
Collaborative Recommendation Vulnerability
To Focused Bias Injection Attacks ∗

Robin Burke, Bamshad Mobasher, Runa Bhaumik, Chad Williams
Center for Web Intelligence, DePaul University

School of Computer Science, Telecommunication, and Information Systems
Chicago, Illinois, USA

{rburke, mobasher, rbhaumik, cwilli43}@cs.depaul.edu

Abstract

Significant vulnerabilities have recently been identified in
collaborative recommender systems. Attackers who cannot
be readily distinguished from ordinary users may inject bi-
ased data in an attempt to force the system to “adapt” in
a manner advantageous to them. Researchers have studied
simple attack models and their impact on a system’s popula-
tion of users. In this paper, we examine attacks that concen-
trate on a targeted set of users with similar tastes, biasing
the system’s responses to these users. Not only are such at-
tacks more pragmatically beneficial for the attacker (since
a particular item can be pushed to those most likely to buy
it), but as we show, such attacks are also highly effective
against both user-based and item-based algorithms. As a
result, an attacker can mount such a “segmented” attack
with little knowledge of the specific system being targeted
and with strong likelihood of success.

1. Introduction

Recent research has begun to examine the vulnerabilities
and robustness of different recommendation techniques,
such as collaborative filtering, in the face of what has been
termed “shilling” attacks [2, 1, 5, 6]. Our preferred term is
profile injection attacks, since promoting a particular prod-
uct is only one way such attack might be used. In a profile
injection attack, an attacker interacts with the recommender
system to build within it a number of profiles associated
with fictitious identities with the aim of biasing the system’s
output.

It is easy to see why collaborative recommendation is
vulnerable to profile injection attacks. A user-based col-
laborative recommendation algorithm collects user profiles,

∗This research was supported in part by the National Science Founda-
tion Cyber Trust program under Grant IIS-0430303.

which are assumed to represent the preferences of many dif-
ferent individuals, and makes recommendations by finding
peers with like profiles. If the profile database contains bi-
ased data (many profiles all of which rate a certain item
highly, for example), these biased profiles may be consid-
ered peers for genuine users and result in biased recommen-
dations. This is precisely the effect found in [5] and [6].

Researchers who have examined this phenomenon have
concentrated on broad attack models whose profiles con-
tains ratings across the spectrum of available objects and
have measured their results by looking at how all of the
users of the system are affected in the aggregate. However,
it is a basic truism of marketing that the best way to increase
the impact of a promotional activity is to target one’s ef-
fort to those already predisposed towards one’s product. In
other words, it is likely that an attacker wishing to promote
a particular product will be interested not in how often it is
recommended to all users, but how often it is recommended
to likely buyers.

If the attacker can successfully target the appropriate
market segment, the relatively minor marginal utility to be
gained by pushing the product to any one of the out-of-
segment users may be outweighed by the increased possi-
bility of detection that such a move entails. A rational at-
tack strategy is therefore a segmented one: push the product
to the high-probability purchasers.

This paper examines a particular attack model that we
call the segmented attack in which the attacker concentrates
on a set of items of similar content that have high visibility,
the Harry Potter series being a good example in the book
domain. It is certainly the case that these books are highly
popular and widely read – it would follow that they would
be rated by many users of a collaborative system. Users
who enjoy these books are likely to share some characteris-
tics: they may be children or parents who have an interest
in exciting fantasy stories involving magic. These facts are
general knowledge about the book domain readily available

Figure 1. The general form of a push attack
profile.

outside of any particular recommender system.
The segmented attack model is designed to push an item

to a targeted group of users with known or easily predicted
preferences. Profiles are inserted that maximize the simi-
larity between the pushed item and items preferred by the
group. We show that the segmented attack is both effective
and practical against user-based and item-based collabora-
tive algorithms.

The paper is organized as follows. In Section 2 we
provide a general framework for profile injection attacks
against collaborative systems, and we present the details of
our proposed segmented attack model. Section 3 includes
some background information and the specific details of
the user-based and item-based recommendation algorithms
used in our experiments. In Section 4 we describe our eval-
uation methodology, including two evaluation metrics we
have used to determine the effectiveness of the segmented
attack against each algorithm. We then present our exper-
imental results, with a detailed analysis of the proposed
segmented attack model, and show its effectiveness against
both user-based and item-based algorithms.

