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Abstract. The vulnerability of collaborative recommender systems
has been well established; particularly to reverse-engineered attacks
designed to bias the system in an attacker’s favor. Recent research has
begun to examine detection schemes to recognize and defeat the ef-
fects of known attack models. In this paper we propose several tech-
niques an attacker might use to modify an attack to avoid detection,
and show that these obfuscated versions can be nearly as effective as
the reverse-engineered models yet harder to detect. We explore em-
pirically the impact of these obfuscated attacks against systems with
and without detection, and discuss alternate approaches to reducing
the effectiveness of such attacks.

1 Introduction

Recent work has exposed significant vulnerabilities in collaborative
filtering recommender systems to what have been termed “shilling”
or “profile injection” attacks in which a malicious user enters bi-
ased profiles in order to influence the system’s behavior [3, 1, 7, 10].
While there are ways system owners can increase the cost of attack
profiles being created; doing so often comes at the cost of reduced
participation, which can hamper the predictive accuracy of a collab-
orative system. As a result it is impossible to completely eliminate
the threat of an attack in an open collaborative system.

Recent research efforts have been aimed at detecting and prevent-
ing the effects of profile injection attacks. Chirita, Nejdl, and Zam-
fir [4] proposed several metrics for analyzing rating patterns of ma-
licious users and introduced an algorithm specifically for detecting
such attacks. Su, Zeng, and Chen [14] developed a spreading sim-
ilarity algorithm in order to detect groups of very similar attackers
which they applied to a simplified attack scenario. O’Mahony, Hur-
ley and Silvestre [11] developed several techniques to defend against
the attacks described in [7] and [10], including new strategies for
neighborhood selection and similarity weight transformations. Our
work has focused on developing a multi-strategy approach to attack
detection, including supervised and unsupervised classification ap-
proaches and incorporating time-series analysis, vulnerability analy-
sis, anomaly detection and pattern recognition. In [2] a model-based
approach to detection attribute generation was introduced and shown
to be effective at detecting and reducing the effects of random and av-
erage attack models. A second model-based approach for detecting
attacks that target groups of items was introduced in [9] and shown
to effectively detect the segment attack.
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Prior work has focused on detection of the attack profiles that
are reverse-engineered to introduce the largest bias in favor of the
attacker. These approaches assume that attack profiles have signa-
tures that closely resemble well-known attack models. However, an
attacker may expect (and our research has shown) that hewing too
closely to these optimized attack models makes the attack easier to
detect [2, 9]. With detection and response schemes becoming more
effective, one likely consequence is that attackers may attempt to
conceal their injected attack profiles so that they more effectively
masquerade as genuine profiles, while still biasing the system. We
have termed such attacks obfuscated attacks.

The primary contribution of this work is an analysis of methods
attackers may use to avoid detection schemes based on attack pat-
tern recognition and of approaches that may limit their effectiveness.
Three techniques an attacker may employ to obfuscate their attack
in order to avoid detection are examined: User shifting, designed to
reduce the similarity between profiles of an attack; Noise injecting,
designed to blur the signature of common attack models; and Tar-
get shifting, designed to reduce the extreme ratings of attack profiles.
We evaluate the threat of these obfuscation techniques by analyzing
their success: at avoiding detection, biasing an unprotected system,
and biasing a system with detection. To evaluate the effectiveness of
these techniques at obfuscating an attack, we use several existing de-
tection attributes designed to identify attacks based on the average
and random attack models. We show that these obfuscated variations
can introduce nearly as much bias as the original models on a system
without detection, and some obfuscated attacks are more effective
than the original attacks on a system with detection. We conclude by
showing that the most problematic cases (those of low profile size)
can be effectively handled by combining detection with a variant of
the recommendation algorithm.

2 Profile Injection Attacks

For our purposes, a profile injection attack against a recommender
system consists of a set of attack profiles inserted into the system
with the aim of altering the system’s recommendation behavior with
respect to a single target item it. An attack that aims to promote it,
making it recommended more often, is called a push attack, and one
designed to make it recommended less often is a nuke attack [10].

An attack model is an approach to constructing the attack pro-
files, based on knowledge about the recommender system’s, rating
database, products, and/or users. The attack profile consists of an m-
dimensional vector of ratings, where m is the total number of items
in the system. The profile is partitioned in four parts as depicted in
Figure 1. The null partition, I∅, are those items with no ratings in
the profile. The single target item it will be given a rating designed



Figure 1. The general form of an attack profile.

to bias its recommendations, generally this will be either the maxi-
mum or minimum possible rating, depending on the attack type. As
described below, some attacks require identifying a group of items
for special treatment during the attack. This special set IS usually re-
ceives high ratings to make the profiles similar to those of users who
prefer these product. Finally, there is a set of filler items IF whose
ratings are added to complete the profile. It is the strategy for select-
ing items in IS and IF and the ratings given to these items that define
an attack model and give it its character.

