CSC 594 Topics in Al —
Applied Natural Language Processing

Fall 2009/2010

4. Grammar and Parsing

Lexical Categories:
Parts-of-Speech (POS)

+ 8 (ish) traditional parts of speech
— Noun, verb, adjective, preposition, adverb, article, interjection,
pronoun, conjunction, etc.

+ N noun chair, bandwidth, pacing
« V verb study, debate, munch

« ADJ adjective purple, tall, ridiculous

+ ADV adverb unfortunately, slowly

- P preposition of, by, to

« PRO pronoun I, me, mine

« DET determiner the, a, that, those

Language Structure and Meaning

We want to know how meaning is mapped onto what language
structures. Commonly in English in ways like this:

= [THING The dog] is [PLACE in the garden]
- [THING The dog] is [PROPERTY fierce]
- [ACTION [THING The dog] is chasing [THING the cat]]
- [STATE [THING The dog] was sitting [PLACE in the garden]
[TIME yesterday]]
- [ACTION [THING We] ran [PATH out into the water]]
= [ACTION [THING The dog] barked [PROPERTY/MANNER loudly]]
= [ACTION [THING The dog] barked [PROPERTY/AMOUNT nonstop for five
hours1]

Source: Andrew McCallum, UMass Amherst

Constituency

» Sentences have parts, some of which appear to have
subparts. These groupings of words that go together we
will call constituents.

| hit the man with a cleaver
| hit [the man with a cleaver]
| hit [the man] with a cleaver

You could not go to her party

You [could not] go to her party
You could [not go] to her party

Source: Andrew McCallum, UMass Amherst

Constituent Phrases

» For constituents, we usually name them as phrases
based on the word that heads the constituent:
— Noun phrase — e.g. [the man], [the man [with a cleaver]]
— Verb phrase — e.g. [hit the man], [hit the man with a cleaver]
— Adjective phrase — e.g. [extremely significant]
— Prepositional phrase — e.g. [with a cleaver], [in my room]

Grammar

» A formal specification of how a constituent should be
made of and combined with other constituents (to form a
larger constituent).

* Unlike programming languages (which are formal languages),
natural languages are born without formal specifications.
* So, grammars for natural languages are empirically
derived by observation, which is also subjective.
=>» There are many different grammars for a given
language.

Grammars and Sentence Structure

» The most common way of representing the structure of a
sentence is as a tree — a syntax tree.

“John ate the cake”

S
NPV NP

I A

“John” “ate” “the cake”

Context-Free Grammar (CFG)

* The most common way of specifying natural language
grammars (because most natural languages are context-free in
the generative capacity).

+ Formally, a CFG consists of:

N aset of non-terminal symbols (or variables)
X aset of terminal symbols (disjoint from N)
R aset of rules or productions, each of the form A — f ,
where A is a non-terminal,
B is a string of symbols from the infinite set of strings (£ LUN)+
§ adesignated start symbol

Grammaticality

* A CFG defines a formal language = the set of all
sentences (strings of words) that can be derived by the
grammar.

» Sentences in this set said to be grammatical.
» Sentences outside this set said to be ungrammatical.

Source: Andrew McCallum, UMass Amherst

An Example CFG

G=<N, 3, S, R>where

N ={S, NP, NOM, VP, Det, Noun, Verb, Aux}
Y = {that, this, a, the, man, book, flight, meal, include, read, does}
S=8§
R={
S — NP VP Det — that | this | a | the
S — Aux NP VP Noun — book | flight | meal | man
S - VP Verb — book | include | read
NP — Det NOM Aux — does
NOM — Noun
NOM — Noun NOM
VP — Verb
VP — Verb NP

Source: Andrew McCallum, UMass Amherst

Application of grammar rewrite rules

s =npPwp Det — that | this | a | the

S — Aux NP VP Moun — book | fiight | meal | man

5= VP Verb — book | include | read

NP — Det NOM A — dovs

NOM — Moun

NOM — Noun NOM

WP = Verb
| WP — Verb P

(By top-down derivation)
- NP VP Parse tree

— Det NOM VP

- The NOM VP
— The Noun VP

- The man VP NP vp
— The man Verb NP Det NOM
— The man read NP -~
— The man read Det NOM The MNoun roaq Det NOM

- The man read this NOM

- The man read this Noun
— The man read this book book

S

Verb NP

man this Noun

Source: Andrew McCallum, UMass Amherst

Chomsky Hierarchy

Type 0 Languages | Grammars
Rewrite rules 0 — 3
where o and 7 are any string of terminals and nonterminals

Context-sensitive Languages | Grammars

Rewrite rules a X3 — a3

where X is a non-terminal, and o, %+ are any string of terminals and
nonterminals, {~ must be non-empty).

Context-free Languages | Grammars

Rewrite rules X' — +

where X is a nonterminal and -+ is any string of terminals and
nonterminals

Regular Languages | Grammars

Rewrite rules X — o}’

where X, Y are single nonterminals, and o is a string of terminals; ¥
might be missing.

