
1

1

CSC 594 Topics in AI –
Applied Natural Language Processing

Fall 2009/2010

4. Grammar and Parsing

2

Lexical Categories:
Parts-of-Speech (POS)

• 8 (ish) traditional parts of speech
– Noun, verb, adjective, preposition, adverb, article, interjection,

pronoun, conjunction, etc.

• N noun chair, bandwidth, pacing
• V verb study, debate, munch
• ADJ adjective purple, tall, ridiculous
• ADV adverb unfortunately, slowly
• P preposition of, by, to
• PRO pronoun I, me, mine
• DET determiner the, a, that, those

3

Language Structure and Meaning
We want to know how meaning is mapped onto what language

structures. Commonly in English in ways like this:

• [THING The dog] is [PLACE in the garden]
• [THING The dog] is [PROPERTY fierce]
• [ACTION [THING The dog] is chasing [THING the cat]]
• [STATE [THING The dog] was sitting [PLACE in the garden]

[TIME yesterday]]
• [ACTION [THING We] ran [PATH out into the water]]
• [ACTION [THING The dog] barked [PROPERTY/MANNER loudly]]
• [ACTION [THING The dog] barked [PROPERTY/AMOUNT nonstop for five
hours]]

Source: Andrew McCallum, UMass Amherst

2

4

Constituency
• Sentences have parts, some of which appear to have

subparts. These groupings of words that go together we
will call constituents.

I hit the man with a cleaver
I hit [the man with a cleaver]
I hit [the man] with a cleaver

You could not go to her party
You [could not] go to her party
You could [not go] to her party

Source: Andrew McCallum, UMass Amherst

5

Constituent Phrases
• For constituents, we usually name them as phrases

based on the word that heads the constituent:
– Noun phrase – e.g. [the man], [the man [with a cleaver]]
– Verb phrase – e.g. [hit the man], [hit the man with a cleaver]
– Adjective phrase – e.g. [extremely significant]
– Prepositional phrase – e.g. [with a cleaver], [in my room]

6

Grammar
• A formal specification of how a constituent should be

made of and combined with other constituents (to form a
larger constituent).

• Unlike programming languages (which are formal languages),
natural languages are born without formal specifications.

• So, grammars for natural languages are empirically
derived by observation, which is also subjective.

There are many different grammars for a given
language.

3

7

Grammars and Sentence Structure
• The most common way of representing the structure of a

sentence is as a tree – a syntax tree.

“John ate the cake”

S

NP V NP

“John” “ate” “the cake”

8

Context-Free Grammar (CFG)
• The most common way of specifying natural language

grammars (because most natural languages are context-free in
the generative capacity).

• Formally, a CFG consists of:

9

Grammaticality
• A CFG defines a formal language = the set of all

sentences (strings of words) that can be derived by the
grammar.

• Sentences in this set said to be grammatical.
• Sentences outside this set said to be ungrammatical.

Source: Andrew McCallum, UMass Amherst

4

10

An Example CFG

G = <N, ∑, S, R> where

N = {S, NP, NOM, VP, Det, Noun, Verb, Aux}
∑ = {that, this, a, the, man, book, flight, meal, include, read, does}
S = S
R = {

S → NP VP Det → that | this | a | the
S → Aux NP VP Noun → book | flight | meal | man
S → VP Verb → book | include | read
NP → Det NOM Aux → does
NOM → Noun
NOM → Noun NOM
VP → Verb
VP → Verb NP

}

Source: Andrew McCallum, UMass Amherst

11Source: Andrew McCallum, UMass Amherst

Parse tree
(By top-down derivation)

12

Chomsky Hierarchy

Source: Andrew McCallum, UMass Amherst

5

13

Recursive Rules, Syntactic Ambiguities

S

NP

“John”

“cake”

VP

V NP

“ate”

“the”

Det N

→

NP PP

Grammar

NP
VPNPS

cake”"N
the""Det

ate""V
John""NP

V NPVP
VP PPVP

→
→

→
→

→
→

→
→

NDetNP →
NNP →

Prep NPPP →

with"Prep

PP

Prep NP

“with” N

“chopsticks”

chopsticks”N → "
"

VP

S

NP

“John”

“cake”

VP

V NP

“ate”

“the”

Det N

PP

Prep NP

“with” N

“chopsticks”

NP

PP attachment ambiguity
“John ate the cake with chopsticks”

14

Agreement
• Agreement is a constraint that holds between

constituents to make the sentence grammatical.
• For example, in English, determiners and the head

nouns in NPs have to agree in their number.
– This flight
– (*) This flights
– Those flights
– (*) Those flight

• Another example: the head nouns in the subject NPs
must agree with the person of the main verb (if 3rd

person singular, present tense).
– He thinks ..
– (*) He think

15

Problem
• Our earlier NP rules are clearly deficient since they don’t

capture the agreement constraints
– NP → Det Nom

• Accepts, and assigns correct structures, to grammatical examples
(this flight)

• But its also happy with incorrect examples (*these flight)
– Such a rule is said to overgenerate causes ambiguity

6

16

Verb Subcategorization
• English VPs consist of a head verb along with 0 or more

following constituents which we’ll call arguments.
– Find: Please find [a flight to NY]NP

– Give: Give [me]NP[a cheaper fare]NP

– Help: Can you help [me]NP[with a flight]PP

– Prefer: I prefer [to leave earlier]TO-VP

– Told: I was told [United has a flight]S

– (*) John sneezed the book
– (*) I prefer United has a flight
– (*) Give with a flight

Source: Jurafsky & Martin “Speech and Language Processing”

17

Possible CFG Solution

• Possible solution for
agreement.

