexp(patterns)

<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>



Stage 2 of ENGTWOL Tagging Second Stage: Apply NEGATIVE constraints.

- Second Stage: Apply NEGATIVE constraints
 Example: Adverbial "that" rule
 - Eliminates all readings of "that" except the one in
 "It isn't <u>that</u> odd"

Given input: "that"

(+1 A/ADV/QUANT); if next word is adj/adv/quantifier (+2 SENT-LIM) ; following which is E-O-S (NOT -1 SVOC/A) ; and the previous word is not a ; verb like "consider" which ; allows adjective complements ; in "I consider that odd" Then eliminate non-ADV tags Else eliminate ADV

17

18

Source: Jurafsky & Martin "Speech and Language Processing"

Probabilistic POS Tagging (1) N-grams The N stands for how many terms are used/looked at Unigram: 1 term (0th order) Bigram: 2 terms (1st order) Trigrams: 3 terms (2nd order) Usually don't go beyond this You can use different kinds of terms, e.g.: Character, Word, POS Ordering Often adjacent, but not required We use n-grams to help determine the *context* in which some linguistic phenomenon happens. e.g., Look at the words before and after the period to see if it is the end of a sentence or not.

Source: Marti Hearst, i256, at UC Berkeley

- Solution: we choose the tag that has the greater conditional probability -> a probability of the word in a given POS

19

20

- P(race|VB)
- P(race|NN)

Source: Marti Hearst, i256, at UC Berkeley

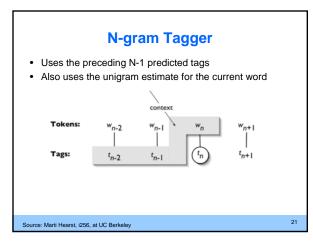
Unigram Tagger

- Train on a set of sentences
- Keep track of how many times each word is seen with each tag.
- After training, associate with each word its most likely tag.
 - Problem: many words never seen in the training data. - Solution: have a default tag to "backoff" to.

More problems...

- Most frequent tag isn't always right!
- Need to take the context into account
 - Which sense of "to" is being used?
 - Which sense of "like" is being used?

Source: Marti Hearst, i256, at UC Berkeley



How N-gram Tagger Works

- Constructs a frequency distribution describing the frequencies each word is tagged with in different contexts.
 - The context considered consists of the word to be tagged and the n-1 previous words' tags.
- After training, tag words by assigning each word the tag with the maximum frequency given its context.
 - Assigns "None" tag if it sees a word in a context for which it has no data (which it has not seen).
- Tuning parameters
 - "cutoff" is the minimal number of times that the context must have been seen in training in order to be incorporated into the statistics
 Default cutoff is 1

22

23

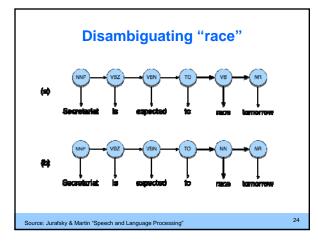
Deradit outer in i

Source: Marti Hearst, i256, at UC Berkeley

POS Tagging as Sequence Classification

- We are given a sentence (an "observation" or "sequence of observations")
 - Secretariat is expected to race tomorrow
- What is the best sequence of tags that corresponds to this sequence of observations?
- Probabilistic view:
 - Consider all possible sequences of tags
 - Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words $w_1...w_n$.

Source: Jurafsky & Martin "Speech and Language Processing"



Using the maximum likelihood and conditional independence assumptions, we have:

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(t_{1}^{n} | w_{1}^{n}) \approx \underset{t_{1}^{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P(w_{i} | t_{i}) P(t_{i} | t_{i-1})$$

$$P(\mathsf{NN}|\mathsf{TO}) = .00047$$

$$P(\mathsf{VB}|\mathsf{TO}) = .83$$

$$P(\mathsf{race}|\mathsf{NN}) = .00057$$

$$P(\mathsf{cace}|\mathsf{ND}) = .00012$$

- ٠
- P(NR|VB) = .0027 •
- P(NR|NN) = .0012•
- P(VB|TO)P(NR|VB)P(race|VB) = .00000027 €
- P(NN|TO)P(NR|NN)P(race|NN)=.00000000032 So we (correctly) choose the verb reading (when n = 2, bi-gram)

Source: Jurafsky & Martin "Speech and Language Processing"

Transformation-Based Tagger

- The Brill tagger (by E. Brill)
 - Basic idea: do a quick job first (using frequency), then revise it using contextual rules.
 - Painting metaphor from the readings
 - Very popular (freely available, works fairly well)
 - A supervised method: requires a tagged corpus

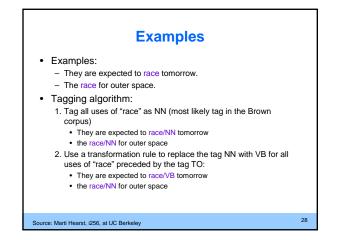
```
Source: Marti Hearst, i256, at UC Berkeley
```