Source: Andrew McCallum, UMass Amherst

Recursive Rules, Syntactic Ambiguities

PP attachment ambiguity

Grammar “John ate the cake with chopsticks”
S—> NP VP s s
NP — NP PP
NP — DetN PN /\

NP — N NP VP NP VP
VP - VP PP /\ PN
VP - V NP

vP PP

PP — Prep NP

NP > " John" /N /N |

V - "ate" “John v NP Prep NP “John" “ate” NP PP

Det — "the" A

N — "cake” ‘ Det/\N . ‘ ‘ P/\NP

N — " chopsticks” "ate” with” N Det N rep

Prep — "with" | | | ‘ ‘
the’ “cake” - “chopsticks” “the” “cake’ ‘with' N

\
“chopsticks™
13

Agreement

+ Agreement is a constraint that holds between
constituents to make the sentence grammatical.

» For example, in English, determiners and the head
nouns in NPs have to agree in their number.
— This flight
— (*) This flights
— Those flights
— (*) Those flight

» Another example: the head nouns in the subject NPs
must agree with the person of the main verb (if 31
person singular, present tense).

— He thinks ..
— (*) He think

Problem

» Our earlier NP rules are clearly deficient since they don’t
capture the agreement constraints
— NP — Det Nom

« Accepts, and assigns correct structures, to grammatical examples
(this flight)

« But its also happy with incorrect examples (*these flight)
— Such arule is said to overgenerate - causes ambiguity

Verb Subcategorization

» English VPs consist of a head verb along with 0 or more
following constituents which we’ll call arguments.
— Find: Please find [a flight to NY]ye
— Give: Give [me]yp[a cheaper fare]y,
— Help: Can you help [me]yp[with a flight]pp
— Prefer: | prefer [to leave earlier];q.p
— Told: | was told [United has a flight]g

— (*) John sneezed the book
— (*) | prefer United has a flight
— (*) Give with a flight

Source: Jurafsky & Martin “Speech and Language Processing”

Possible CFG Solution

+ Possible solution for * SgS -> SgNP SgvP
agreement. « PIS -> PINp PIVP
SgNP -> SgDet SgNom

* PINP -> PIDet PINom

« PIVP ->PIV NP

* SgVP ->SgV Np

» Can use the same trick
for all the verb/VP
classes.

Source: Jurafsky & Martin “Speech and Language Processing”

CFG Solution for Agreement

It works and stays within the power of CFGs

But its ugly

* And it doesn'’t scale all that well because of the
interaction among the various constraints explodes the
number of rules in our grammar.

Source: Jurafsky & Martin “Speech and Language Processing”

The Point

CFGs appear to be just about what we need to account

for a lot of basic syntactic structure in English.

* But there are problems

— That can be dealt with adequately, although not elegantly, by
staying within the CFG framework.

There are simpler, more elegant, solutions that take us

out of the CFG framework (beyond its formal power)

— Lexical Functional Grammar (LFG)

— Head-driven Phrase Structure Grammar (HPSG)

— Construction grammar

— X-Tree Adjoining Grammar (XTAG)

— Unification Grammar

— etc.

Source: Jurafsky & Martin “Speech and Language Processing” 19

Treebanks

» Treebanks are corpora in which each sentence has been
paired with a parse tree.
* These are generally created
— By first parsing the collection with an automatic parser
— And then having human annotators correct each parse as
necessary.
» This generally requires detailed annotation guidelines
that provide a POS tagset, a grammar and instructions
for how to deal with particular grammatical constructions.

Source: Jurafsky & Martin “Speech and Language Processing” 20

Penn Treebank

» Penn TreeBank is a widely used treebank.

= Most well known is the
Wall Street Journal section
of the Penn TreeBank.

= 1 M words from the 1987-
1989 Wall Street Journal.

Source: Jurafsky & Martin “Speech and Language Processing” 2

Treebank Grammars

» Treebanks implicitly define a grammar for the language
covered in the treebank.

* Not complete, but if you have decent size corpus, you'll
have a grammar with decent coverage.
+ Grammar rules tend to be ‘flat’ — to avoid recursive rules.

» For example, the Penn Treebank has 4500 different
rules for VPs. Among them...

VFE + VBED PP

VP — VED PP PP

VF — VBD FF FF FF
P «+ VBED PF PP PP PP

Source: Jurafsky & Martin “Speech and Language Processing” 2

Heads in Trees

» Finding heads in treebank trees is a task that arises
frequently in many applications.
— Particularly important in statistical parsing

* We can visualize this task by annotating the nodes of a
parse tree with the heads of each corresponding node.

Source: Jurafsky & Martin “Speech and Language Processing” 23

Lexically Decorated Tree

S{dumped)
NP(workers) VP(dumped)
NNS(workers) VBD{dumped) prri%\»ki] PP{into)
NNS(sacks) P(mto) NPibin)
DT(a) NN(bmn)
workers dumped sacks into a bin

Source: Jurafsky & Martin “Speech and Language Processing” &

Head Finding

» The standard way to do head finding is to use a simple
set of tree traversal rules specific to each non-terminal in
the grammar.

