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Abstract 
 
Recent research in recommender systems has shown 
that collaborative filtering algorithms are highly 
susceptible to attacks that insert biased profile data. 
Theoretical analyses and empirical experiments have 
shown that certain attacks can have a significant impact 
on the recommendations a system provides. These 
analyses have generally not taken into account the cost 
of mounting an attack or the degree of prerequisite 
knowledge for doing so. For example, effective attacks 
often require knowledge about the distribution of user 
ratings: the more such knowledge is required, the more 
expensive the attack to be mounted. In our research, we 
are examining a variety of attack models, aiming to 
establish the likely practical risks to collaborative 
systems. In this paper, we examine user-based 
collaborative filtering and some attack models that are 
successful against it, including a limited knowledge 
"bandwagon" attack that requires only that the attacker 
identify a small number of very popular items and a 
user-focused "favorite item" attack that is also effective 
against item-based algorithms. 
 
1 Introduction 
 
Recommendation systems are an increasingly important 
component of electronic commerce and other 
information access systems. Users have come to trust 
personalization and recommendation software to reduce 
the burden of navigating large information spaces and 
product catalogs. However, it has now been well-
established that the most widely-used and well-
understood collaborative algorithm, user-based nearest-
neighbor collaborative filtering is highly susceptible to 
attack [8,13]. A hostile agent can insert biased profiles 
into such a system to cause it to favor certain products. 
  The overall goal of our research is to look at 
recommender systems of all kinds, collaborative and 
others, and identify algorithms and approaches that are 
robust against attacks. The example of the Google 
search engine1 is a real-world case in which a hybrid 
approach adding collaborative, link-based data serves 
                                                 
1 www.google.com 

as a measure of defense against attackers manipulating 
the basic data on which search engine recommendations 
are based (the word-level features of web pages.) We 
are interested in the spectrum of recommendation 
hybrids and their potential benefits for recommendation 
security [2]. 
  The issue of the injection of bias is not limited 
to recommender systems. Any open personalization 
system is by definition vulnerable to the introduction of 
biased data generated by attackers interested in biasing 
the system's results to suit their own ends.  
  The primary attack models used in prior 
research are the sampling attack [13], where biased 
profiles are constructed from samples of the actual user 
data; the random attack where [8] user profiles are 
generated randomly based on the overall distribution of 
user ratings in the database; and the average attack  [8], 
where the rating for each item is computed based on its 
average rating for all users. The sampling attack has 
useful theoretical properties but is not one that can be 
realistically mounted. The average and random attacks, 
as previously envisioned, require that the attacker create 
complete profiles: a rating for each item, also probably 
an unrealistic requirement.  

This paper addresses the question of practical 
attack models. Can an attacker armed with reasonable 
guesses be successful, or must an attack be based on 
detailed knowledge of the rating distribution? How 
large do attack profiles need to be in order to be 
successful? One type of attack that requires both limited 
knowledge and modest profile size is the "bandwagon 
attack", introduced in [3]. The goal of the bandwagon 
attack is to associate the attacked item with a small 
number of frequently-rated items.  Another type of 
attack, called the “favorite item” attack, looks at the 
knowledge about a target user's preferences, rather than 
knowledge about items ratings of all users on items.  
Our experiments indicate that attacks can be successful 
against collaborative filtering systems even when they 
use limited knowledge.  Indeed several of the attack 
models improve in performance when limited in their 
scope and the bandwagon attack in particular is not 
dependent on any knowledge about the data distribution 
inside the system. 
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Item1 Item2 Item3 Item4 Item5 Item6 

Correlation 
with Alice 

Alice 5 2 3 3   ?   
User1 2   4   4 1 -1.00 
User2 2 1 3   1 2 0.33 
User3 4 2 3 2   1 0.90 
User4 3 3 2   3 1 0.19 
User5   3   2 2 2 -1.00 
User6 5 3   1 3 2 0.65 
User7   5   1 5 1 -1.00 
Attack1 2   3   2 5 -1.00 
Attack2 3 2 3   2 5 0.76 
Attack3 3 2 2 2   5 0.93 