Brill Tagger: In more detail

- Start with simple (less accurate) rules...learn better ones from tagged corpus
 - Tag each word initially with most likely POS
 - Examine set of transformations to see which improves tagging decisions compared to tagged corpus
 - Re-tag corpus using best transformation
 - Repeat until, e.g., performance doesn't improve
 - Result: tagging procedure (ordered list of transformations) which can be applied to new, untagged text

Source: Marti Hearst, i256, at UC Berkeley

25

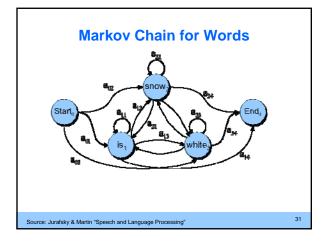


Sample Transformation Rules

Fules: NN = NNF if the tag of the preceding word is 'TO' NN = VB if the tag of the preceding word is 'TO' NN = VB if the tag of the preceding word is 'NNF' NN = VB if the tag of the preceding word is 'NNF, NN = NNF if the tag of the preceding word is 'NNF, and the tag of the following word is 'N' NN = NN if the tag of the preceding word is 'NNF, and the tag of the following word is 'N' NN = NN if the tag of the preceding word is 'NNF, NN = NN if the tag of the preceding word is 'NNF' NN = NN if the tag of the following word is 'NF' NN = VN if the tag of the following word is 'NF' NN = VN if the tag of the following word is 'NF' NN = VN if the tag of the following word is 'NF' NN = VN if the tag of the precedi

Hidden Markov Models (HMM)

- The n-gram example shown earlier is essentially a Hidden Markov Model (HMM)
- Definitions:
 - A weighted finite-state automaton adds probabilities to the arcs
 The sum of the probabilities leaving any arc must sum to one
 - A Markov chain is a special case of a WFST in which the input sequence uniquely determines which states the automaton will go through
 - Markov chains can't represent inherently ambiguous problems
 Useful for assigning probabilities to unambiguous sequences



Markov Chain: "First-order observable Markov Model"

- A set of states
 - Q = q₁, q₂...q_{N;} the state at time t is q_t
- Transition probabilities:
 - a set of probabilities $A = a_{01}a_{02}...a_{n1}...a_{nn}$.
 - Each a_{ij} represents the probability of transitioning from state i to state j

32

33

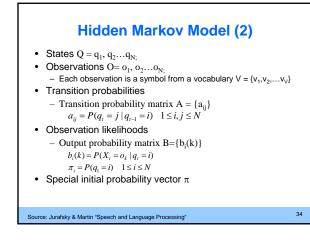
- The set of these is the transition probability matrix A
- · Current state only depends on previous state

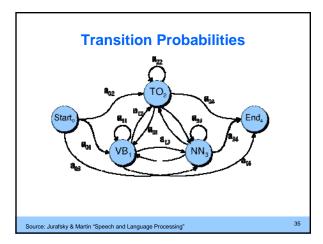
Source: Jurafsky & Martin "Speech and Language Processing"

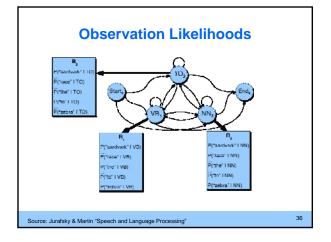
Hidden Markov Model (1)

- In part-of-speech tagging (and other things)
 - The output symbols are words
 - But the hidden states are part-of-speech tags
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in.

Source: Jurafsky & Martin "Speech and Language Processing"







Decoding

• Ok, now we have a complete model that can give us what we need. Recall that we need to get

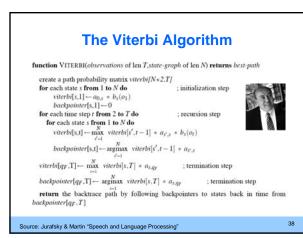
$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

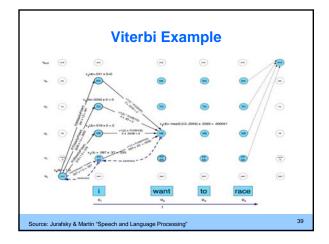
 We could just enumerate all paths given the input and use the model to assign probabilities to each.
 Not a good idea.

37

- Luckily dynamic programming helps us here

Source: Jurafsky & Martin "Speech and Language Processing"





Viterbi Summary

- · Create an array
 - With columns corresponding to inputs
 - Rows corresponding to possible states
- Sweep through the array in one pass filling the columns left to right using our transition probabilities and observations probabilities
- Dynamic programming key is that we need only store the MAX probability path to each cell, (not all paths).

Source: Jurafsky & Martin "Speech and Language Processing"

POS-tagging Evaluation

- The result is compared with a manually coded "Gold Standard"
 - Typically accuracy reaches 96-97%
 - This may be compared with result for a baseline tagger (one that uses no context).
- Important: 100% is impossible even for human annotators.

Source: Jurafsky & Martin "Speech and Language Processing"

41