2.1 Standard Attack Models

Two basic attack models, originally introduced in [7] are random
attack, and average attack. In our formalism, for these two basic at-
tacks IS is empty, and the contents of IF are selected randomly. For
random attack all items in IF are assigned ratings based on the func-
tion σ, which generates random ratings centered around the overall
average rating in the database. The average attack is very similar, but
the rating for each filler item in IF is computed based on more spe-
cific knowledge of the individual mean for each item. For more com-
plex attacks the IS set may be used to leverage additional knowledge
about a set of items. For example the bandwagon attack [3] selects a
number of popular movies for the IS set which are given high ratings
and IF is populated as described in the random attack. The segment
attack [3] populates IS with a number of related items which it gives
high ratings to as specified by δ, while the IF partition is given the
minimum rating in order to target a segment of users. Due to space
limitations we focus on the average and random attack models as
they are the most widely discussed.

2.2 Obfuscated Attack Models

Attacks that closely follow one of the models mentioned above can
be detected and their impact can be significantly reduced [2, 9]. As
a result, to significantly bias the system an attacker would need to
deviate from these known models to avoid detection. To explore this
problem, we have examined three ways existing attack models might
be obfuscated to make their detection more difficult: noise injection,
user shifting and target shifting.
Noise Injection – involves adding a Gaussian distributed random
number multiplied by α to each rating within a set of attack profile
items Oni; where Oni is any subset of IF ∪ IS to be obfuscated and
α is a constant multiplier governing the amount of noise to be added.
This noise can be used to blur the profile signatures that are often
associated with known attack models. For example, the abnormally
high correlation that is associated with profiles of an average attack
could be reduced by this technique while still maintaining a strong

enough similiarity between the profiles and real system users.

User Shifting – involves incrementing or decrementing (shifting)
all ratings for a subset of items per attack profile in order to reduce
the similarity between attack users. More formally, for all items
i in Os, r′i,u = ri,u + shift(u,Os) where Os is any subset of
IF ∪ IS to be obfuscated, ri,u is the original assigned rating given
to item i by attack profile u, r′i,u is the rating assigned to item i
by the obfuscated attack profile u, and shift(u,Os) is a function
governing the amount to either increment or decrement all ratings
within set Os for profile u. This technique results in a portion of
the base attack model ratings deviating for each attack profile. As a
result, the distribution signature for the profile can deviate from the
profile signature usually associated with the base attack model. This
technique can also be used to reduce the similarity between attack
profiles that often occurs in the reverse-engineered attack models.

Target Shifting – for a push attack is simply shifting the rating
given to the target item from the maximum rating to a rating one
step lower, or in the case of nuke attacks increasing the target rating
to one step above the lowest rating. Although a minor change, this
has a key effect. Since all reverse-engineered models dictate giving
the target item the highest or lowest rating, any profile that does not
include these ratings is likely to be less suspect. Naturally, profiles
that are not as extreme in their preference will generate less bias in
the attacked system (and our experiments bear this out). However, in
many practical scenarios, for example, trying to push an item with
low ratings, a target shifted attack may be almost as effective as an
ordinary one.

While there are numerous ways a profile may be constructed to
avoid detection, we focus on these to illustrate the detection chal-
lenges that can occur with even minor changes to existing models.

3 Detecting Attack Profiles

We outline a set of detection attributes that have been introduced for
detecting attacks based on supervised learning techniques. Our goal
is to apply the attributes introduced in [4, 2, 9] and some additional
attributes to see their effectiveness at detecting obfuscated attacks
when trained on base attacks. For this method, training data is cre-
ated by combining genuine profiles from historic data with attack
profiles inserted following the base attack models described above.
Each profile is labeled as either an attack or as a genuine user. A bi-
nary classifier is then created based on this set of training data using
the attributes described below and any profile classified as an attack
will not be used in predictions.

These attributes come in two varieties: generic and model-specific.
The generic attributes are modeled on basic descriptive statistics that
attempt to capture some of the characteristics that will tend to differ-
entiate an attacker’s profile from a genuine user. The model-specific
attributes attempt to detect characteristics of specific attack models.