2. Attack Models

A profile injection attack against a collaborative recom-
mender system consists of a set of attack profiles, biased
profile data associated with fictitious user identities, and a
target item, the item that the attacker wishes the system to
recommend more highly (a push attack), or wishes to pre-
vent the system from recommending (a nuke attack). We
concentrate on push attacks in this paper. An attack model is
an approach to constructing attack profiles, based on knowl-
edge about the recommender system, its rating database, its
products, and/or its users. The general form of a push attack
profile is depicted in Figure 1. Each attack profile consists
of an m-dimensional vector of ratings, where m is less than
or equal to the total number of items in the system. The
rating given to the pushed item is rmax, the maximum al-
lowable rating value within the target recommender system.

The ratings r1 through rm−1 are assigned to the correspond-
ing items according to the specific attack model. Each at-
tack model has its own strategy for selecting the items for
the attack profile and assigning ratings to them.

In the remainder of this section, we provide a detailed
example that will help illustrate the vulnerability of collab-
orative recommendation algorithms, and will serve as a mo-
tivation for the formal description of the attack models that
follow.

2.1 An Example

Consider, as an example, a recommender system that iden-
tifies books that users might like to read using a user-based
collaborative algorithm [3]. A user profile in this hypothet-
ical system might consist of that user’s ratings (in the scale
of 1-5 with 1 being the lowest) on various books. Alice,
having built up a profile from previous visits, returns to the
system for new recommendations. Figure 2 shows Alice’s
profile along with that of seven genuine users. An attacker,
Eve, has inserted attack profiles (Attack1-3) into the system,
all of which give high ratings to her book labeled Item6.

If the system is using a standard user-based collaborative
approach, then the predicted ratings for Alice on Item6 will
be obtained by finding the closest neighbors to Alice. With-
out the attack profiles, the most similar user to Alice, using
correlation-based similarity, would be User6. The predic-
tion associated with Item6 would be 2, essentially stating
that Item6 is likely to be disliked by Alice. After the at-
tack, however, the Attack1 profile is the most similar one
to Alice, and would yield a predicted rating of 5 for Item6,
the opposite of what would have been predicted without the
attack.1 So, Eve’s attack is successful and Alice will get
Item6 as a recommendation, regardless of whether this is
really the best suggestion for her. She may find the sug-
gestion inappropriate, or worse, she may take the system’s
advice, buy the book, and then be disappointed by the de-
livered product.

On the other hand, if a system is using an item-based col-
laborative filtering approach, then the predicted rating for
Item6 will be determined by comparing the rating vector
for Item6 with those of the other items. This algorithm does
not lend itself to an attack as obvious as the previous one,
since Eve does not have control over ratings given by other
users to any given item. However, Eve can make a success-
ful attack more likely with a small amount of knowledge
about the ratings distributions for some items.

In the example of Figure 2, for instance, Eve knows that
Item1 is a popular item among a significant group of users
to which Alice also belongs. By designing the attack pro-

1Of course, a real implementation would use more than a single neigh-
bor for prediction, but the same principle applies with a larger number of
neighbors.

Figure 2. An example of a push attack favoring the target item Item6.

files so that high ratings are associated with both Item1 and
Item6, Eve can attempt to increase the similarity of these
two items, resulting in a higher likelihood that Alice (and
the rest of the targeted group) will receive Item6 as a rec-
ommendation. Indeed, as the example portrays, such an at-
tack is successful regardless of whether the system is using
an item-based or a user-based algorithm. This latter obser-
vation illustrates the motivation behind the attack model we
introduce and analyze in this paper, namely the segmented
attack.

2.2 The Segmented Attack

Prior work on recommender system stability has examined
primarily three attacks. The sampling attack from [6] is pri-
marily of theoretical interest as it requires the attacker to
have access to the ratings database itself. The random at-
tack [5] forms profiles by associating a positive rating for
the target item with random values for the other items. The
average attack [5] assumes that the attacker knows the aver-
age rating for each item in the database and assigns values
randomly distributed around this average, except for the tar-
get item. This attack has been found to be effective against
user-based collaborative recommendation algorithms, but
less so against item-based recommendation.

Each of these prior attack models makes the implicit as-
sumption that the attacker is interested in promoting the
pushed item to every user in the system. However, sup-
pose that Eve in our previous example had written a fantasy
book for children. She would no doubt prefer that her book
be recommended to buyers who had expressed an interest
in this genre, for example buyers of Harry Potter books,
rather than buyers of books on Java programming or mo-
torcycle repair. Eve would rightly expect that the “fantasy
book buyer” segment of the market would be more likely to
respond to a recommendation for her book than others.