Figure 1. A push attack favoring Item6. 
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user-based collaborative algorithm [5].  A user profile 
in this hypothetical system might consist of that user’s 
ratings (in the scale of 1-5 with 1 being the lowest) on 
various books (items). Alice, having built up a profile 
from previous visits, returns to the system for new 
recommendations. Figure 1 shows Alice's profile along 
with that of seven genuine users. An attacker agent, 
Eve, has inserted attack profiles (Attack1-3) into the 
system, all of which give high ratings to her book 
labeled Item6. Without the attack profiles, the most 
similar user to Alice, using a correlation coefficient, 
would be User3. The prediction associated with Item6 
would be 1, essentially stating that Item6 is likely to be 
strongly disliked by the user. If the algorithm used the 
closest 3 users (users 3, 6, and 2), the system would still 
be unlikely to recommend the item. 
  Eve's attack profiles may closely match the 
profiles of existing users (if Eve is able to obtain or 
predict such information), or they may be based on 
average or expected ratings of items across all users. In 
the example of Figure 1, the Attack3 profile is the most 
similar one to Alice, and would yield a predicted rating 
of 5 for Item6, the opposite of what would have been 
predicted without the attack. Taking the most similar 3 
users in this small database would not offer any 
defense: Attack3, User3, and Attack2 would be selected 
and Item6 would still receive an above average 
recommendation score. So, in this example, the attack 
is successful, and Alice will likely get Item6 as a 
recommendation, regardless of whether this is really the 
best suggestion for her. She may find the suggestion 
inappropriate, or worse, she may take the system's 
advice, buy the book, and then be disappointed by the 
delivered product. 
  Prior work on recommender system stability 
has examined primarily three types of attack models: 
 
• Sampling attack: A sampling attack is one in which 

attack profiles are constructed from entire user 
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profiles sampled from the actual profile database, 
augmented by a positive rating for the pushed item. 
This attack is used by O'Mahony et al. [8] to provide 
a proof of the instability of collaborative filtering 
algorithms, but is the least practical from a 
knowledge point of view. 

 

• Random attack: Lam et al. [8] show an attack model 
in which profiles consist of random values (except of 
course for a positive rating given to the pushed item). 
Specifically, r1 through rm-1 are assigned to the 
corresponding items by generating random values 
within the rating scale with a distribution centered 
around the mean for all user ratings across all items. 
The knowledge required to mount such an attack is 
quite minimal, especially since the overall rating 
mean in many systems can be determined by an 
outsider empirically (or, indeed, may be available 
directly from the system). The effort involved, 
however, is still substantial, since it involves 
assigning ratings to every item in each attack profile. 
Furthermore, as we shall see in the following, the 
attack is not particularly effective. 

 

• Average attack: A more powerful attack described 
in [8] uses the individual mean for each item rather 
than the global mean (except again the pushed item.) 
In the average attack, each assign rating, ri, in an 
attack profile corresponds (either exactly or 
approximately) to the mean rating for itemi, across 

the users in the database who have rated that item. In 
addition to the effort involved in producing the 
ratings, the average attack also has considerable 
knowledge requirements, namely, of order m where 
m is the number of products in the profile database. 
Our research, however, suggests that the average 
attack can be just as successful by assigning the 
average ratings to a small subset of items in the 
database, thus substantially reducing the knowledge 
requirement. 

 

rmaxrm-1…r2r1

targetitemm-1…item2item1

rmaxrm-1…r2r1

targetitemm-1…item2item1

Assigned ratings for other 
items in the database

Rating for the 
pushed item  

 
Figure 2. A push attack profile. In addition to these of attack models, we are 

investigating a number of others, some of which were 
introduced in [3]. In this paper, we specifically focus on 
two new attack models: 
 
• Bandwagon attack: This attack takes advantage of 

the Zipf's law distribution of popularity in consumer 
markets – a small number of items, best-seller books 
for example, will receive the lion's share of attention 
and also ratings. The attacker using this model will 
build attack profiles containing those items that have 
high visibility. Such profiles will have a good 
probability of being similar to a large number of 
users, since the high visibility items are those that 
many users have rated. For example, by associating 
her book with current best-sellers, Eve can ensure 
that her bogus profiles have a good probability of 
matching any given user, since so many users will 
have these items on their profiles. This attack has the 
benefit of not requiring any system-specific data – it 
is usually not difficult to independently determine 
what the "blockbuster" products are in any product 
space. 

Figure 3 depicts a typical attack profile for the 
bandwagon attack. Items FR1 through FRk are 
selected because they have been rated by a large 
number of users in the database. These items are 
assigned the maximum rating value together with the 
target item.  The ratings r1 through rm-k-1 for the other 
items are determined randomly in a similar manner as 
in the random attack. It is, therefore, important to 
note that the bandwagon attack can be viewed as an 
extension of the random attack. However, as we shall 
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Figure 3. A Band
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wagon attack profile. 
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Figure 4. A Favorite Item attack profile. 

see in the following, the bandwagon attack can still 
be successful even when only a small subset of the 
“random items”, item1 through itemm-k-1 are assigned 
ratings. 

