
USING SEMANTIC SIMILARITY TO ENHANCE ITEM-BASED
COLLABORATIVE FILTERING

Xin Jin and Bamshad Mobasher

School of Computer Science, Telecommunication and Information Systems
DePaul University, Chicago, IL, 60604

USA
{xjin, mobasher}@cti.depaul.edu

Abstract

Collaborative Filtering (CF) systems address the problem
of making personalized recommendation using
knowledge discovery techniques. By predicting user
ratings on new items based on historical ratings of other
users, CF systems can give reasonable recommendations
to new users. Traditionally, user-based CF algorithm can
give predictions and recommendations by finding similar
users. However these algorithms often suffer from
scalability, sparsity and first-rater problems. Recently,
some researchers have proposed the item-based CF
algorithms, which give predictions based on similar
items’ ratings. These can alleviate the scalability
problems, but these algorithms suffer from the sparsity
and first-rater problems. In this paper, we present two
algorithms which use semantic similarity to enhance item-
based Collaborative Filtering. In both algorithms, we will
extract semantic information about items and compute
semantic similarity between them. In the first algorithm,
we combine the semantic and rating similarities to find
most similar items to a target item. In the second
algorithm, we use the combined similarity to fill in the
original ratings matrix, and then we run the first algorithm
on this less sparse ratings matrix. Our experiments show
that both algorithms can achieve better prediction
accuracy than traditional item-based CF algorithms.
Furthermore, the second algorithm can alleviate the
sparsity problem.

Key Words
Collaborative Filtering, Semantic Similarity,
Recommendation Systems

1. Introduction

Recommendation systems have been widely used in e-
commerce. Companies such as Amazon.com and
CDNOW provide interesting and powerful
recommendation services. Collaborative filtering (CF)
[1,2,3] has been a primary approach to building
recommendation systems. The goal of a CF system is to
recommend new items or predict the utility of a certain

item for a certain user based on the user’s preference and
other users’ opinions. In a CF scenario, there is a list of m
users U = {u1, u2, …, um} and a list of n items I = {i1, i2,
…, in}. Each user has a rating vector V, where vk
represents the user’s rating for item ik. (The user’s opinion
and preference are explicitly given by the rating score.)
The task of CF system is for a given active user (or called
target user) ua, (1) to predict the rating score for an
unrated item ik (called target item) or (2) to recommend
some items that may be interesting to user ua. In this
paper, we will concentrate on task 1, since if we can
achieve task 1, task 2 can be easily achieved with some
subjective recommendation strategy.

Currently, there are mainly two types of CF algorithms,
user-based and item-based. User-based CF algorithms use
some statistical techniques to find a set of users, called
user neighbors for the target user. Then different methods
can be adopted to combine the user neighbors’ ratings to
produce a prediction rating for the target user. User-based
CF algorithms have shown to be able to give relatively
accurate prediction and are used in many applications.
However, they have some shortcomings, such as ratings
sparsity and scalability problems.

In reality, most commercial recommendation systems deal
with tens of thousands of users and items. In these
systems, each user may have rated less that 1% of all the
items, which makes the ratings matrix very sparse,
making it difficult to find user neighbors. Also the
similarity measures among users, thus the predicted
ratings based on such sparse data tend to be unreliable.

Another problem associated with such systems is the
“first-rater” problem. In practice, many new items are
added into the recommendation systems every day or
week. Since new items have been rated by few users,
these items are unlikely to be recommended. To deal with
these problems, some researchers have proposed item-
based CF algorithms [4,9,10]. The idea is, rather than find
similar users (user neighbors), the system tries to find
similar items that are rated or purchased by different users
in some similar ways. Then, for a target item, predictions
can be generated by taking a weighted average of the
target user’s ratings on these similar items. It has been

shown that item-based CF algorithms can achieve
comparable or even better prediction accuracy than user-
based CF algorithms [4]. Furthermore, since the item
similarity can be pre-computed offline, it can alleviate the
scalability problem that exists in user-based CF
algorithms. However, item-based CF algorithms still
suffer from the first-rater and sparsity problems.

||||||||
),cos(),(

qp

qp
qpqp

ii

ii
iiiisim

∗

•
==

Here, “•” denotes the dot-product of two vectors.