Source: Jurafsky & Martin “Speech and Language Processing” 2
Dependency Grammars
* In CFG-style phrase-structure grammars the main focus
is on constituents.
» Butit turns out you can get a lot done with just binary
relations among the words in an utterance.
* In adependency grammar framework, a parse is a tree
where
— the nodes stand for the words in an utterance
— The links between the words represent dependency relations
between pairs of words.
 Relations may be typed (labeled), or not.
Source: Jurafsky & Martin “Speech and Language Processing” 26
Dependency Relations
Argument Dependencies Description
nsubj nominal subject
csubj clausal subject
dobj direct object
fobj indirect object
pobj object of preposition
Modifier Dependencies Description
tmod temporal modifier
appos appositional modifier
det determiner
prep prepositional modifier
27

Source: Jurafsky & Martin “Speech and Language Processing”

Dependency Tree

“They hid the letter on the shelf”
hid_

SR
nisuby daby
»

They letter
P o

"
the shelf

Source: Jurafsky & Martin “Speech and Language Processing” 28

Dependency Parsing

» The dependency approach has a number of advantages
over full phrase-structure parsing.
— Deals well with free word order languages where the constituent
structure is quite fluid
— Parsing is much faster than CFG-bases parsers
— Dependency structure often captures the syntactic relations
needed by later applications
« CFG-based approaches often extract this same information from
trees anyway.

Source: Jurafsky & Martin “Speech and Language Processing” 29

Syntactic Parsing

= The process of deriving the phrase structure of a
sentence is called “parsing”.

= The structure (often represented by a Context Free
parse tree) is based on the grammar.

S
Grammar
RO: S > NP VP SN
R1: NP - Det N NP VP
R2: VP - VG NP PN
R3: VG - V Vv NP
R4: NP — "John"
R5: V — "ate" ‘ /\
R6: Det — "the" “John” “ate” Det N
R7: N —"cake" | |
“the” “cake”

30

10

Parsing Algorithms

* Top-down Parsing -- (top-down) derivation

* Bottom-up Parsing

* Chart Parsing

+ Earley’s Algorithm — most efficient, O(n3)

* Left-corner Parsing — optimization of Earley’s
* and lots more...

31
“John ate the cake”
0 1 2 3 4
Grammar (11) reduce
S > NP Ve (0,4,5— NP VP o)
NP - Det N
VP > VG NP (10) reduce
b o (L4, VP > VG NP +)
Voo "ate"
Det s "the (5) shift 2 (9) reduce
N - "cake” (12,VP > VG «NP) | (2,4,NP — Det Ns)
(2) shift 2 (4) shift 2 (7) shift 2
(045> NPeVP) | (12,VG > Vo) (2.3,NP — Det e N)
(1) shift 1 “John" (3) shift 1 *ate” (6) shift 1 "the” (8) shift 1 “cake”
(0, NP »"John" o) | (12,V >"ate" s) (2.3,Det >"the") | (3,4,N >"cake" o)
0 1 2 3 4
32

Earley’s Algorithm

“John ate the cake”

0 1 2 3 4
Grammar (00,5 +5) 04,55 59)
S NP VP
NP — Det N (1) predictor 12) completor
VP — VG NP
V6 5V (00,5 oNPVP) (015> NP+ VP) (04,5 NP VP o)
NP — "John'
V > "ate" (2) scanner (3)|predictor completor
Det — " the" “John"

N cake” (LLVP > eVG NP) —> (1.2, VP - VG « NP) (L4,VP - VG NP +)
“) Dredfér ®) c&\mplelor Uﬂ"mmmr \wmplelor
(LLVG > V) (12,VG - V) (2,2,NP - eDet N) (2,3,NP - Det e N) (2,4,NP — Det N o)

L »
(5) scanner (8) scanner (9) scanner
ate’ “the” “cake”

33

Demo using my CF parser

Probabilistic Parsing

» For ambiguous sentences, we’'d like to know which
parse tree is more likely than others.

+ So we must assign probability to each parse tree ...

but how?
« A probability of a parse tree tis

p(t) = Z p(r) where ris a rule used in t.

and p(r) is obtained from a (annotated) corpus.

35

Partial Parsing

Parsing fails when the coverage of the grammar is
not complete — but it's almost impossible to write
out all legal syntax (without accepting
ungrammatical sentences).

We'd like to at least get pieces even when full
parsing fails.

Why not abandon full parsing and aim for partial
parsing from the start...

36

12

Semantic Analysis (1)

= Derive the meaning of a sentence.
= Often applied on the result of syntactic analysis.

“John ate the cake.”

NP Vv NP
((action INGEST) ; syntactic verb
(actorJOHN-01) ; syntactic subj

(object FOOD)) ; syntactic obj
= To do semantic analysis, we need a (semantic)

dictionary (e.g. WordNet,
http://www.cogsci.princeton.edu/~wn/).

37

Semantic Analysis (2)

= Semantics is a double-edged sword...
— Can resolve syntactic ambiguity
= “| saw a man on the hill with a telescope”
= “l saw a man on the hill with a hat”
— But introduces semantic ambiguity
= “She walked towards the bank”
= But in human sentence processing, we seem to

resolve both types of ambiguities simultaneously (and

in linear time)...

38

Demo using my Unification parser

39

13