• Favorite item attack: (called the "consistency 
attack" in [3]) Rather than knowledge about items, 
the favorite item attack looks at knowledge of user's 
preferences. Such an attack is mounted not against 
the system as a whole, but by targeting a given user 
(or a group of users). We assume that the attacker 
knows which items a given user, u, really likes, and 
builds profiles containing only those items. Like the 
sampling attack, this attack is not particularly 
practical from a knowledge standpoint, but provides 
an upper bound on the effectiveness of other attacks 
focused on user characteristics. It could, however, be 
extremely effective if the attacker has substantial 
knowledge about an individual. Figure 4 depicts a 
typical attack profile for the favorite item attack. 
FIi(u) represent the favorite items by user u selected 
in the attack profile. These items are assigned 
maximum rating value together with the target item. 
On the other hand, the other items in the database, 
item1 through itemm-k-1 are assigned ratings at random 
or based on other criteria. In our experiments, best 
results were obtained when the non-favored items are 
assigned the lowest possible rating. The favorite item 
attack has the benefit of being effective against both 
user-based and item-based algorithms as our 
experiments below confirm. 

 
3 Background on Recommendation 

Algorithms 
 
We have concentrated in this work on the most 
commonly-used algorithms for user-based and item-
based collaborative filtering. Each algorithm assumes 
that there is a user / item pair for whom a prediction is 
sought, the target user and the target item. The task for 
the algorithm is to predict the target user's rating for the 
target item.  
 
 

3.1 User-based Collaborative Filtering 
 
The standard collaborative filtering algorithm is based 
on user-to-user similarity [5]. The algorithm operates 
by selecting the k most similar users to the target user, 
and computes a prediction by combining the 
preferences of these users. The similarity between the 
target user, u, and a neighbor, v, is usually calculated 
using the standard Pearson’s r correlation coefficient, 
which we denote by simu,v. Once similarities are 
calculated, the most similar users are selected. In our 
implementation, we have used a value of 20 for the 
neighborhood size k. We also filter out all neighbors 
with a similarity of less than 0.1 to prevent predictions 
being based on very distant or negative correlations. 
Once the most similar users are identified, we use the 
following formula to compute the prediction for an item 
i for target user u.  
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where is the set of k similar users and is the 

rating of those users who have rated item i and 

V ivr ,

ur  is the 
average rating for the target user over all rated items, 

 is the mean-adjusted Pearson correlation 
described above. The formula in essence computes the 
degree of preference of all the neighbors weighted by 
their similarity and then adds this to the target user's 
average rating: the idea being that different users may 
have different "baselines" around which their ratings 
are distributed.  

vusim .

 
3.2 Item-based collaborative filtering 
 
Item-based collaborative filtering works by comparing 
items based on their pattern of ratings across users. 
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Again, a nearest-neighbor approach can be used. The 
kNN algorithm attempts to find k similar items that are 
co-rated by different users similarly.  

For our purpose we have adopted the adjusted 
cosine similarity measure introduced by [14]. The 
adjusted cosine similarity formula is given by 
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where represents the rating of user u on item i, and iur ,

ur is the average of the user u's ratings as before. After 
computing the similarity between items we select a set 
of k most similar items to the target item and generate a 
predicted value by using the following formula 
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where is the set of k similar items, is the 

prediction for the user on item j, and  is the 
similarity between items i and j as defined above. We 
consider a neighborhood of size 20 and ignore items 
with negative similarity. The idea here is to use the 
user's own ratings for the similar items to extrapolate 
the prediction for the target item. 

J jur ,

jisim ,

3.3 Evaluation Metrics  
 
There has been considerable research in the area of 
recommender systems evaluation [6]. Some of these 
concepts can also be applied to the evaluation of the 
security of recommender systems, but in evaluating 
security, we are interested not in raw performance, but 
rather in the change in performance induced by an 
attack.  In [13] two evaluation measures were 
introduced: robustness and stability. Robustness 
measures the performance of the system before and 
after an attack to determine how the attack affects the 
system as a whole. Stability looks at the shift in 
system's ratings for the attacked item induced by the 
attack profiles. 