• Correlation-based Similarity

∑ ∑

∑

= =

=

−•−

−•−
=

m

k

m

k
qqkppk

m

k
qqkppk

qp

RRRR

RRRR
iisim

1 1

2
,

2
,

1
,,

)()(

)()(
),(

In this paper, we will make the use of semantic similarity
among items to enhance item-based Collaborative
Filtering. We provide two algorithms. In both algorithms
we first extract the semantic information about items and
compute the semantic similarity of items. Then, in the
first algorithm, we combine the semantic similarity and
the ratings similarity measures, and use the combined
measure to find similar items to the target item. In the
second algorithm, we use the combined similarity to fill in
the original ratings matrix and alleviate the rating
sparsity. Then we use the first algorithm to find similar
items and generate predictions.

Here, Rk,p denotes the rating of user k on item p. pR is the
average rating of the item p.

• Adjusted Cosine Similarity
Since different users have different rating styles. For
example, in moving rating scenario, rating scale between
1 and 5, some users may give rating 5 to a lot of movies
they consider to be “not bad”; while some people are
“strict” raters, for they only give rating 5 to those movies
they like most. To offset the different scale problem,
another similarity measure called Adjusted Cosine
Similarity is presented.

The reminder of the paper is organized as follows. Section
2 introduces the general item-based CF approach. Section
3 presents our two algorithms using item-based semantic
similarity to enhance CF algorithms. In Section 4, we
conduct experiments to compare our algorithms to the
standard item-based CF algorithm. We will discuss some
related work in Section 5 and conclude in Section 6.

∑ ∑

∑

= =

=

−•−

−•−
=

m

k

m

k
kqkkpk

m

k
kqkkpk

qp

RRRR

RRRR
iisim

1 1

2
,

2
,

1
,,

)()(

)()(
),(

2. Item-based CF algorithm Here, kR is the average rating of user k.
 In the foregoing discussion we assume that we have a list
of m users U = {u1, u2, …, um}, a list of n items I = {i1, i2,
…, in} and a ratings matrix Rm*n, the value Rp,q represents
the user up’s rating on item iq, if up has not rated iq, then
rp,q = 0, otherwise rp,q will be a non-zero value from a
discrete scale. Our task is to predict user uk’s rating on
item it, which is not yet rated by uk. We call the user uk the
target user, and item it the target item.

2.2 Prediction Computation

After computing the similarity between items, we select a
set of most similar items to the target item and generate a
predicted rating for the target item using target user’s
ratings on the similar items. We use a Weighted Sum as
follows.

∑

∑

=

=

•
= K

t
tk

K

t
tkta

ka

iisim

iisimR
R

1

1
,

,

),(

)),((

Item-based CF algorithms consist of two processes,
finding similar items and generating rating prediction
based on similar items’ ratings.

2.1 Finding Similar Items Here, Ra,k denotes the prediction rating of target user a on

item k. Only the K most similar items (K nearest
neighbors of item k) are used to generate the prediction.

The first step in computing the similarity of items p and
item q is to identify all the users who have rated both
items p and q. Many measures can be used to compute the
similarity between items. Some of the most widely-used
measures are given below:

As claimed in [4], compared to user-based CF algorithms,
item-based CF algorithms can achieve comparable or
even better prediction accuracy. At the same time, they
can alleviate the scalability problem that exists in user-
based CF algorithms, because the item similarity can be
pre-computed offline. However, item-based CF
algorithms still suffer from the first-rater and sparsity
problems.

• Cosine Similarity
Here, two items ip and iq are considered as two column
vectors in the user ratings matrix R. The similarity
between items is measured by computing the cosine of
these two vectors.

3. Semantically Enhanced Item-based CF
Algorithm

• Rating similarity computation
As introduced in Section 2, we can adopt a similarity
measure, such as Adjusted Cosine Similarity to compute
the rating similarity RateSim(ip, iq) from the ratings matrix
R.

