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Abstract

Recent research in recommender systems has shown
that collaborative filtering algorithms are highly
susceptible to attacks that insert biased profile data.
Theoretical analyses and empirical experiments have
shown that certain attacks can have a significant impact
on the recommendations a system provides. These
analyses have generally not taken into account the cost
of mounting an attack or the degree of prerequisite
knowledge for doing so. For example, effective attacks
often require knowledge about the distribution of user
ratings: the more such knowledge is required, the more
expensive the attack to be mounted. In our research, we
are examining a variety of attack models, aiming to
establish the likely practical risks to collaborative
systems. In this paper, we examine user-based
collaborative filtering and some attack models that are
successful against it, including a limited knowledge
"bandwagon" attack that requires only that the attacker
identify a small number of very popular items and a
user-focused "favorite item™ attack that is also effective
against item-based algorithms.

1 Introduction

Recommendation systems are an increasingly important
component of electronic commerce and other
information access systems. Users have come to trust
personalization and recommendation software to reduce
the burden of navigating large information spaces and
product catalogs. However, it has now been well-
established that the most widely-used and well-
understood collaborative algorithm, user-based nearest-
neighbor collaborative filtering is highly susceptible to
attack [8,13]. A hostile agent can insert biased profiles
into such a system to cause it to favor certain products.
The overall goal of our research is to look at
recommender systems of all kinds, collaborative and
others, and identify algorithms and approaches that are
robust against attacks. The example of the Google
search engine® is a real-world case in which a hybrid
approach adding collaborative, link-based data serves
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as a measure of defense against attackers manipulating
the basic data on which search engine recommendations
are based (the word-level features of web pages.) We
are interested in the spectrum of recommendation
hybrids and their potential benefits for recommendation
security [2].

The issue of the injection of bias is not limited
to recommender systems. Any open personalization
system is by definition vulnerable to the introduction of
biased data generated by attackers interested in biasing
the system's results to suit their own ends.

The primary attack models used in prior
research are the sampling attack [13], where biased
profiles are constructed from samples of the actual user
data; the random attack where [8] user profiles are
generated randomly based on the overall distribution of
user ratings in the database; and the average attack [8],
where the rating for each item is computed based on its
average rating for all users. The sampling attack has
useful theoretical properties but is not one that can be
realistically mounted. The average and random attacks,
as previously envisioned, require that the attacker create
complete profiles: a rating for each item, also probably
an unrealistic requirement.

This paper addresses the question of practical
attack models. Can an attacker armed with reasonable
guesses be successful, or must an attack be based on
detailed knowledge of the rating distribution? How
large do attack profiles need to be in order to be
successful? One type of attack that requires both limited
knowledge and modest profile size is the "bandwagon
attack", introduced in [3]. The goal of the bandwagon
attack is to associate the attacked item with a small
number of frequently-rated items. Another type of
attack, called the “favorite item” attack, looks at the
knowledge about a target user's preferences, rather than
knowledge about items ratings of all users on items.
Our experiments indicate that attacks can be successful
against collaborative filtering systems even when they
use limited knowledge. Indeed several of the attack
models improve in performance when limited in their
scope and the bandwagon attack in particular is not
dependent on any knowledge about the data distribution
inside the system.



Correlation
Item1 Item2 Item3 Item4 Item5 Item6 with Alice

Alice 5 2 3 3 ?

Userl 2 4 1 -1.00
User2 2 1 3 2 0.33
User3 4 2 3 2 1 0.90
User4 3 3 2 3 1 0.19
User5 3 2 2 2 -1.00
User6 5 3 1 3 2 0.65
User7 5 5 1 -1.00
Attackl 2 3 2 5 -1.00
Attack2 2 3 2 5 0.76
Attack3 3 2 2 2 5 0.93

Figure 1. A push attack favoring Item6.

2 Attack Models and Attacker

Knowledge

From the perspective of the attacker, the best attack
against a system is one that yields the biggest impact
for the least amount of effort. There are various ways
that the effort required to mount an attack can be
evaluated, but in this paper, we will emphasize the issue
of knowledge: what does the attacker have to know in
order to launch the attack? Different attack models
make different assumptions about what the attacker
knows and can be differentiated on that basis.