3.1 Generic Attributes

Generic attributes are based on the hypothesis that the overall sta-
tistical signature of attack profiles will differ from that of authentic
profiles. This difference comes from two sources: the rating given
the target item, and the distribution of ratings among the filler items.
As many researchers have theorized [7, 4, 10, 8], it is unlikely if not
unrealistic for an attacker to have complete knowledge of the ratings



in a real system. As a result, generated profiles are likely to deviate
from rating patterns seen for authentic users.

For the detection classifier’s data set we have used a number of
generic attributes to capture these distribution differences. These at-
tributes are:
• Rating Deviation from Mean Agreement [4], is intended to identify
attackers through examining the profile’s average deviation per item,
weighted by the inverse of the number of ratings for that item.
• Weighted Degree of Agreement [9], captures the sum of the differ-
ences of the profile’s ratings from the item’s average rating divided
by the item’s rating frequency.
• Weighted Deviation from Mean Agreement (WDMA), designed to
help identify anomalies, places a high weight on rating deviations
for sparse items. We have found it to provide the highest informa-
tion gain for obfuscated attacks as well as standard attacks of the
attributes we have studied. The WDMA attribute can be computed in
the following way:

WDMAu =

nu∑
i=0

|ru,i−ri|
l2
i

nu

where U is the universe of all users u; let Pu be a profile for user
u, consisting of a set of ratings ru,i for some items i in the universe
of items to be rated; let nu be the size of this profile in terms of the
numbers of ratings; and let li be the number of ratings provided for
item i by all users, and ri be the average of these ratings.
• Degree of Similarity with Top Neighbors (DegSim) [4], captures the
average similarity of a profile’s k nearest neighbors. As researchers
have hypothesized attack profiles are likely to have a higher similar-
ity with their top 25 closest neighbors than real users [4, 12]. We
also include a second slightly different attribute DegSim′ , which
captures the same metric as DegSim, but is based on the average
similarity discounted if the neighbor shares fewer than d ratings in
common. We have found this variant provides higher information
gain at low filler sizes. The User Shifting obfuscation technique is
specifically designed to reduce the effectiveness of these attributes.
• Length Variance (LengthVar) [2] indicates how much the length of
a given profile varies from the average length in the database. This
attribute is particularly effective at detecting large profile sizes often
associated with bots as few authentic users have rated as many items
as these larger filler sizes require.

3.2 Model-Specific Attributes

In our experiments, we have found that the generic attributes are in-
sufficient for distinguishing a attack profiles from eccentric but au-
thentic profiles. This is especially true when the profiles are small,
containing few filler items. As shown in Section 2, attacks can be
characterized based on the characteristics of their partitions it (the
target item), IS (selected items), and IF (filler items). Model-specific
attributes are those that aim to recognize the distinctive signature of
a particular attack model.

Our detection model discovers partitions of each profile that max-
imize its similarity to the attack model. To model this partitioning,
each profile is split into two sets. The set Pu,T contains all items
in the profile with the profile’s maximum rating (or minimum in the
case of a nuke attack); the set Pu,F consists of all other ratings in
the profile. Thus the intention is for Pu,T to approximate {it} ∪ IS

and Pu,F to approximate IF . (We do not attempt to differentiate it
from IS .) As these attributes are dependent on the accuracy of se-

lecting these partitions, the Target Shifting obfuscation technique is
designed to reduce their partitioning accuracy.

The average attack model divides the profile into three partitions:
it given an extreme rating, Pu,F given filler ratings, and unrated
items. The model essentially just needs to select an item to be it
and all other rated items become Pu,F . By the definition of the aver-
age attack, the filler ratings will be populated such that they closely
match the rating average for each filler item. We would expect that a
profile generated by an average attack would exhibit a high degree of
similarity (low variance) between its ratings and the average ratings
for each item except for the single item chosen as the target.