As noted above, item-based CF requires measuring
similarities among items based on the user ratings of these
items. When a new item is added, few, if any, such ratings
exist. In such a case, if we can extract the semantic
information of items and define a semantic similarity
measure between items, then we can still find item
similarities and use these to provide predicted ratings.
This is the primary motivation for the use of semantic
similarity to enhance item-based CF algorithms.

• Semantic similarity computation
Computing the semantic similarity, SemSim(ip, iq), is
domain dependent and requires knowledge of the
underlying structure in and relationships among objects.
In our experiment, we use some techniques introduced in
[5] to compute semantic similarities among movie
objects. The details of this semantic similarity measure
among movies is given in Section 4.3.

In this section, we discuss the computation of semantic
similarities among items, and we present two algorithms
that use semantic similarity to enhance item-based CF
systems. In Algorithm 1, we combine items’ semantic
similarity with ratings similarity, and use the combined
similarity to generate predictions. In Algorithm 2, we use
this combined semantic similarity measure to estimate
ratings for unrated items and fill in the original ratings
matrix, thus alleviating the sparsity problem. W then use
Algorithm 1 to generate predictions, as before.

• Combining rating and semantic similarities
Here, we use a simple linear combination. TotalSim(ip, iq)
= α*SemSim(ip, iq) + (1-α)*RateSim(ip, iq). TotalSim(ip, iq)
denotes the combined similarity of item p and item q. α is
the combination parameter. If α = 0, then TotalSim(ip, iq)
= RateSim(ip, iq). It will be the same as the traditional
item-based CF algorithm. Finding an appropriate α value
is not a trivial task. We choose the proper α value by
performing sensitivity analysis on our experimental data.

3.1 Semantic Similarity • Prediction computation
 As in traditional item-based CF algorithms, we use the

Weighted Sum technique to compute the prediction value
for target item k.

Semantic information about an item consists of the
attributes of the item, the item’s relationship to other
items, its role in the relationship, and other meta-
information. For example, in the movie scenario, a given
movie has many attributes, such as title, director, cast,
release date, genre, and MPAA rating. It also has
relationships with other movies, for example, movies
“Terminator 1”, “Terminator 2” and “Terminator 3” have
a common actor “Arnold Schwarzenegger” and have
same genre information; “Steve Spielberg” has directed
movies “E.T.” and “Schindler's List”. The semantic
information describes the intrinsic features of each item.
Combining semantic information about items with user
judgments about these items should allow for more
intelligent computation of item similarities, and hopefully,
lead to better recommendations.

∑

∑

=

=

•
= K

t
tk

K

t
tkta

ka

iiTotalSim

iiTotalSimR
R

1

1
,

,

),(

)),((

The only difference is that, here we will use the combined
item similarity TotalSim(ip, iq) instead of RateSim(ip, iq) to
generate prediction rating.

3.3 Algorithm 2

 The sparsity of the ratings matrix makes it difficult to find
similar users or items from among the tens of thousands
of users and items in a typical database. Generally,
similarity computations based on such sparse data tend to
be unreliable causing recommendations or predictions to
be inaccurate. In our second algorithm, we combine
semantic similarity with rating similarity and use the
combined similarity to fill in the original ratings. We then
use Algorithm 1 to generate predictions using this less
sparse matrix.

The notions of semantic matching among objects and
classes has been a subject of considerable study in the
past years [5,6,7]. In this paper we will not discuss these
in detail, but we utilize some of these techniques to
extract semantic information associated with items and to
compute the semantic similarity between them.

3.2 Algorithm 1

There are several ways to fill in the ratings matrix. The
first method is to use the rating prediction method of
Section 2.2. For all unrated items, we compute a predicted
rating based on item similarities and use it to estimate the
ratings for these items. Intuitively, this method will lead

In Algorithm 1, we combine items’ semantic similarity
with their rating similarity and use the combined
similarity to generate predictions. Algorithm 1 consists of
4 processes:

to the propagation of prediction error. Our experiments
also confirm this assertion. The second method is to use
semantic similarities to fill in the ratings matrix.
However, in practice, since there are tens of thousands of
items in the system, the semantic similarity matrix is also
very sparse (Most similarity values are either 0 or a very
small value).