An attack against a collaborative filtering
recommender system consists of a set of attack profiles,
biased profile data associated with fictitious user
identities, and a pushed item, the item that the attacker
wishes the system to recommend more highly.? An
attack model is an approach to constructing the attack
profile, based on knowledge about the recommender
system, its rating database, its products, and/or its users.
The form of a push attack profile is depicted in Figure
2. An attack profile consists of a m-dimensional vector
of ratings, were m is the total number of items in the
system. The rating given to the pushed item, target, is
rmax and is the maximum allowable rating value. The
ratings ry through r,,,.; are assigned to the corresponding
items according to the specific attack model. Indeed,
the specific strategy used to assign ratings to items 1
through m-1 is what determines the type of attack
model used.

2.1 An lllustrative Example

Consider, as an example, a recommender system that
identifies books that users might like to read using a

2 Itis also possible to mount an attack aimed at preventing an
item from being recommended: what [13] calls the "nuke"
attack. We concentrate here on the "push” attack.

user-based collaborative algorithm [5]. A user profile
in this hypothetical system might consist of that user’s
ratings (in the scale of 1-5 with 1 being the lowest) on
various books (items). Alice, having built up a profile
from previous visits, returns to the system for new
recommendations. Figure 1 shows Alice's profile along
with that of seven genuine users. An attacker agent,
Eve, has inserted attack profiles (Attackl-3) into the
system, all of which give high ratings to her book
labeled Item6. Without the attack profiles, the most
similar user to Alice, using a correlation coefficient,
would be User3. The prediction associated with Item6
would be 1, essentially stating that Item6 is likely to be
strongly disliked by the user. If the algorithm used the
closest 3 users (users 3, 6, and 2), the system would still
be unlikely to recommend the item.

Eve's attack profiles may closely match the
profiles of existing users (if Eve is able to obtain or
predict such information), or they may be based on
average or expected ratings of items across all users. In
the example of Figure 1, the Attack3 profile is the most
similar one to Alice, and would yield a predicted rating
of 5 for Item6, the opposite of what would have been
predicted without the attack. Taking the most similar 3
users in this small database would not offer any
defense: Attack3, User3, and Attack2 would be selected
and Item6 would still receive an above average
recommendation score. So, in this example, the attack
is successful, and Alice will likely get Item6 as a
recommendation, regardless of whether this is really the
best suggestion for her. She may find the suggestion
inappropriate, or worse, she may take the system's
advice, buy the book, and then be disappointed by the
delivered product.

Prior work on recommender system stability
has examined primarily three types of attack models:

e Sampling attack: A sampling attack is one in which
attack profiles are constructed from entire user
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Figure 2. A push attack profile.

profiles sampled from the actual profile database,
augmented by a positive rating for the pushed item.
This attack is used by O'Mahony et al. [8] to provide
a proof of the instability of collaborative filtering
algorithms, but is the least practical from a
knowledge point of view.

Random attack: Lam et al. [8] show an attack model
in which profiles consist of random values (except of
course for a positive rating given to the pushed item).
Specifically, r; through r,, are assigned to the
corresponding items by generating random values
within the rating scale with a distribution centered
around the mean for all user ratings across all items.
The knowledge required to mount such an attack is
quite minimal, especially since the overall rating
mean in many systems can be determined by an
outsider empirically (or, indeed, may be available
directly from the system). The effort involved,
however, is still substantial, since it involves
assigning ratings to every item in each attack profile.
Furthermore, as we shall see in the following, the
attack is not particularly effective.

Average attack: A more powerful attack described
in [8] uses the individual mean for each item rather
than the global mean (except again the pushed item.)
In the average attack, each assign rating, r;, in an
attack profile corresponds (either exactly or
approximately) to the mean rating for item;, across

the users in the database who have rated that item. In
addition to the effort involved in producing the
ratings, the average attack also has considerable
knowledge requirements, namely, of order m where
m is the number of products in the profile database.
Our research, however, suggests that the average
attack can be just as successful by assigning the
average ratings to a small subset of items in the
database, thus substantially reducing the knowledge
requirement.

In addition to these of attack models, we are
investigating a number of others, some of which were
introduced in [3]. In this paper, we specifically focus on
two new attack models:

e Bandwagon attack: This attack takes advantage of
the Zipf's law distribution of popularity in consumer
markets — a small number of items, best-seller books
for example, will receive the lion's share of attention
and also ratings. The attacker using this model will
build attack profiles containing those items that have
high visibility. Such profiles will have a good
probability of being similar to a large number of
users, since the high visibility items are those that
many users have rated. For example, by associating
her book with current best-sellers, Eve can ensure
that her bogus profiles have a good probability of
matching any given user, since so many users will
have these items on their profiles. This attack has the
benefit of not requiring any system-specific data — it
is usually not difficult to independently determine
what the "blockbuster" products are in any product
space.