We can frame this intuition as a question of utility. We
assume that the attacker has a particular item i that she
wants recommended more highly because she has a per-
sonal stake in the success of this product. The attacker re-
ceives some positive utility or profit pi each time i is pur-
chased. In biasing the recommender system, the attacker
hopes to increase the probability that purchases will happen,
but of course not every user to whom a recommendation is
made will actually purchase. Let us denote the event that a
recommendation of product i is made to a user u, by Ru,i

and the event that a user buys an item by Bu,i. The proba-
bility that a user will purchase i if it is recommended we can
describe as a conditional probability: P (Bu,i|Ru,i). Over
all users U that visit the system over some time period, the
expected profit would be

P =
∑

u∈U

pi ∗ P (Ru,i) ∗ P (Bu,i|Ru,i)

The attacker of a recommender system hopes to increase
her profit by increasing P (Ru,i), the probability that the
system will recommend the item to a given user.

However, preferences for most consumer items are not
uniformly distributed over the population of buyers. For
many products, there will be users (like a “Harry Potter”
buyers) who who would be susceptible to following a rec-
ommendation for a related item (another fantasy book for
children) and others who would not. In other words, there
will be some segment of users S that are distinguished from
the rest of the user population N = U − S, by being likely
recommendation followers:

∀s ∈ S, ∀n ∈ N,P (Bs,i|Rs,i) À P (Bn,i|Rn,i))

Let us consider an extreme case of a niche market in
which P (Bn,i|Rn,i) is zero. The only customers worth rec-
ommending to are those in the segment S. Everyone else

Figure 3. General form of the Segmented At-
tack.

will ignore the recommendation. It is in the attacker’s in-
terest to make sure that the attacker item is recommended
to the segment users; it does not matter what happens to
the rest of the population. The attacker will be only inter-
ested in manipulating the quantity P (Rs,i). In other words,
the quantity that matters to an attacker may not be the over-
all impact of an attack, but rather its impact on a segment
of the market distinguished as likely buyers. This may
even be true if P (Bn,i|Rn,i) > 0 because these out-of-
segment buyers contribute relatively little to the expected
utility compared to the in-segment ones.

Obviously, the maximum P is realized when every sin-
gle user gets the pushed item as a recommendation. That is,
when P (Ru,i) = 1. That may not be a realistic goal. Only
a very large attack (perhaps with a number of biased pro-
files equal to or greater than the size of the original profile
database) would be able to ensure such an effect, and such
an attack would be likely to be noticed by a site’s opera-
tors. In addition, the ubiquity of the pushed item would be
noticed by users for whom it is not a good match: buyers
of motorcycle repair books suddenly getting recommenda-
tions for children’s fantasy titles might complain, and the
complaints would form a detectable pattern. This increased
risk of detection is a cost associated with large attack sizes.
Therefore, it is rational for the attacker to focus solely on
the in-segment users to the extent that this is possible.

We define a segment as a set of users with shared strong
favorable preferences for a set of segment items (such as
“Harry Potter” books in our example.) Let SI be the set
of items that define a target segment. To target the users in
the segment, we construct profiles with high ratings for the
items in the set SI and low ratings for other items. These
profiles will match users who also have a strong preference
for the items in SI . See Figure 3. An attacker like Eve
only needs to identify books that are similar to the one she
wants to push and relatively popular in order to generate the
attack.

3. Recommendation Algorithms

This paper reports on results for two of the most commonly-
used collaborative algorithms: user-based and item-based
collaborative recommendation using nearest-neighbor tech-
niques [3, 7]. In each case, the algorithm assumes there is
a single user / item pair for which a prediction is sought –
in our experiments this is generally the pushed item, since
we are primarily interested in the impact that attacks have
on this item.

The standard collaborative filtering algorithm is based
on user-to-user similarity [3]. This kNN algorithm oper-
ates by selecting the k most similar users to the target user,
and formulates a prediction by combining the preferences of
these users. kNN is widely used and reasonably accurate.
The similarity between the target user, u, and a neighbor,
v, can be calculated by the Pearson’s correlation coefficient
defined below:

simu,v =

∑
i∈I

(ru,i − r̄u) ∗ (rv,i − r̄v)
√∑

i∈I

(ru,i − r̄u)2 ∗
√∑

i∈I

(rv,i − r̄v)2

where I is the set of all items that can be rated, ru,i and
rv,i are the ratings of some item i for the target user u and
a neighbor v, respectively, and r̄u and r̄v are the average
of the ratings of u and v over I , respectively. Once simi-
larities are calculated, the most similar users are selected.
In our implementation, we have used a value of 20 for the
neighborhood size k. We also filter out all neighbors with a
similarity of less than 0.1 to prevent predictions being based
on very distant or negative correlations.