• Can use the same trick
for all the verb/VP
classes.

• SgS -> SgNP SgVP
• PlS -> PlNp PlVP
• SgNP -> SgDet SgNom
• PlNP -> PlDet PlNom
• PlVP -> PlV NP
• SgVP ->SgV Np
• …

Source: Jurafsky & Martin “Speech and Language Processing”

18

CFG Solution for Agreement
• It works and stays within the power of CFGs
• But its ugly
• And it doesn’t scale all that well because of the

interaction among the various constraints explodes the
number of rules in our grammar.

Source: Jurafsky & Martin “Speech and Language Processing”

7

19

The Point
• CFGs appear to be just about what we need to account

for a lot of basic syntactic structure in English.
• But there are problems

– That can be dealt with adequately, although not elegantly, by
staying within the CFG framework.

• There are simpler, more elegant, solutions that take us
out of the CFG framework (beyond its formal power)
– Lexical Functional Grammar (LFG)
– Head-driven Phrase Structure Grammar (HPSG)
– Construction grammar
– X-Tree Adjoining Grammar (XTAG)
– Unification Grammar
– etc.

Source: Jurafsky & Martin “Speech and Language Processing”

20

Treebanks
• Treebanks are corpora in which each sentence has been

paired with a parse tree.
• These are generally created

– By first parsing the collection with an automatic parser
– And then having human annotators correct each parse as

necessary.
• This generally requires detailed annotation guidelines

that provide a POS tagset, a grammar and instructions
for how to deal with particular grammatical constructions.

Source: Jurafsky & Martin “Speech and Language Processing”

21

Penn Treebank
• Penn TreeBank is a widely used treebank.

Most well known is the
Wall Street Journal section
of the Penn TreeBank.

1 M words from the 1987-
1989 Wall Street Journal.

Source: Jurafsky & Martin “Speech and Language Processing”

8

22

Treebank Grammars

• Treebanks implicitly define a grammar for the language
covered in the treebank.

• Not complete, but if you have decent size corpus, you’ll
have a grammar with decent coverage.

• Grammar rules tend to be ‘flat’ – to avoid recursive rules.
• For example, the Penn Treebank has 4500 different

rules for VPs. Among them...

Source: Jurafsky & Martin “Speech and Language Processing”

23

Heads in Trees
• Finding heads in treebank trees is a task that arises

frequently in many applications.
– Particularly important in statistical parsing

• We can visualize this task by annotating the nodes of a
parse tree with the heads of each corresponding node.

Source: Jurafsky & Martin “Speech and Language Processing”

24

Lexically Decorated Tree

Source: Jurafsky & Martin “Speech and Language Processing”

9

25

Head Finding
• The standard way to do head finding is to use a simple

set of tree traversal rules specific to each non-terminal in
the grammar.

Source: Jurafsky & Martin “Speech and Language Processing”

26

Dependency Grammars
• In CFG-style phrase-structure grammars the main focus

is on constituents.
• But it turns out you can get a lot done with just binary

relations among the words in an utterance.
• In a dependency grammar framework, a parse is a tree

where
– the nodes stand for the words in an utterance
– The links between the words represent dependency relations

between pairs of words.
• Relations may be typed (labeled), or not.

Source: Jurafsky & Martin “Speech and Language Processing”

27

Dependency Relations

Source: Jurafsky & Martin “Speech and Language Processing”

10

28

Dependency Tree

“They hid the letter on the shelf”

Source: Jurafsky & Martin “Speech and Language Processing”

29

Dependency Parsing
• The dependency approach has a number of advantages

over full phrase-structure parsing.
– Deals well with free word order languages where the constituent

structure is quite fluid
– Parsing is much faster than CFG-bases parsers
– Dependency structure often captures the syntactic relations

needed by later applications
• CFG-based approaches often extract this same information from

trees anyway.

Source: Jurafsky & Martin “Speech and Language Processing”

30

Syntactic ParsingSyntactic Parsing

Grammar
R0:
R1:
R2:
R3:
R4:
R5:
R6:
R7: cake""N

the""Det
ate""V

John""NP
VVG

NPVG VP
NDetNP

VPNPS

→
→

→
→
→
→
→

→

S

NP VP

V NP

“John” “ate”

“the”

Det N

“cake”

The process of deriving the phrase structure of a The process of deriving the phrase structure of a
sentence is called sentence is called ““parsingparsing””..
The structure (often represented by a Context Free The structure (often represented by a Context Free
parse tree) is based on the grammar.parse tree) is based on the grammar.