Figure 3 depicts a typical attack profile for the
bandwagon attack. Items FR; through FR, are
selected because they have been rated by a large
number of users in the database. These items are
assigned the maximum rating value together with the
target item. The ratings r; through r,,.; for the other
items are determined randomly in a similar manner as
in the random attack. It is, therefore, important to
note that the bandwagon attack can be viewed as an
extension of the random attack. However, as we shall
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Figure 3. A Bandwagon attack profile.
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Figure 4. A Favorite Item attack profile.

see in the following, the bandwagon attack can still
be successful even when only a small subset of the
“random items”, item; through item,,,.; are assigned
ratings.

e Favorite item attack: (called the "consistency
attack” in [3]) Rather than knowledge about items,
the favorite item attack looks at knowledge of user's
preferences. Such an attack is mounted not against
the system as a whole, but by targeting a given user
(or a group of users). We assume that the attacker
knows which items a given user, u, really likes, and
builds profiles containing only those items. Like the
sampling attack, this attack is not particularly
practical from a knowledge standpoint, but provides
an upper bound on the effectiveness of other attacks
focused on user characteristics. It could, however, be
extremely effective if the attacker has substantial
knowledge about an individual. Figure 4 depicts a
typical attack profile for the favorite item attack.
FI;(u) represent the favorite items by user u selected
in the attack profile. These items are assigned
maximum rating value together with the target item.
On the other hand, the other items in the database,
item, through itemy, ., are assigned ratings at random
or based on other criteria. In our experiments, best
results were obtained when the non-favored items are
assigned the lowest possible rating. The favorite item
attack has the benefit of being effective against both
user-based and item-based algorithms as our
experiments below confirm.

3 Background on Recommendation
Algorithms

We have concentrated in this work on the most
commonly-used algorithms for user-based and item-
based collaborative filtering. Each algorithm assumes
that there is a user / item pair for whom a prediction is
sought, the target user and the target item. The task for
the algorithm is to predict the target user's rating for the
target item.

3.1 User-based Collaborative Filtering

The standard collaborative filtering algorithm is based
on user-to-user similarity [5]. The algorithm operates
by selecting the k most similar users to the target user,
and computes a prediction by combining the
preferences of these users. The similarity between the
target user, u, and a neighbor, v, is usually calculated
using the standard Pearson’s r correlation coefficient,
which we denote by sim,,. Once similarities are
calculated, the most similar users are selected. In our
implementation, we have used a value of 20 for the
neighborhood size k. We also filter out all neighbors
with a similarity of less than 0.1 to prevent predictions
being based on very distant or negative correlations.
Once the most similar users are identified, we use the
following formula to compute the prediction for an item
i for target user u.

z Simu,v(rv,i _Tv)
veV
Z‘simu,V

where V is the set of k similar users and T, ;is the

pu,i =0+

c

rating of those users who have rated item i and T is the
average rating for the target user over all rated items,

sim,, is the mean-adjusted Pearson correlation

described above. The formula in essence computes the
degree of preference of all the neighbors weighted by
their similarity and then adds this to the target user's
average rating: the idea being that different users may
have different "baselines" around which their ratings
are distributed.

3.2 Item-based collaborative filtering

Item-based collaborative filtering works by comparing
items based on their pattern of ratings across users.



Again, a nearest-neighbor approach can be used. The
kNN algorithm attempts to find k similar items that are
co-rated by different users similarly.

For our purpose we have adopted the adjusted
cosine similarity measure introduced by [14]. The
adjusted cosine similarity formula is given by

Z(ru,i _ru)*(ru,j _ru)

sim, | = LY

Jz(ru,i —mZ*Ji(ru,,- —r)?

ueU ueu

where I, ; represents the rating of user u on item i, and

I, is the average of the user u's ratings as before. After

computing the similarity between items we select a set
of k most similar items to the target item and generate a
predicted value by using the following formula

.
Zruyj sim, |
jeld

D sim, |

jed

pu,i =

where Jis the set of k similar items, T, ;is the

prediction for the user on item j, and Simi'j is the

similarity between items i and j as defined above. We
consider a neighborhood of size 20 and ignore items
with negative similarity. The idea here is to use the
user's own ratings for the similar items to extrapolate
the prediction for the target item.