Once the most similar users are identified, we use the
following formula to compute the prediction for an item i
for target user u.

pu,i = r̄v +

∑
v∈V

simu,v(rv,i − r̄v)

∑
v∈V

|simu,v|

where V is the set of k similar users and rv,i is the rating of
those users who have rated item i, r̄v is the average rating
for the target user over all rated items, and simu,v is the
mean-adjusted Pearson correlation described above.

Item-based collaborative filtering works by comparing
items based on their pattern of ratings across users. Again,
a nearest-neighbor approach can be used, but here a more
common approach is the adjusted cosine similarity measure
introduced by [7]. The adjusted cosine similarity formula is
given by:

simi,j =

∑
u∈U

(ru,i − r̄u) ∗ (ru,j − r̄u)

√ ∑
u∈U

(ru,i − r̄u)2 ∗
√

n∑
u∈U

(ru,j − r̄u)2

where ru,i represents the rating of user u on item i, and
r̄u is the average of the user u’s ratings as before. In this
measure, all user profiles are normalized by subtracting the
user’s mean rating. When items are compared, the ratings
given by each user to that item are combined in a vector
and the similarity between them is calculated as the vector
cosine.

After computing the similarity between items we select
a set of k most similar items to the target item and generate
a predicted value:

pu,i =

∑
j∈J

ru,j ∗ simi,j

∑
j∈J

simi,j

where J is the set of k similar items, ru,j is the prediction
for the user on item j, and simi,j is the adjusted cosine
similarity between items i and j. The user’s own ratings
of similar items are used to extrapolate the prediction for
the target item. We consider a neighborhood of size 20 and
ignore items with negative similarity.

4. Experiments

In our experiments we use the publicly-available Movie-
Lens 100K dataset2. This dataset consists of 100,000 rat-
ings on 1682 movies by 943 users. All ratings are integer
values between one and five where one is the lowest (dis-
liked) and five is the highest (most liked). Our data includes
all the users who have rated at least 20 movies.

4.1 Methodology

There has been considerable research in the area of recom-
mender systems evaluation [4]. Some of these concepts can
also be applied to the evaluation of the security of recom-
mender systems, but in evaluating security, we are inter-
ested not in raw performance, but rather in the change in
performance induced by an attack. The metrics of stability
and robustness were introduced in [6].

Our interest is along the lines of stability: how the attack
changes the system’s ratings for the pushed item, but more
generally we are interested in measuring the effectiveness of
an attack - the “win” for the attacker. The desired outcome

2http://www.cs.umn.edu/research/GroupLens/data/

for the attacker in a “push” attack is that the pushed item
be more likely to be recommended after the attack than be-
fore. In the experiments reported below, we follow the lead
of [6] in measuring stability via prediction shift, the change
in predicted rating for the target item after the attack. How-
ever, we also measure hit ratio, the average likelihood that
a top N recommender will recommend the pushed item [7].

Average prediction shift is defined as follows. Let U and
I be the sets of target users and items, respectively. For each
user-item pair (u, i) the prediction shift denoted by ∆u,i,
can be measured as ∆u,i = p′u,i − pu,i, where p′ represents
the prediction after the attack and p before. A positive value
means that the attack has succeeded in making the pushed
item more positively rated. The average prediction shift for
an item i can be computed by averaging ∆u,i over all users,
and an overall average can be generated by picking a num-
ber of different items to attack and averaging over them. We
chose 50 movies at random from the MovieLens data, being
careful that this set of target items mirrored the distribution
of the data as a whole.

Note that a strong prediction shift is not a guarantee that
an item will be recommended. It is possible that other
items’ scores are affected by an attack as well or that the
target item scores so low to begin with that even a signifi-
cant shift does not promote it to “recommended” status. It
is a good rough indicator of the success of an attack, but it
does not get at our notion of a “win”: increased probability
of recommendation. In order to measure the benefit of the
attack from the attacker’s point of view, we use the notion
of the hit ratio. The idea is to establish a window of size N
at the top of the recommendation list. We count a success –
a hit – if the pushed movie shows up in this window.