In this case, estimation may not be an effective strategy
for solving the sparsity problem. So, our solution is to
combine the rating and semantic similarities, and use the
combined similarity value to fill in the raw ratings matrix.
In our experiments, we use a filling threshold µ. For each
unrated item, we find all its similar items whose similarity
values (combined similarity) exceed the threshold µ, and
use the weighted sum of these similar items’ ratings as the
estimated value. Unlike some other methods [18] that fill
in values for every unrated item to get a full rating matrix,
we only fill values for some of the unrated items. Thus,
our method is less time-consuming while achieving
comparable results.

After filling the raw ratings matrix, we run the Algorithm
1 in Section 3.2 on the resulting matrix to compute the
item similarities and predict ratings for the target user.

4. Evaluation

In this section, we describe the experimental evaluation of
the two algorithms presented in the previous section.

4.1 Data Set and Methodology

For our experiments we used the Internet Movie Database
(IMDB) [8], an online movie database, to automatically
extract semantic attributes of movies. These attributes
included genre, director, cast, release date, etc. For user
ratings of movies we used the data from movielens.org.
This data includes a random selection of 100,000 user
ratings (we only consider those users who had rated 20 or
more movies). Furthermore, we randomly chose 90% of
the ratings data as training data set and the 10% as test
data set.

We compared our two CF algorithms (Algorithm 1 in
Section 3.2 and Algorithm 2 in Section 3.3) to standard
item-based CF algorithms. For each user rating in the test
data set, we used the three algorithms to generate
predicted ratings for unrated movies. The performance of
these algorithms was measured by comparing the
predicted ratings to the actual rating.

4.2 Evaluation Metrics

In our experiments, we used MAE (Mean Absolute Error)
as our evaluation metric to measure prediction accuracy,
since it is the most widely used metric in CF research.

MAE is a measure of the deviation of prediction from the
actual value. Let’s say, for item i, we have an actual rating
pi and a prediction rating qi. We first compute the absolute
error between them and then compute the average
absolute error of all N rating-prediction pairs as the MAE.

N

qp
MAE

N

i
ii∑

=

−
= 1

||

The goal of an algorithm is to achieve as low a MAE as
possible.

4.3 Experiment Procedure

For traditional item-based algorithm as described in
Section 2, we ran the algorithm with different
neighborhood sizes and reported the MAE.

For Algorithm 1, first we used a spider program to extract
movie information from IMDB website. Currently, we
only extract these attributes for each movie: name of the
movie, year, director, genre, cast, MPAA rating, plot. We
preprocess the data, that is, we conduct some association
analysis on movie “genre” information and define a genre
hierarchy. We group “year” of movies into several time
intervals. For other attributes, we treat each as a bag of
words. Now for each attribute, we can adopt a proper
method to measure the similarity between different
movies. We define a linear combination to combine all
these attributes, e.g., for movie i and j, we define their
semantic similarity as:

...),(),(
),(),(

32

1

+∗+∗+
∗=

jiGenreSimajimDirectorSia
jiCastSimajiSemSim

Here, a1, a2, a3, … are parameters which are predefined
after doing sensitivity analysis using statistical
techniques. The next step is to combine semantic
similarity with rating similarity and generate predictions
as described in Section 3.2.

For Algorithm 2, as in Algorithm 1, we compute the
semantic similarity and the combine similarity values.
Then we perform the filling process described in Section
3.3. After filling, we run Algorithm 1 on the new ratings
matrix.

We conducted three experiments. In the first experiment,
for each item neighborhood size K, we ran the three
algorithms and measured MAE for each algorithm at K. In
the second experiment we chose different combination
parameters (from 0 to 1) to combine semantic similarity
and rating similarity values, and then ran Algorithm 1.
We measured MAE of Algorithm 1 at different
combination parameter levels. Finally, in the third

experiment, we chose different filling thresholds µ and
performed the filling process. In this case, we measured
the MAE of Algorithm 2 at different filling threshold
values.

Note that Sparsity rate in Table 1 is computed as unrated
slot number divided by all slot numbers in the ratings
matrix R.