Our goal is to measure the effectiveness of an 
attack – the "win" for the attacker. The desired outcome 

for the attacker in a "push" attack is of course that the 
pushed item be more likely to be recommended after 
the attack than before. One way to measure this change 
in likelihood is to measure prediction shift, the average 
change in the predicted rating for the attacked item 
before and after the attack [8].  

Our average prediction shift is defined as 
follows. Let U and I be the set of target users and items. 
For each user-item pair <u,i> the prediction shift 
denoted by iu ,∆ , can be measured as 

iuiuiu pp ,,, −′=∆  where represents the prediction 
after the attack and before. A positive value means 
that the attack has succeeding in making the pushed 
item more positively rated. The average prediction shift 
for an item i over all users can be computed as  

p′
p

 

, /i u i
u U

U
∈

∆ = ∆∑  . 

 
Similarly the average prediction shift for all items 
tested can be computed as 
 

/i
i I

I
∈

∆ = ∆∑ . 

 
Note that a strong prediction shift is not a 

guarantee that an item will be recommended – it is 
possible that other items' scores are affected by an 
attack as well or that the item scores so low to begin 
with that even a significant shift does not promote it to 
"recommended" status.  

We plan to explore other metrics based on 
recommendation behavior, such as the bin-based 
techniques suggested in [8] and others, in our future 
work.  
 
 
4 Experiments with Attack Models 
 
In our experiments we have used the publicly-available 
Movie- Lens dataset [12]. This dataset consists of 
100,000 ratings on 1682 movies by 943 users. All 
ratings are integer values between one and five where 
one is the lowest (disliked) and five is the highest (most 
liked) . Our data includes all the users who have rated at 
least 20 movies. To perform our attack experiments, we 
must average over a number of different attack items, 
so we selected 50 movies taking care that the 
distribution of ratings for these movies matched the 
overall ratings distribution of all movies. We also 
selected a sample of 50 users as our test data, again 
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Figure 5. Prediction shift with varying profile sizes 
in the average attack 
mirroring the overall distribution of users in terms of 
number of movies seen and ratings provided. 
 
4.1 Attacks Based on Knowledge about 

Items 
 
The average attack was shown to be highly successful 
in prior work and our initial investigations also 
indicated that this was the case. However, the 
knowledge requirements for the average attack are 
substantial. The attacker must collect mean rating 
information for every item in the system. A natural 
question to ask is what is the dependence between the 
power of the attack and the amount of knowledge 
behind it? Can we reduce the amount of knowledge 
used to generate the attack and still be successful? 

To investigate this question, we experimented 
with variants of the average attack in which random 
subsets of the items of different sizes were chosen for 
inclusion in attack profiles. This experiment uses a 
(rather large) attack size of 15%, meaning that the 
number of attack profiles inserted is equal to 15% of the 
original pre-attack user database. Figure 5 shows the 
rather surprising results of this experiment. The “profile 
size” in the Figure corresponds to the percentage of 
items 1 through m-1 (see Figure 2), that were assigned 
average ratings in the attack profile. The remaining 
items in the database (with the exception of the target 
item) were left with no ratings.  

As the amount of the knowledge increases to 
around 10%, the prediction shift rises sharply to around 
1.6 but after this point it drops off gradually ending at 
100% around 1.3. A similar effect was seen at smaller 
attack sizes. This would appear to be a consequence 
also of Zipf's law: most users will not have rated more 
than a small fraction of the product space; a person can 
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Figure 6. Prediction shift with varying profile sizes 
in the bandwagon attack. 
only see so many movies. An attacker, therefore, only 
needs to use part of the product space to make the 
attack effective. The attack has to achieve a balance 
between coverage (including enough movies so that it 
can be used for comparison with any given user) and 
generality (every movie that is included creates the 
possibility that the profile will be dissimilar to any 
given user.) What is surprising is that the optimum of 
this trade-off appears to come with so few ratings. 