3.3 Evaluation Metrics

There has been considerable research in the area of
recommender systems evaluation [6]. Some of these
concepts can also be applied to the evaluation of the
security of recommender systems, but in evaluating
security, we are interested not in raw performance, but
rather in the change in performance induced by an
attack. In [13] two evaluation measures were
introduced: robustness and stability. Robustness
measures the performance of the system before and
after an attack to determine how the attack affects the
system as a whole. Stability looks at the shift in
system's ratings for the attacked item induced by the
attack profiles.

Our goal is to measure the effectiveness of an
attack — the "win" for the attacker. The desired outcome

for the attacker in a "push™ attack is of course that the
pushed item be more likely to be recommended after
the attack than before. One way to measure this change
in likelihood is to measure prediction shift, the average
change in the predicted rating for the attacked item
before and after the attack [8].

Our average prediction shift is defined as
follows. Let U and I be the set of target users and items.
For each user-item pair <u,i> the prediction shift

denoted by A,;, can be measured as

A,;=P,;— P,; where p'represents the prediction

after the attack and p before. A positive value means

that the attack has succeeding in making the pushed
item more positively rated. The average prediction shift
for an item i over all users can be computed as

A=Y AU

ueU

Similarly the average prediction shift for all items
tested can be computed as

A=Y A

iel

Note that a strong prediction shift is not a
guarantee that an item will be recommended — it is
possible that other items' scores are affected by an
attack as well or that the item scores so low to begin
with that even a significant shift does not promote it to
"recommended" status.

We plan to explore other metrics based on
recommendation behavior, such as the bin-based
techniques suggested in [8] and others, in our future
work.

4 Experiments with Attack Models

In our experiments we have used the publicly-available
Movie- Lens dataset [12]. This dataset consists of
100,000 ratings on 1682 movies by 943 users. All
ratings are integer values between one and five where
one is the lowest (disliked) and five is the highest (most
liked) . Our data includes all the users who have rated at
least 20 movies. To perform our attack experiments, we
must average over a number of different attack items,
so we selected 50 movies taking care that the
distribution of ratings for these movies matched the
overall ratings distribution of all movies. We also
selected a sample of 50 users as our test data, again
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Figure 5. Prediction shift with varying profile sizes
in the average attack

mirroring the overall distribution of users in terms of
number of movies seen and ratings provided.

4.1 Attacks Based on Knowledge about
Items

The average attack was shown to be highly successful
in prior work and our initial investigations also
indicated that this was the case. However, the
knowledge requirements for the average attack are
substantial. The attacker must collect mean rating
information for every item in the system. A natural
question to ask is what is the dependence between the
power of the attack and the amount of knowledge
behind it? Can we reduce the amount of knowledge
used to generate the attack and still be successful?

To investigate this question, we experimented
with variants of the average attack in which random
subsets of the items of different sizes were chosen for
inclusion in attack profiles. This experiment uses a
(rather large) attack size of 15%, meaning that the
number of attack profiles inserted is equal to 15% of the
original pre-attack user database. Figure 5 shows the
rather surprising results of this experiment. The “profile
size” in the Figure corresponds to the percentage of
items 1 through m-1 (see Figure 2), that were assigned
average ratings in the attack profile. The remaining
items in the database (with the exception of the target
item) were left with no ratings.

As the amount of the knowledge increases to
around 10%, the prediction shift rises sharply to around
1.6 but after this point it drops off gradually ending at
100% around 1.3. A similar effect was seen at smaller
attack sizes. This would appear to be a consequence
also of Zipf's law: most users will not have rated more
than a small fraction of the product space; a person can
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Figure 6. Prediction shift with varying profile sizes
in the bandwagon attack.

only see so many movies. An attacker, therefore, only
needs to use part of the product space to make the
attack effective. The attack has to achieve a balance
between coverage (including enough movies so that it
can be used for comparison with any given user) and
generality (every movie that is included creates the
possibility that the profile will be dissimilar to any
given user.) What is surprising is that the optimum of
this trade-off appears to come with so few ratings.