5. Discussion and Related Work 4.4 Experiment Result

Using semantic information about the items in our
algorithms, we have alleviated the sparsity and first-rater
problems in CF systems. At the same time, we can
achieve better or comparable prediction accuracy. We
think the reason may be that, in item-based CF systems,
the goal is to find similar items and use them to make
predictions. The item rating similarities can capture users’
dislikes and likes of items, which is a kind of subjective
“indictor” of item similarities. On the other hand,
semantic similarity can capture certain intrinsic
relationships between items. Thus it can serve as an
objective “indictor” of similarities. The combination of
semantic similarity and rating similarity can help us to
capture both the subjective and the objective criteria to
different degrees, and thus make better predictions.

Our experimental results are shown in Figure 1, Figure 2
and Table 1. Figure 1 shows that both algorithms perform
better than the standard item-based CF algorithm, at all
neighborhood sizes. Furthermore, Algorithm 2 performs
slightly better than Algorithm 1. Figure 2 shows that,
using Algorithm 1, at different combination levels,
combining semantic similarity with rating similarity can
improve the prediction accuracy of item-based CF
algorithms. When combination parameter α is 0.5, we can
achieve the best result. When α = 1, which means only
using item semantic similarity to find similar users and
predict rating, we can achieve MAE of 0.7668, which is
still comparable to traditional ratings similarity based
predictions.

Figure 1

0.75

0.755

0.76

0.765

0.77

0.775

20 40 60 80 100 120 140 160 180 200

User Neighbor Size

M
AE

Traditional Item-based CF Algorithm 1 Algorithm 2

Figure 2

0.754

0.756

0.758

0.76

0.762

0.764

0.766

0.768

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Combination Parameter α

M
A

E

Algorithm 1

Recently there has been increasing interest in item-based
CF algorithms. One of the first Item-based CF algorithms
was developed by Billsus et al. [9]. Sarwar et al. [4]
compared their Item-based CF algorithm to other CF
algorithms. Deshpande et al. [10] presented an Item-based
Top-N recommendation system which used item-item as
well as item-itemset similarities to generate
recommendations. Web usage mining and other
techniques also have been used to address the scalability
problem of collaborative filtering [11,12].

A number of previous studies have attempted to combine
content information and domain knowledge with
collaborative filtering. In [13], domain knowledge has
been used in recommendation systems. The Fab system
[14] integrated content information with collaborative
filtering by presenting a public “topic” filter and a
personal “interest” filter to represent users’ profiles.
Users’ feedback was collected to refine these two filters.
Cotter et al. [15] used a content-based and a collaborative
filtering method to generate separate recommendations
and merged them to form a final recommendation set.
Pazzani [16] used the Winnow algorithm to learn user
profiles as a set of words, which were then used to
generate predictions. Basu et al. [17] used inductive logic
programming to transform the prediction problem into a
classification problem. Melivlle et al. [18] presented a
content-boosted collaborative filtering algorithm,
combining a pure content-based predictor and a pure
collaborative filtering predictor to generate final
predictions. They also performed filling on the raw rating
matrix to get a full pseudo rating matrix.

Experiments also show that in Algorithm 2, using a filling
threshold µ >=0.8, we can always get a “smaller” MAE
(Table 1).

µ 0.95 0.9 0.85 0.8
Original ratings

matrix sparsity rate 94.3% 94.3% 94.3% 94.3%

Filled ratings
matrix sparsity rate 94% 93.7% 93.3% 92.9%

MAE 0.7591 0.7591 0.7588 0.7581

Table 1

6. Conclusion and Future Work

In this paper, we presented two algorithms that use
semantic similarities among items to enhance item-based
CF algorithms. Our experiments shows that our
algorithms can achieve better results than standard item-
based CF algorithms. At the same time, the use of
semantic information allows the system to be able to give
reasonable recommendations even for new items, thus
alleviating the “first-rater” problem commonly associated
with CF systems. The use of semantic similarities also
provides a more robust way for estimating a user’s ratings
and filling in the sparse ratings matrix. Our experiments
also show that reducing the sparsity of the ratings data in
this way improves prediction accuracy.

