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Abstract 
 
Collaborative Filtering (CF) systems address the problem 
of making personalized recommendation using 
knowledge discovery techniques. By predicting user 
ratings on new items based on historical ratings of other 
users, CF systems can give reasonable recommendations 
to new users. Traditionally, user-based CF algorithm can 
give predictions and recommendations by finding similar 
users. However these algorithms often suffer from 
scalability, sparsity and first-rater problems. Recently, 
some researchers have proposed the item-based CF 
algorithms, which give predictions based on similar 
items’ ratings. These can alleviate the scalability 
problems, but these algorithms suffer from the sparsity 
and first-rater problems. In this paper, we present two 
algorithms which use semantic similarity to enhance item-
based Collaborative Filtering. In both algorithms, we will 
extract semantic information about items and compute 
semantic similarity between them. In the first algorithm, 
we combine the semantic and rating similarities to find 
most similar items to a target item. In the second 
algorithm, we use the combined similarity to fill in the 
original ratings matrix, and then we run the first algorithm 
on this less sparse ratings matrix. Our experiments show 
that both algorithms can achieve better prediction 
accuracy than traditional item-based CF algorithms. 
Furthermore, the second algorithm can alleviate the 
sparsity problem.   
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1. Introduction 
 
Recommendation systems have been widely used in e-
commerce. Companies such as Amazon.com and 
CDNOW provide interesting and powerful 
recommendation services. Collaborative filtering (CF) 
[1,2,3] has been a primary approach to building 
recommendation systems. The goal of a CF system is to 
recommend new items or predict the utility of a certain 

item for a certain user based on the user’s preference and 
other users’ opinions. In a CF scenario, there is a list of m 
users U = {u1, u2, …, um} and a list of n items I = {i1, i2, 
…, in}. Each user has a rating vector V, where vk 
represents the user’s rating for item ik. (The user’s opinion 
and preference are explicitly given by the rating score.) 
The task of CF system is for a given active user (or called 
target user) ua, (1) to predict the rating score for an 
unrated item ik (called target item) or (2) to recommend 
some items that may be interesting to user ua. In this 
paper, we will concentrate on task 1, since if we can 
achieve task 1, task 2 can be easily achieved with some 
subjective recommendation strategy.  
 
Currently, there are mainly two types of CF algorithms, 
user-based and item-based. User-based CF algorithms use 
some statistical techniques to find a set of users, called 
user neighbors for the target user. Then different methods 
can be adopted to combine the user neighbors’ ratings to 
produce a prediction rating for the target user. User-based 
CF algorithms have shown to be able to give relatively 
accurate prediction and are used in many applications. 
However, they have some shortcomings, such as ratings 
sparsity and scalability problems. 
 
In reality, most commercial recommendation systems deal 
with tens of thousands of users and items. In these 
systems, each user may have rated less that 1% of all the 
items, which makes the ratings matrix very sparse, 
making it difficult to find user neighbors. Also the 
similarity measures among users, thus the predicted 
ratings based on such sparse data tend to be unreliable. 
 
Another problem associated with such systems is the 
“first-rater” problem. In practice, many new items are 
added into the recommendation systems every day or 
week. Since new items have been rated by few users, 
these items are unlikely to be recommended. To deal with 
these problems, some researchers have proposed item-
based CF algorithms [4,9,10]. The idea is, rather than find 
similar users (user neighbors), the system tries to find 
similar items that are rated or purchased by different users 
in some similar ways. Then, for a target item, predictions 
can be generated by taking a weighted average of the 
target user’s ratings on these similar items. It has been 



shown that item-based CF algorithms can achieve 
comparable or even better prediction accuracy than user-
based CF algorithms [4]. Furthermore, since the item 
similarity can be pre-computed offline, it can alleviate the 
scalability problem that exists in user-based CF 
algorithms. However, item-based CF algorithms still 
suffer from the first-rater and sparsity problems.  
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Here, “•” denotes the dot-product of two vectors.  
 