Let Ru be the set of top N recommendations for user
u. For each push attack on item i, the value of a recom-
mendation hit for user u denoted by Hui, can be evalu-
ated as 1 if i ∈ Ru; 0, otherwise. We define hit ratio
as the number of hits across all users in the test set di-
vided by the number of users in the test set, computed as:
HitRatioi =

∑
u∈U

Hui/ |U |. The average hit ratio can then

be calculated as the sum of the hit ratios for attacks on each
item i across all items divided by the number of items.

For the segmented attack, we investigated two market
segments: one defined by Harrison Ford’s action movies
and one by popular horror films. Recall that the segmented
attack is constructed by identifying a set SI of segment
items and the attacked users are the ones who have rated
those items highly. In the Harrison Ford segment, the
movies were Star Wars, Return of the Jedi, Indiana Jones
and the Last Crusade, and Raiders of the Lost Ark. In the
Horror segment, the movies were Alien, Psycho, The Shin-
ing, Jaws, and The Birds.3

3This list was generated from on-sources of the pop-

For the Harrison Ford segment, we chose those users
who had given top rating (5) to all four movies. From this
set, we chose 50 users at random. For the Horror movie
segment, we chose those users who had given above aver-
age scores (4 or 5) to any three of the five movies. For this
set of five movies, we selected all combinations of three
movies that had at least 50 users support, chose 50 of those
users randomly and averaged the results.

For all the attacks, we generated a number of attack pro-
files and inserted them into the system database and then
generated predictions. We measure “size of attack” as a
percentage of the pre-attack user count. There are approxi-
mately 1000 users in the database, so an attack size of 1%
corresponds to 10 attack profiles added to the system.

4.2 Experimental Results

If we evaluate the segmented attack based on its average
impact on all users, there is nothing remarkable. The attack
has an effect but does not approach the numbers reached
by the average attack, the most effective attack we had pre-
viously studied [1]. However, we must recall our market
segment assumption: namely, that recommendations made
to in-segment users are much more useful to the attacker
than recommendations to other users. Our focus must there-
fore be with the “in-segment” users, those users who have
rated the segment movies highly and presumably are de-
sirable customers for pushed items that are similar: an at-
tacker using the Harrison Ford segment might be interested
in pushing a new movie featuring the star in an action role.

The intuition behind the segmented attack is borne out
in Figure 4. The figure shows prediction shift results for
the Harrison Ford segment, comparing all users with in-
segment users. The in-segment prediction shift is slightly
stronger for the segmented attack than the average attack.
Note also that the segmented attack requires considerably
less knowledge of the ratings distribution in the system than
the average attack requires. ([1] discusses the question of
limited knowledge attacks in greater detail.)

The hit ratio results are shown in Figure 5 for a 1% attack
at different values of N . These results show that even an
attack as small as 1% on the user based algorithm can have
a major impact on the hit ratio.4 It is also interesting that
although the overall user base is not affected as much as the
in-segment users, the shift is still very large, more than a
whole point on the rating scale with a 1% attack and with
the target movie showing up in the top five more than 40%
of the time. The most likely reason for this is that some of
the movies in this segment (such as Star Wars and Raiders

ular horror films: http://www.imdb.com/chart/horror and
http://www.filmsite.org/afi100thrillers1.html.

4The hit ratio prior to the attack is very small, about 1% at N = 10 and
less than 5% even with an N of 50.

Figure 4. Prediction Shift results for the
Harrison Ford segment. User-based algo-
rithm.

Figure 5. Hit Ratio results for the Harrison
Ford segment. User-based algorithm.

of the Lost Ark) were rated highly by a majority of users in
the database. Essentially, there is not that much difference
between the in-segment users and the rest of the user base
with respect to these movies, no doubt having to do with
the characteristics of the population using the MovieLens
system at the time the ratings were collected.

The benefit of the segmented attack is considerably more
striking in the item-based case shown in Figures 6 and
7. Lam and Reidl concluded, based on their results with
the random and average attacks, that item-based algorithms
were more robust than user-based ones [5]. However, as
the figures show, the segmented attack works well against
the item-based algorithm. The reason has to do with profile
construction. Since the segmented attack assigns maximum
ratings to both the segment items SI and the target item,
the similarity between these items and the target item is in-

Figure 6. Prediction Shift results for the
Harrison Ford segment. Item-based algo-
rithm.

Figure 7. Hit Ratio results for the Harrison
Ford segment. Item-based algorithm.

creased. The low ratings given to the other items makes
them more distant. If the segment items are in the algo-
rithm’s prediction neighborhood for the target item, they
will boost the recommendation scores since these are items
that an in-segment user will have rated highly.