We think more research may be done in these directions.
In our experiments we found that the generation of item
semantic similarity is not a trivial question, and this
measure clearly has a great influence on the output of the
algorithms. While semantic similarity measures are by
nature domain dependent, it might be useful to study the
appropriate measures that can be used in this context for
specific classes of objects commonly encountered in CF
applications. Another area of future work is to boost the
accuracy of the proposed algorithms by using more
advanced models for computing semantic similarities.

References

[1] D. Goldberg, D. Nichols, B.M. Oki, and D. Terry,
Using Collaborative Filtering to Weave an Information
Tapestry, CACM, 35(12), 1992, 61-70.

[2] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl, GroupLens: An Open Architecture for
Collaborative Filtering of Netnews, CSCW94: Conference
on Computer Supported Coorperative Work, Chapel Hill,
NC, 1994, 175-186.

[3] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl, An
Algorithmic Framework for Performing Collaborative
Filtering, Proceedings of the 1999 Conference on
Research and Development in Information Retrieval,
Berkeley, CA, 1999.

[4] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Item-
based Collaborative Filtering Recommendation
Algorithms, Tenth International World Wide Web
Conference, Hong Kong, 2001.

[5] M.A. Rodriguez and M.J. Egenhofer, Determining
Semantic Similarity among Entity Classes from Different
Ontologies, IEEE Transactions on Knowledge and Data
Engineering, 15(2), 2003, 442-456.

[6] L. Palopoli, D. Sacca, G. Terracina, and D. Ursino,
Uniform Techniques for Deriving Similarities of Objects
and Subschemes in Heterogeneous Databases, IEEE

Transactions on Knowledge and Data Engineering, 15(1),
2003, 271-294.

[7] P. Ganesan, H. Garcia-Molina, and J. Widom,
Exploiting Hierarchical Domain Structure to Compute
Similarity, ACM Transactions on Information Systems,
21(1), 2003, 63-94.

[8] Internet Movie Database. Http://www.imdb.com.

[9] D. Billsus and M.J. Pazzani, Learning Collaborative
Information Filters, Proceedings of the International
Conference on Machine Learning, Madison, WI, 1998.

[10] M. Deshpande and G. Karypis, Item-based Top N
Recommendation Algorithm, Tech. Report 03-0002,
University of Minnesota, 2003.

[11] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa,
Discovery and Evaluation of Aggregate Usage Profiles
for Web Personalization, in Data Mining and Knowledge
Discovery, Kluwer Publishing, 6(1), 2002, 61-82.

[12] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa,
Improving the Effectiveness of Collaborative Filtering on
Anonymous Web Usage Data, in Proceedings of the
IJCAI 2001 Workshop on Intelligent Techniques for Web
Personalization (ITWP01), Seattle, 2001.

[13] B. Mobasher and H. Dai, Using Ontologies to
Discover Domain-Level Web Usage Profiles, in
Proceedings of the Second Workshop on Semantic Web
Mining, at PKDD'02, Helsinki, Finland, 2002.

[14] M. Balabanovic and Y. Shoham, Fab: Content-based,
Collaborative Recommendation, Communications of the
ACM, 40(3), 1997.

[15] P. Cotter and B. Smyth, PTV: Intelligent
Personalized TV Guides, The Twelfth Conference on
Innovative Applications of Artificial Intelligence, Austin,
TX, 2000, 957-964.

[16] M.J. Pazzani, A Framework for Collaborative,
Content-based and Demographic Filtering, Artificial
Intelligence Review, 13(5-6), 1999, 393-408.

[17] C. Basu, H. Hirsh, and W. Cohen, Recommendation
as Classification: Using Social and Content-Based
Information in Recommendation, Proceedings of the
Fifteenth National Conference on Artificial Intelligence,
Madison, WI, 1998.

[18] P. Melville, R.J. Mooney, and R. Nagarajan,
Content-Boosted Collaborative Filtering, Proceedings of
the SIGIR2001 Workshop on Recommender Systems, New
Orleans, LA, 2001.