The intuition of this hypothesis is implemented by iterate through
all the highly-rated items, selecting each in turn as the possible target,
and then computing the mean variance between the non-target (filler)
items and the average across all users. Where this metric is minimum,
the target item is the one most compatible with the hypothesis of the
profile as being generated by an average attack, and the magnitude of
the variance is an indicator of how confident we might be with this
hypothesis. The Noise Injection obfuscation technique is designed to
increase the filler variance thus making the profile more resemble an
authentic profile, while still being very similar to the consensus item
rating. The partitioning is performed twice, once for a push attack as
described above and once for a nuke attack selecting low-rated items
as hypothesized targets. These two partitioning sets are used to create
two sets of the following attributes introduced in [2]:
• Filler Mean Variance, the partitioning metric described above.
• Filler Mean Difference, which is the average of the absolute value
of the difference between the user’s rating and the mean rating (rather
than the squared value as in the variance.)
• Profile Variance, capturing within-profile variance as this tends to
be low compared to authentic users

The group attack detection model was designed for detecting at-
tacks that target a group of items such as the Segment and Band-
wagon attack, however it is included here as it has been found to be
informative for single target attacks as well [9]. For this detection
model, the partitioning feature that maximizes the attack’s effective-
ness is the difference in ratings of items in the Pu,T set compared
to the items in Pu,F captured as the Filler Mean Target Difference
(FMTD) attribute. The effectiveness of this attribute is also reduced
by the Target Shifting obfuscation technique as the difference be-
tween the filler items and target item is decreased.

All of the attributes thus far have concentrated on inter-profile
statistics; target focus, however, concentrates on intra-profile statis-
tics. The goal is to use the fact that an attacker often must introduce
more than a single profile in order to achieve their desired bias. It
is therefore profitable to examine the density of target items across
profiles. One of the advantages of the partitioning associated with
the model-based attributes described above is that a set of suspected
targets is identified for each profile. For our Target Model Focus at-
tribute (TMF), we calculate the degree to which the partitioning of a
given profile focuses on items common to other attack partitions, and
therefore measures a consensus of suspicion regarding each profile.
Thus from an obfuscation perspective, if the techniques described
above can reduce the accuracy of the targets selected by the above
models, the effectiveness of this attribute will be reduced as well.

4 Experimental Methodology

Recommendation Algorithm – The standard kNN collaborative fil-
tering algorithm is based on user-to-user similarity [5]. In selecting
neighbors, we have used Pearson’s correlation coefficient for similar-



ities and a neighborhood size k = 20. Neighbors with a similarity of
less than 0.1 are filtered out to prevent predictions from being based
on distant or negative correlations. Once the most similar users are
identified, predictions are calculated as described in [8]. The attack
classification is incorporated by examining each profile and assign-
ing a classification of either attack or authentic. If a profile is classi-
fied as attack, the profile is not used in any prediction calculations.
Evaluation Metrics – There has been considerable research in the
area of recommender systems evaluation [6]. In evaluating security,
we are interested in change in performance induced by an attack
rather than raw performance. In the experiments reported below, we
follow the lead of [10] in measuring an algorithms stability via pre-
diction shift. The prediction shift metric as computed in [1] measures
the change in the predicted rating of an item before and after attack.

For measuring classification performance, we use the standard
measurements of precision and recall. Since we are primarily in-
terested in how well the classification algorithms detect attack, we
look at each of these metrics with respect to attack identification.
Thus precision is calculated as the fraction of true positives (actual
attacks) among all those profiles labeled as possible attacks, and re-
call is defined as the fraction of detected attacks among all of the
attack profiles injected.
Experimental Setup – For our detection experiments, we have used
the publicly-available Movie-Lens 100K dataset3. This dataset con-
sists of 100,000 ratings on 1682 movies by 943 users. All ratings
are integer values between one and five where one is the lowest (dis-
liked) and five is the highest (most liked). Our data includes all the
users who have rated at least 20 movies.

The attack detection and response experiments were conducted us-
ing a separate training and test set by partitioning the ratings data in
half. The first half was used to create training data for the attack de-
tection classifier used in later experiments. For each test the 2nd half
of the data was injected with attack profiles and then run through the
classifier that had been built on the augmented first half of the data.
This approach was used since a typical cross-validation approach
would be overly biased as the same movie being attacked would also
be the movie being trained for.

For these experiments we have used 15 total detection attributes:
6 generic attributes (WDMA, RDMA, WDA, Length Variance,
DegSim k = 450, and DegSim k = 2 with co-rating discounting
d = 963); 6 average attack model attributes (3 for push, 3 for nuke
– Filler Mean Variance, Filler Mean Difference, Profile Variance); 2
group attack model attributes (1 for push, 1 for nuke – FMTD); 1
target detection model attribute (TMF.)

The training data was created using the same technique described
in [9] by inserting a mix of random, average, segment, and band-
wagon attacks using base attack models described above and in [9]
for both push and nuke attacks at various filler sizes that ranged from
3% to 100%. Based on this training data, kNN with k = 9 was used
to make a binary profile classifier. To classify unseen profiles, the k
nearest neighbors in the training set are used to determine the class
using one over Pearson correlation distance weighting. Classification
results and the kNN classifier were created using Weka [13].