A similar phenomenon can be observed in the
bandwagon attack. Recall that in this case the attacker
does not need to know anything system-specific, merely
that certain items are the popular ones that users are
likely to have rated. The attacker selects k such items
that will be rated highly along with the target item. The
profile size, in this case, is the proportion of the
remaining m-k-1 items that are assigned random ratings
based on the overall data distribution across the whole
database (see Figure 3). In the case of MovieLens, these
frequently rated items are predictable box office
successes including such titles as Star Wars, Return of
Jedi, Titanic, etc. The attack profiles consist of high
ratings given to these popular titles in conjunction with
high ratings for the pushed movie. Figure 6 shows the
effect of profile size on the effectiveness of this attack.
In this particular experiment we set k (in Figure 3) to 1
Thus., only selected the most frequently rated items in
the database to be rated in conjunction with the target
item. We also used an attack size of 10% (i.e., the
number of attack profiles were about 10% of the size of
the original database). For the bandwagon attack, the
best results were obtained by using a 7% profile size
(i.e., in each attack profile, only 7% of items, beyond
the selected frequent items, were assigned ratings). This
number seems to correspond closely to the average
number of movies rated by a random user in the
database.
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Figure 7 shows the results of a comparative
experiment examining four algorithms at different
attack sizes. The algorithms include the average attack
(10% and 100% profile sizes), the bandwagon attack
(using 1 frequently rated item and 7% profile size), and
the random attack.

We see that even without system-specific data
an attack like the bandwagon attack can be successful at
higher attack levels. The more knowledge-intensive
average attack is still better, but the best performance is
achieved with relatively small profiles. The summative
knowledge used in the average attack is obviously quite
powerful — recall that the rating scale in this domain is
1-5 with an average of 3.6, so a rating shift of 1.5 is
enough to lift an average-rated movie to the top of the
scale. On the other hand, the bandwagon attack is able
to surpass the average attack in performance, even with
minimal knowledge requirement. All that is necessary
for an attacker is to identify a few items that are likely
to be rated by many users.

4.2 Attacks Based on Knowledge about

Users
We might imagine that an attacker could have more
direct specific knowledge about individual users of a
system. The attacker might have demographic and
marketing data that sorts the users into market segments
whose preferences might be highly predictable. The
segmented attack introduced in [3] is one that we intend
to pursue in our continuing research. In this paper, we
look at a kind of upper bound for the utility of this kind
of knowledge in the form of the favorite item attack
(see Figure 4).

The favorite item attack assumes that we can
identify a handful of items that each user likes. Liked

Figure 8. The favorite item attack

items are most likely to be rated — users can often
predict that they will not like a particular movie and
therefore avoid seeing it. Attack profiles can then be
assembled that consist of these liked items and the
pushed movie. Other movies are assigned low ratings.
Note that a new attack must be formulated for each
target user. This is not practical, of course, but if we
generalize from the single user to a market niche of
users with similar tastes, it becomes plausible that an
attacker might construct an attack targeted only to that
niche. Figure 8 shows that this attack, with its user-
specific knowledge, is even more successful than the
best average attack results previously seen.

The favorite item attack was introduced in [3]
as an approach that appeared to have a theoretical
advantage over previously-developed attack types when
applied to the item-based collaborative filtering. Lam et
al. [8] showed that the average attack was significantly
less successful against item-based algorithms and
suggested that item-based algorithms were generally
more robust. More work remains to be done on this
question. However, Figure 9 demonstrates that the
favorite item attack is much more successful against the
item-based attack than the average attack, and the effect
is quite a bit stronger than its advantage against the
user-based algorithms. This is because the favorite item
attack directly manipulates the columns of the rating
matrix. We plan to explore more practical variants of
the favorite item attack in our future work.

5 Conclusions and Future Work

Our experiments have shown that attacks can be
successful against collaborative filtering systems even
when they use limited knowledge. Indeed several of the
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attack models improve in performance when limited in
their scope and the bandwagon attack in particular is
not dependent on any knowledge about the data
distribution inside the system.

Our research here makes use of the explicit
numeric ratings available in the MovielLens data set.
Many recommender systems make use of implicit
ratings, ratings that are inferred from user behavior,
rather than explicitly provided by the user. (See the
research reviewed in [7].) Such data sources may have
different characteristics than the classic explicit rating
scenario. In Web usage mining [4] [15], Web server
logs are examined for link traversal and dwell time and
continuously-valued ratings derived from this analysis,
and as a result, negative ratings are not available from
Web usage data. Web usage mining techniques, such as
clustering and association rule discovery [9] [10] [11],
are alternate recommendation mechanisms whose
susceptibility to bias have yet to be explored.
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