A similar phenomenon can be observed in the 
bandwagon attack. Recall that in this case the attacker 
does not need to know anything system-specific, merely 
that certain items are the popular ones that users are 
likely to have rated. The attacker selects k such items 
that will be rated highly along with the target item. The 
profile size, in this case, is the proportion of the 
remaining m-k-1 items that are assigned random ratings 
based on the overall data distribution across the whole 
database (see Figure 3). In the case of MovieLens, these 
frequently rated items are predictable box office 
successes including such titles as Star Wars, Return of 
Jedi, Titanic, etc. The attack profiles consist of high 
ratings given to these popular titles in conjunction with 
high ratings for the pushed movie. Figure 6 shows the 
effect of profile size on the effectiveness of this attack. 
In this particular experiment we set k (in Figure 3) to 1 
Thus., only selected the most frequently rated items in 
the database to be rated in conjunction with the target 
item. We also used an attack size of 10% (i.e., the 
number of attack profiles were about 10% of the size of 
the original database).  For the bandwagon attack, the 
best results were obtained by using a 7% profile size 
(i.e., in each attack profile, only 7% of items, beyond 
the selected frequent items, were assigned ratings). This 
number seems to correspond closely to the average 
number of movies rated by a random user in the 
database. 
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Figure 7 shows the results of a comparative 
experiment examining four algorithms at different 
attack sizes. The algorithms include the average attack 
(10% and 100% profile sizes), the bandwagon attack 
(using 1 frequently rated item and 7% profile size), and 
the random attack.  

We see that even without system-specific data 
an attack like the bandwagon attack can be successful at 
higher attack levels. The more knowledge-intensive 
average attack is still better, but the best performance is 
achieved with relatively small profiles.  The summative 
knowledge used in the average attack is obviously quite 
powerful – recall that the rating scale in this domain is 
1-5 with an average of 3.6, so a rating shift of 1.5 is 
enough to lift an average-rated movie to the top of the 
scale. On the other hand, the bandwagon attack is able 
to surpass the average attack in performance, even with 
minimal knowledge requirement. All that is necessary 
for an attacker is to identify a few items that are likely 
to be rated by many users.  
 
4.2 Attacks Based on Knowledge about 
Users 
We might imagine that an attacker could have more 
direct specific knowledge about individual users of a 
system. The attacker might have demographic and 
marketing data that sorts the users into market segments 
whose preferences might be highly predictable. The 
segmented attack introduced in [3] is one that we intend 
to pursue in our continuing research. In this paper, we 
look at a kind of upper bound for the utility of this kind 
of knowledge in the form of the favorite item attack 
(see Figure 4).  

The favorite item attack assumes that we can 
identify a handful of items that each user likes. Liked 

items are most likely to be rated – users can often 
predict that they will not like a particular movie and 
therefore avoid seeing it. Attack profiles can then be 
assembled that consist of these liked items and the 
pushed movie. Other movies are assigned low ratings. 
Note that a new attack must be formulated for each 
target user. This is not practical, of course, but if we 
generalize from the single user to a market niche of 
users with similar tastes, it becomes plausible that an 
attacker might construct an attack targeted only to that 
niche. Figure 8 shows that this attack, with its user-
specific knowledge, is even more successful than the 
best average attack results previously seen.  

The favorite item attack was introduced in [3] 
as an approach that appeared to have a theoretical 
advantage over previously-developed attack types when 
applied to the item-based collaborative filtering. Lam et 
al. [8] showed that the average attack was significantly 
less successful against item-based algorithms and 
suggested that item-based algorithms were generally 
more robust. More work remains to be done on this 
question. However, Figure 9 demonstrates that the 
favorite item attack is much more successful against the 
item-based attack than the average attack, and the effect 
is quite a bit stronger than its advantage against the 
user-based algorithms. This is because the favorite item 
attack directly manipulates the columns of the rating 
matrix. We plan to explore more practical variants of 
the favorite item attack in our future work.  
 
5 Conclusions and Future Work 
 
Our experiments have shown that attacks can be 
successful against collaborative filtering systems even 
when they use limited knowledge. Indeed several of the 
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attack models improve in performance when limited in 
their scope and the bandwagon attack in particular is 
not dependent on any knowledge about the data 
distribution inside the system. 

Our research here makes use of the explicit 
numeric ratings available in the MovieLens data set. 
Many recommender systems make use of implicit 
ratings, ratings that are inferred from user behavior, 
rather than explicitly provided by the user. (See the 
research reviewed in [7].) Such data sources may have 
different characteristics than the classic explicit rating 
scenario. In Web usage mining [4] [15], Web server 
logs are examined for link traversal and dwell time and 
continuously-valued ratings derived from this analysis, 
and as a result, negative ratings are not available from 
Web usage data. Web usage mining techniques, such as 
clustering and association rule discovery [9] [10] [11], 
are alternate recommendation mechanisms whose 
susceptibility to bias have yet to be explored. 
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