• Correlation-based Similarity 
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In this paper, we will make the use of semantic similarity 
among items to enhance item-based Collaborative 
Filtering. We provide two algorithms. In both algorithms 
we first extract the semantic information about items and 
compute the semantic similarity of items. Then, in the 
first algorithm, we combine the semantic similarity and 
the ratings similarity measures, and use the combined 
measure to find similar items to the target item. In the 
second algorithm, we use the combined similarity to fill in 
the original ratings matrix and alleviate the rating 
sparsity.  Then we use the first algorithm to find similar 
items and generate predictions.  

Here, Rk,p denotes the rating of user k on item p. pR is the 
average rating of the item p.  
 
• Adjusted Cosine Similarity 
Since different users have different rating styles. For 
example, in moving rating scenario, rating scale between 
1 and 5, some users may give rating 5 to a lot of movies 
they consider to be “not bad”; while some people are 
“strict” raters, for they only give rating 5 to those movies 
they like most. To offset the different scale problem, 
another similarity measure called Adjusted Cosine 
Similarity is presented.  

 
The reminder of the paper is organized as follows. Section 
2 introduces the general item-based CF approach. Section 
3 presents our two algorithms using item-based semantic 
similarity to enhance CF algorithms. In Section 4, we 
conduct experiments to compare our algorithms to the 
standard item-based CF algorithm. We will discuss some 
related work in Section 5 and conclude in Section 6. 

∑ ∑

∑

= =

=

−•−

−•−
=

m

k

m

k
kqkkpk

m

k
kqkkpk

qp

RRRR

RRRR
iisim

1 1

2
,

2
,

1
,,

)()(

)()(
),(  

 
 
2. Item-based CF algorithm Here, kR is the average rating of user k.  
  In the foregoing discussion we assume that we have a list 
of m users U = {u1, u2, …, um}, a list of n items I = {i1, i2, 
…, in} and a ratings matrix Rm*n, the value Rp,q represents 
the user up’s rating on item iq, if up has not rated iq, then 
rp,q = 0, otherwise rp,q will be a non-zero value from a 
discrete scale. Our task is to predict user uk’s rating on 
item it, which is not yet rated by uk. We call the user uk the 
target user, and item it the target item.  

2.2 Prediction Computation 
 
After computing the similarity between items, we select a 
set of most similar items to the target item and generate a 
predicted rating for the target item using target user’s 
ratings on the similar items. We use a Weighted Sum as 
follows. 
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Item-based CF algorithms consist of two processes,  
finding similar items and generating rating prediction 
based on similar items’ ratings. 
 
2.1 Finding Similar Items Here, Ra,k denotes the prediction rating of target user a on 

item k. Only the K most similar items (K nearest 
neighbors of item k) are used to generate the prediction.   

 
The first step in computing the similarity of items p and 
item q is to identify all the users who have rated both 
items p and q. Many measures can be used to compute the 
similarity between items. Some of the most widely-used 
measures are given below:  

 
As claimed in [4], compared to user-based CF algorithms, 
item-based CF algorithms can achieve comparable or 
even better prediction accuracy. At the same time, they 
can alleviate the scalability problem that exists in user-
based CF algorithms, because the item similarity can be 
pre-computed offline.  However, item-based CF 
algorithms still suffer from the first-rater and sparsity 
problems.    

 
• Cosine Similarity 
Here, two items ip and iq are considered as two column 
vectors in the user ratings matrix R. The similarity 
between items is measured by computing the cosine of 
these two vectors.   



3. Semantically Enhanced Item-based CF 
Algorithm  

• Rating similarity computation 
As introduced in Section 2, we can adopt a similarity 
measure, such as Adjusted Cosine Similarity to compute 
the rating similarity RateSim(ip, iq) from the ratings matrix 
R.  

 
As noted above, item-based CF requires measuring 
similarities among items based on the user ratings of these 
items. When a new item is added, few, if any, such ratings 
exist. In such a case, if we can extract the semantic 
information of items and define a semantic similarity 
measure between items, then we can still find item 
similarities and use these to provide predicted ratings. 
This is the primary motivation for the use of semantic 
similarity to enhance item-based CF algorithms.  