11

31

Parsing AlgorithmsParsing Algorithms

•• TopTop--down Parsing down Parsing ---- (top(top--down) derivationdown) derivation
•• BottomBottom--up Parsingup Parsing
•• Chart ParsingChart Parsing
•• EarleyEarley’’ss Algorithm Algorithm –– most efficient, most efficient, O(nO(n33))
•• LeftLeft--corner Parsing corner Parsing –– optimization of optimization of EarleyEarley’’ss
•• and lots moreand lots more……

32

(Bottom(Bottom--up) Chart Parsingup) Chart Parsing
“John ate the cake”
0 1 2 3 4

•→ John""NP,1,0

•→ VP NPS,4,0

NPVGVP,2,1 •→

(2) shift 2

(1) shift 1 “John”

(7) shift 2

•→ the""Det,3,2 •→ cake""N,4,3

•→ NPVG VP,4,1

(9) reduce

(10) reduce

•→ ate""V,2,1

(5) shift 2

VPNPS,1,0 •→ •→ VVG,2,1 NDetNP,3,2 •→

•→ NDet NP,4,2

(3) shift 1 “ate” (6) shift 1 “the” (8) shift 1 “cake”

(4) shift 2

(11) reduce

0 1 2 3 4

cake"" N
the"" Det

ate"" V
John"" NP
 V VG

NPVG VP
N Det NP

VP NP S

→
→

→
→
→
→
→

→

Grammar

33

EarleyEarley’’ss AlgorithmAlgorithm

“John ate the cake”
0 1 2 3 4

cake"" N
the"" Det

ate"" V
John"" NP
 V VG

NPVG VP
N Det NP

VP NP S

→
→

→
→
→
→
→

→

Grammar

VP NPS,0,0 •→ VPNPS,1,0 •→ •→ VP NPS,4,0

NPVG VP,1,1 •→ NPVGVP,2,1 •→

(2) scanner
“John”

(4) predictor

(5) scanner
“ate”

NDet NP,2,2 •→

(7) predictor

NDetNP,3,2 •→

(8) scanner
“the”

•→ NDet NP,4,2

(9) scanner
“cake”

•→ NPVG VP,4,1

(10) completor

(11) completor

SS',0,0 •→

(1) predictor

VVG,1,1 •→ •→ VVG,2,1

(3) predictor

(6) completor

•→ SS',4,0
(12) completor

12

34

Demo using my CF parser

35

Probabilistic ParsingProbabilistic Parsing

•• For ambiguous sentences, weFor ambiguous sentences, we’’d like to know which d like to know which
parse tree is more likely than others.parse tree is more likely than others.

•• So we must assign probability to each parse tree So we must assign probability to each parse tree ……
but how?but how?

•• A probability of a parse tree A probability of a parse tree t t isis

where where rr is a rule used in is a rule used in tt..

and and p(rp(r)) is obtained from a (annotated) corpus.is obtained from a (annotated) corpus.

∑=
r

rptp)()(

36

Partial ParsingPartial Parsing

•• Parsing fails when the coverage of the grammar is Parsing fails when the coverage of the grammar is
not complete not complete –– but itbut it’’s almost impossible to write s almost impossible to write
out all legal syntax (without accepting out all legal syntax (without accepting
ungrammatical sentences).ungrammatical sentences).

•• WeWe’’d like to at least get pieces even when full d like to at least get pieces even when full
parsing fails.parsing fails.

•• Why not abandon full parsing and aim for partial Why not abandon full parsing and aim for partial
parsing from the startparsing from the start……

13

37

Semantic Analysis (1)Semantic Analysis (1)

Derive the meaning of a sentence.Derive the meaning of a sentence.
Often applied on the result of syntactic analysis.Often applied on the result of syntactic analysis.

““JohnJohn ateate the cakethe cake..””
NP V NPNP V NP
((action((action INGEST) ; syntactic verb INGEST) ; syntactic verb
(actor(actorJOHNJOHN--01)01) ; syntactic ; syntactic subjsubj
(object(object FOOD)) ; syntactic FOOD)) ; syntactic objobj

To do semantic analysis, we need a (semantic) To do semantic analysis, we need a (semantic)
dictionary (e.g. dictionary (e.g. WordNetWordNet, ,
http://http://www.cogsci.princeton.edu/~wnwww.cogsci.princeton.edu/~wn//).).

38

Semantic Analysis (2)Semantic Analysis (2)

Semantics is a doubleSemantics is a double--edged swordedged sword……
–– Can resolve syntactic ambiguityCan resolve syntactic ambiguity

““I saw a man on the hill with a I saw a man on the hill with a telescopetelescope””
““I saw a man on the hill with a I saw a man on the hill with a hathat””

–– But introduces semantic ambiguityBut introduces semantic ambiguity
““She walked towards the She walked towards the bankbank””

But in human sentence processing, we seem to But in human sentence processing, we seem to
resolve both types of ambiguities simultaneously (and resolve both types of ambiguities simultaneously (and
in linear time)in linear time)……

39

Demo using my Unification parser