In all experiments, to ensure the generality of the results, 50
movies were selected at random representing a wide range of average
ratings and number of ratings. Each of these movies were attacked in-
dividually and the average is reported for all experiments. The exper-
iments used a sample of 50 users mirroring the overall distribution of
users in terms of number of movies seen and ratings provided. The

3 http://www.cs.umn.edu/research/GroupLens/data/
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Figure 2. Classification results for 1% Average push attack.

results reported below represent averages over the combinations of
test users and test movies.

To evaluate the obfuscation methods discussed above we have ex-
amined these techniques on the average and random attack models
for both push and nuke attacks. For the user shift technique, for both
models we shifted all of the filler items, and we used a Gaussian
distributed random number for shift amount. For the noise injection
technique we add noise to all of the filler items using a Gaussian
distributed random number multiplied by 0.2.

5 Experimental Results and Discussion

In our first set of experiments we compare the attack detection
model’s ability to detect the obfuscated attacks compared to the base
attacks (standard non-obfuscated attacks). As Figure 2 depicts the
target shifting obfuscation has little impact on the detection of av-
erage attack. The user shifted and noise injection techniques were
much more successful particularly at lower filler sizes where the re-
call degraded over 37% for average attack. (Results for the random
attack were similar.) Thus as the number of ratings increase, the pat-
terns that distinguish an attacker would become more apparent. The
same trends emerged for both average and random nuke attacks (re-
sults omitted). Recall of the nuke average attack dropped by over
30% for user shifting and noise injection, while recall of random at-
tack degraded by over 50%. Once again target shifting alone was
not particularly effective at disguising either of these attacks. Target
shifting may be more significant for models such as segment attack
since attributes designed to detect these attacks focus on target/filler
rating separation [9]. We intend to investigate obfuscating these types
of attacks in future work.

We also examined the impact on prediction shift due to deviat-
ing from the reverse-engineered attacks to avoid detection. We com-
pared the prediction shift of base attacks and obfuscated attacks on
a system without detection. Figure 3 depicts the maximum predic-
tion shift found for each attack across all filler sizes with the black
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Figure 3. Maximum prediction shift 1% push attacks across all filler sizes.

bars capturing the results against a system without detection and the
gray bars the results against a system with detection (we used filler
sizes between 3% and 10%). As the results show, the user-shifted and
noise-injected versions are nearly as effective as the non-obfuscated
versions without detection for both attack models at their most effec-
tive filler sizes. This means an attacker can mount an effective attack
using the obfuscation techniques with reduced chance of detection.

For both average and random attacks the user shifting obfuscation
is the most effective against a system that uses detection as seen in the
gray bars in Figure 3. Noise injection, however, is more effective than
the base attack against a system with detection for average attack, but
the obfuscated version is slightly less effective for random attack.
Intuitively, this makes sense since the random attack already is an
attack based on noise, and its lack of correlation to item averages is
one of the features that aides in its detection; additional noise being
added is unlikely to improve the correlation.

The classification and prediction shift results indicate that, when
combined with detection, average and random attacks at lower filler
sizes pose the most risk. To reduce the effect of these attacks at lower
filler sizes, one approach would be to discount profiles that have
fewer items in their profile. Herlocker et al. introduced such a varia-
tion in [5] that discounts similarity between profiles that have fewer
than 50 co-rated items by n/50 where n is the number of co-rated
items. While this modification was proposed originally to improve
prediction quality, it has some interesting effects on changing the
characteristics of effective attacks as well. As Figure 4 shows, while
the average and random attacks are about as effective against the co-
rate discounted version as they are against the basic version at high
filler sizes, at low filler sizes their impact is far less. When combined
with the detection model outlined above the largest prediction shift
achieved by any of the attacks described above is only .06 compared
to the .86 shift achieved against basic kNN. This combination may
not be as effective against attacks that focus specifically on popular
items, since they are designed to increase the likelihood of co-rating,
but it does appear to add significant robustness for the attacks studied
in this paper.

A more challenging problem will likely be ensuring robustness
against unknown attacks as profile classification alone may be insuf-
ficient. Unlike traditional classification problems where patterns are
observed and learned, in this context there is a competitive aspect
since attackers are motivated to actively look for ways to beat the
classifier. Given this dynamic, a solution may lie in combining mul-
tiple detection approaches such as time series or rating distribution
analysis. We envision combining the techniques above with other de-
tection techniques to create a comprehensive detection framework.
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