 
• Semantic similarity computation 
Computing the semantic similarity, SemSim(ip, iq), is 
domain dependent and requires knowledge of the 
underlying structure in and relationships among objects. 
In our experiment, we use some techniques introduced in 
[5] to compute semantic similarities among movie 
objects. The details of  this semantic similarity measure 
among movies is given in Section 4.3.  

In this section, we discuss the computation of semantic 
similarities among items, and we present two algorithms 
that use semantic similarity to enhance item-based CF 
systems. In Algorithm 1, we combine items’ semantic 
similarity with ratings similarity, and use the combined 
similarity to generate predictions. In Algorithm 2, we use 
this combined semantic similarity measure to estimate 
ratings for unrated items and fill in the original ratings 
matrix, thus alleviating the sparsity problem. W then use 
Algorithm 1 to generate predictions, as before.  

 
• Combining rating and semantic similarities 
Here, we use a simple linear combination.  TotalSim(ip, iq) 
= α*SemSim(ip, iq) + (1-α)*RateSim(ip, iq). TotalSim(ip, iq) 
denotes the combined similarity of item p and item q. α is 
the combination parameter. If α = 0, then TotalSim(ip, iq) 
= RateSim(ip, iq). It will be the same as the traditional 
item-based CF algorithm. Finding an appropriate α value 
is not a trivial task. We choose the proper α value by 
performing sensitivity analysis on our experimental data.  

  
3.1 Semantic Similarity • Prediction computation 
 As in traditional item-based CF algorithms, we use the 

Weighted Sum technique to compute the prediction value 
for target item k.  

Semantic information about an item consists of the 
attributes of the item, the item’s relationship to other 
items, its role in the relationship, and other meta-
information.  For example, in the movie scenario, a given 
movie has many attributes, such as title, director, cast, 
release date, genre, and MPAA rating. It also has 
relationships with other movies, for example, movies 
“Terminator 1”, “Terminator 2” and “Terminator 3” have 
a common actor “Arnold Schwarzenegger” and have 
same genre information; “Steve Spielberg” has directed 
movies “E.T.” and “Schindler's List”. The semantic 
information describes the intrinsic features of each item. 
Combining semantic information about items with user 
judgments about these items should allow for more 
intelligent computation of item similarities, and hopefully, 
lead to better recommendations.  
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The only difference is that, here we will use the combined 
item similarity TotalSim(ip, iq) instead of RateSim(ip, iq) to 
generate prediction rating.  
 
3.3 Algorithm 2 
 

 The sparsity of the ratings matrix makes it difficult to find 
similar users or items from among the tens of thousands 
of users and items in a typical database. Generally, 
similarity computations based on such sparse data tend to 
be unreliable causing recommendations or predictions to 
be inaccurate. In our second algorithm, we combine 
semantic similarity with rating similarity and use the 
combined similarity to fill in the original ratings. We then 
use Algorithm 1 to generate predictions using this less 
sparse matrix. 

The notions of semantic matching among objects and 
classes has been a subject of considerable study in the 
past years [5,6,7]. In this paper we will not discuss these 
in detail, but we utilize some of these techniques to 
extract semantic information associated with items and to 
compute the semantic similarity between them.  
 
 
3.2 Algorithm 1 

  
There are several ways to fill in the ratings matrix. The 
first method is to use the rating prediction method of 
Section 2.2. For all unrated items, we compute a predicted 
rating based on item similarities and use it to estimate the 
ratings for these items. Intuitively, this method will lead 

In Algorithm 1, we combine items’ semantic similarity 
with their rating similarity and use the combined 
similarity to generate predictions. Algorithm 1 consists of 
4 processes: 
 



to the propagation of prediction error. Our experiments 
also confirm this assertion. The second method is to use 
semantic similarities to fill in the ratings matrix. 
However, in practice, since there are tens of thousands of 
items in the system, the semantic similarity matrix is also 
very sparse (Most similarity values are either 0 or a very 
small value).  
 
In this case, estimation may not be an effective strategy 
for solving the sparsity problem. So, our solution is to 
combine the rating and semantic similarities, and use the 
combined similarity value to fill in the raw ratings matrix. 
In our experiments, we use a filling threshold µ. For each 
unrated item, we find all its similar items whose similarity 
values (combined similarity) exceed the threshold µ, and 
use the weighted sum of these similar items’ ratings as the 
estimated value. Unlike some other methods [18] that fill 
in values for every unrated item to get a full rating matrix, 
we only fill values for some of the unrated items. Thus, 
our method is less time-consuming while achieving 
comparable results. 
 