In the case of the Horror movie segment, the movies
were selected from on-line sources as the best movies of
their type but none of them are as broadly popular as Star
Wars. So, these movies represent more of a market niche.
Figure 8 shows a similar result to that seen with predic-
tion shift for the Harrison Ford segments against the user-
based algorithm. Figure 9 indicates the focused manner in
which this attack homes in on its target audience when the
item-based algorithm is attacked. The general population is
barely effected by the injected profiles, but there is a sizable
prediction shift for in-segment users. The hit ratio results

Figure 8. Prediction Shift results for the
Horror Movie segment. User-Based algo-
rithm.

Figure 9. Prediction Shift results for the
Horror Movie segment. Item-based algo-
rithm.

for this user segment are depicted in Figures 10 and 11 and
are similar to those already seen.

These results also point out an interesting difference be-
tween the user-based and item-based algorithms. While,
is both cases, the attack has a dramatic impact on the in-
segment users, the overall impact of the segmented attack
on the whole user group is more pronounced in the case of
user-based algorithm.

Another way in which the item-based algorithm shows
robustness is with respect to profile size. In the segmented
attack, the items that are not in the SI set (see Figure 3)
are given low values. In our initial experiments with the at-
tack, all such movies were used in the attack profile. We
define this as a profile size of 100%. However, this means
that each attack profile must be very large, perhaps unreal-
istically so. We experimented with decreasing the number

Figure 10. Hit Ratio results for the Horror
Movie segment. User-Based algorithm.

Figure 11. Hit Ratio results for the Horror
Movie segment. Item-based algorithm.

of “non-favorite” items rated in each attack profile, leaving
these items unrated. Interestingly, there is a peak at a low
value (about 3%, or about 50 movies) when the user-based
algorithm is attacked. It is this 3% profile version of the at-
tack that was used in the experimental results shown above.
As Figure 12 shows, the item-based algorithm has no such
peak: the prediction shift increases monotonically for larger
profile sizes. Item-based recommendation would therefore
appear to have an additional advantage over user-based —
an attacker must build larger profiles to be successful.

5. Conclusions

Previous research has examined profile injection attacks
against recommender systems that are broad in their con-
struction and impact. Of these, the average attack has been
found to be most effective. From a cost-benefit point of

Figure 12. Comparing item-based and user-
based algorithms at different profile sizes.

view, however, such attacks are sub-optimal: they require a
significant degree of system-specific knowledge to mount,
and they push items to users who may not be likely pur-
chasers. In addition, they are not effective against item-
based implementations.

In this paper, we introduce the segmented attack, a pro-
file injection attack that associates the pushed item with a
small number of popular items of similar type. As our re-
sults show, the attack does well at ensuring that the pushed
item will be recommended to those users that are its target
market. It is effective against item-based recommendation
algorithms to a degree that broader attacks are not, and has
no requirement for system-specific ratings distribution data.

References

[1] R. Burke, B. Mobasher, and R. Bhaumik. Limited knowledge
shilling attacks in collaborative filtering systems. In Proceed-
ings of the 3rd IJCAI Workshop in Intelligent Techniques for
Personalization, Edinburgh, Scotland, August 2005.

[2] R. Burke, B. Mobasher, R. Zabicki, and R. Bhaumik. Iden-
tifying attack models for secure recommendation. In Beyond
Personalization: A Workshop on the Next Generation of Rec-
ommender Systems, San Diego, California, January 2005.

[3] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An algo-
rithmic framework for performing collaborative filtering. In
Proceedings of the 22nd ACM Conference on Research and
Development in Information Retrieval (SIGIR’99), Berkeley,
CA, August 1999.

[4] J.Herlocker, J. Konstan, L. G. Tervin, and J. Riedl. Evaluating
collaborative filtering recommender systems. ACM Transac-
tions on Information Systems, 22(1):5–53, 2004.

[5] S. Lam and J. Reidl. Shilling recommender systems for fun
and profit. In Proceedings of the 13th International WWW
Conference, New York, May 2004.

[6] M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre.
Collaborative recommendation: A robustness analysis. ACM
Transactions on Internet Technology, 4(4):344–377, 2004.

[7] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based
collaborative filtering recommendation algorithms. In Pro-
ceedings of the 10th International World Wide Web Confer-
ence, Hong Kong, May 2001.