After filling the raw ratings matrix, we run the Algorithm 
1 in Section 3.2 on the resulting matrix to compute the 
item similarities and predict ratings for the target user.  
 
 
4. Evaluation  

 
In this section, we describe the experimental evaluation of 
the two algorithms presented in the previous section.  
 
4.1 Data Set and Methodology 
 
For our experiments we used the Internet Movie Database 
(IMDB) [8], an online movie database, to automatically 
extract semantic attributes of movies. These attributes 
included genre, director, cast, release date, etc. For user 
ratings of movies we used the data from movielens.org. 
This data includes a random selection of 100,000 user 
ratings (we only consider those users who had rated 20 or 
more movies). Furthermore, we randomly chose 90% of 
the ratings data as training data set and the 10% as test 
data set.  
 
We compared our two CF algorithms (Algorithm 1 in 
Section 3.2 and Algorithm 2 in Section 3.3) to standard  
item-based CF algorithms. For each user rating in the test 
data set, we used the three algorithms to generate 
predicted ratings for unrated movies. The performance of 
these algorithms was measured by comparing the 
predicted ratings to the actual rating.   
 
4.2 Evaluation Metrics 
 
In our experiments, we used MAE (Mean Absolute Error) 
as our evaluation metric to measure prediction accuracy, 
since it is the most widely used metric in CF research. 

MAE is a measure of the deviation of prediction from the 
actual value. Let’s say, for item i, we have an actual rating 
pi and a prediction rating qi. We first compute the absolute 
error between them and then compute the average 
absolute error of all N rating-prediction pairs as the MAE.  
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The goal of an algorithm is to achieve as low a MAE as 
possible.   
 
4.3 Experiment Procedure 
 
For traditional item-based algorithm as described in 
Section 2, we ran the algorithm with different 
neighborhood sizes and reported the MAE.  
 
For Algorithm 1, first we used a spider program to extract 
movie information from IMDB website. Currently, we 
only extract these attributes for each movie: name of the 
movie, year, director, genre, cast, MPAA rating, plot. We 
preprocess the data, that is, we conduct some association 
analysis on movie “genre” information and define a genre 
hierarchy. We group “year” of movies into several time 
intervals. For other attributes, we treat each as a bag of 
words. Now for each attribute, we can adopt a proper 
method to measure the similarity between different 
movies. We define a linear combination to combine all 
these attributes, e.g., for movie i and j, we define their 
semantic similarity as: 
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Here, a1, a2, a3, … are parameters which are predefined 
after doing sensitivity analysis using statistical 
techniques. The next step is to combine semantic 
similarity with rating similarity and generate predictions 
as described in Section 3.2.  
 
For Algorithm 2, as in Algorithm 1, we compute the 
semantic similarity and the combine similarity values. 
Then we perform the filling process described in Section 
3.3. After filling, we run Algorithm 1 on the new ratings 
matrix.  
 
We conducted three experiments. In the first experiment, 
for each item neighborhood size K, we ran the three 
algorithms and measured MAE for each algorithm at K. In 
the second experiment we chose different combination 
parameters (from 0 to 1) to combine semantic similarity 
and rating similarity values, and then ran Algorithm 1. 
We measured MAE of Algorithm 1 at different 
combination parameter levels. Finally, in the third 



experiment, we chose different filling thresholds µ and 
performed the filling process. In this case, we measured 
the MAE of Algorithm 2 at different filling threshold 
values. 

Note that Sparsity rate in Table 1 is computed as unrated 
slot number divided by all slot numbers in the ratings 
matrix R. 
 

  
5. Discussion and Related Work 4.4 Experiment Result 
  
Using semantic information about the items in our 
algorithms, we have alleviated the sparsity and first-rater 
problems in CF systems. At the same time, we can 
achieve better or comparable prediction accuracy. We 
think the reason may be that, in item-based CF systems, 
the goal is to find similar items and use them to make 
predictions. The item rating similarities can capture users’ 
dislikes and likes of items, which is a kind of subjective 
“indictor” of item similarities. On the other hand, 
semantic similarity can capture certain intrinsic 
relationships between items. Thus it can serve as an 
objective “indictor” of similarities. The combination of 
semantic similarity and rating similarity can help us to 
capture both the subjective and the objective criteria to 
different degrees, and thus make better predictions.  

Our experimental results are shown in Figure 1, Figure 2 
and Table 1. Figure 1 shows that both algorithms perform 
better than the standard item-based CF algorithm, at all 
neighborhood sizes. Furthermore, Algorithm 2 performs 
slightly better than Algorithm 1.  Figure 2 shows that, 
using Algorithm 1, at different combination levels, 
combining semantic similarity with rating similarity can 
improve the prediction accuracy of item-based CF 
algorithms. When combination parameter α is 0.5, we can 
achieve the best result. When α = 1, which means only 
using item semantic similarity to find similar users and 
predict rating, we can achieve MAE of 0.7668, which is 
still comparable to traditional ratings similarity based 
predictions.   
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Recently there has been increasing interest in item-based 
CF algorithms. One of the first Item-based CF algorithms 
was developed by Billsus et al. [9]. Sarwar et al. [4] 
compared their Item-based CF algorithm to other CF 
algorithms. Deshpande et al. [10] presented an Item-based 
Top-N recommendation system which used item-item as 
well as item-itemset similarities to generate 
recommendations. Web usage mining and other 
techniques also have been used to address the scalability 
problem of collaborative filtering [11,12]. 
 
A number of previous studies have attempted to combine 
content information and domain knowledge with 
collaborative filtering. In [13], domain knowledge has 
been used in recommendation systems. The Fab system 
[14] integrated content information with collaborative 
filtering by presenting a public “topic” filter and a 
personal “interest” filter to represent users’ profiles. 
Users’ feedback was collected to refine these two filters. 
Cotter et al. [15] used a content-based and a collaborative 
filtering method to generate separate recommendations 
and merged them to form a final recommendation set. 
Pazzani [16] used the Winnow algorithm to learn user 
profiles as a set of words, which were then used to 
generate predictions. Basu et al. [17] used inductive logic 
programming to transform the prediction problem into a 
classification problem. Melivlle et al. [18] presented a 
content-boosted collaborative filtering algorithm, 
combining a pure content-based predictor and a pure 
collaborative filtering predictor to generate final 
predictions. They also performed filling on the raw rating 
matrix to get a full pseudo rating matrix. 

 
Experiments also show that in Algorithm 2, using a filling 
threshold µ >=0.8, we can always get a “smaller” MAE 
(Table 1).  
 

µ 0.95 0.9 0.85 0.8 
Original ratings 

matrix sparsity rate 94.3% 94.3% 94.3% 94.3% 

Filled ratings 
matrix sparsity rate 94% 93.7% 93.3% 92.9% 

MAE 0.7591 0.7591 0.7588 0.7581
 
 

Table 1   



6. Conclusion and Future Work 
 
In this paper, we presented two algorithms that use  
semantic similarities among items to enhance item-based 
CF algorithms. Our experiments shows that our 
algorithms can achieve better results than standard item-
based CF algorithms.  At the same time, the use of 
semantic information allows the system to be able to give 
reasonable recommendations even for new items, thus 
alleviating the “first-rater” problem commonly associated 
with CF systems. The use of semantic similarities also 
provides a more robust way for estimating a user’s ratings 
and filling in the sparse ratings matrix. Our experiments 
also show that reducing the sparsity of the ratings data in 
this way improves prediction accuracy. 
 
We think more research may be done in these directions. 
In our experiments we found that the generation of item 
semantic similarity is not a trivial question, and this 
measure clearly has a great influence on the output of the 
algorithms.  While semantic similarity measures are by 
nature domain dependent, it might be useful to study the 
appropriate measures that can be used in this context for 
specific classes of objects commonly encountered in CF 
applications. Another area of future work is to boost the 
accuracy of the proposed algorithms by using more 
advanced models for computing semantic similarities. 
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