
 

Chapter 2:  Association Rules and Sequential 
Patterns 

Association rules are an important class of regularities in data. Mining of 
association rules is a fundamental data mining task. It is perhaps the most 
important model invented and extensively studied by the database and data 
mining community. Its objective is to find all co-occurrence relationships, 
called associations, among data items. Since it was first introduced in 
1993 by Agrawal et al. [9], it has attracted a great deal of attention. Many 
efficient algorithms, extensions and applications have been reported.  

The classic application of association rule mining is the market basket 
data analysis, which aims to discover how items purchased by customers 
in a supermarket (or a store) are associated. An example association rule is  

 Cheese → Beer  [support = 10%, confidence = 80%] 

The rule says that 10% customers buy Cheese and Beer together, and 
those who buy Cheese also buy Beer 80% of the time. Support and confi-
dence are two measures of rule strength, which we will define later.  

This mining model is in fact very general and can be used in many ap-
plications. For example, in the context of the Web and text documents, it 
can be used to find word co-occurrence relationships and Web usage pat-
terns as we will see in later chapters.  

Association rule mining, however, does not consider the sequence in 
which the items are purchased. Sequential pattern mining takes care of 
that. An example of a sequential pattern is “5% of customers buy bed first, 
then mattress and then pillows” The items are not purchased at the same 
time, but one after another. Such patterns are useful in Web usage mining 
for analyzing clickstreams from server logs. They are also useful for find-
ing language or linguistic patterns from natural language texts. 

2.1 Basic Concepts of Association Rules 

The problem of mining association rules can be stated as follows:  

Let I = {i1, i2, …, im} be a set of items. Let T = (t1, t2, …, tn) be a set of 
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transactions (the database), where each transaction ti is a set of items such 
that ti ⊆ I. An association rule is an implication of the form,  

 X → Y, where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅. 

X (or Y) is a set of items, called an itemset.  

Example 1: We want to analyze how the items sold in a supermarket are 
related to one another. I is the set of all items sold in the supermarket. A 
transaction is simply a set of items purchased in a basket by a customer. 
For example, a transaction may be:  

{Beef, Chicken, Cheese},  

which means that a customer purchased three items in a basket, Beef, 
Chicken, and Cheese. An association rule may be: 

 Beef, Chicken → Cheese, 

where {Beef, Chicken} is X and {Cheese} is Y. For simplicity, brackets 
“{” and “}” are usually omitted in transactions and rules. ▀ 

A transaction ti ∈ T is said to contain an itemset X if X is a subset of ti 
(we also say that the itemset X covers ti). The support count of X in T 
(denoted by X.count) is the number of transactions in T that contain X. The 
strength of a rule is measured by its support and confidence.  
Support: The support of a rule, X → Y, is the percentage of transactions in 

T that contains X ∪ Y, and can be seen as an estimate of the probability, 
Pr(X∪Y). The rule support thus determines how frequent the rule is ap-
plicable in the transaction set T. Let n be the number of transactions in T. 
The support of the rule X → Y is computed as follows: 

n
countYXsupport ).  ( ∪

=  (1) 

Support is a useful measure because if it is too low, the rule may just oc-
cur due to chance. Furthermore, in a business environment, a rule cover-
ing too few cases (or transactions) may not be useful because it does not 
make business sense to act on such a rule (not profitable).  

Confidence: The confidence of a rule, X → Y, is the percentage of transac-
tions in T that contain X also contain Y, and can be seen as an estimate of 
the conditional probability, Pr(Y | X). It is computed as follows:  

countX
countYXconfidence

.
).  ( ∪

=  
(2) 
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Confidence thus determines the predictability of the rule. If the confi-
dence of a rule is too low, one cannot reliably infer or predict Y from X. 
A rule with low predictability is of limited use.    

Objective: Given a transaction set T, the problem of mining association 
rules is to discover all association rules in T that have support and confi-
dence greater than or equal to the user-specified minimum support (de-
noted by minsup) and minimum confidence (denoted by minconf).  

The keyword here is “all”, i.e., association rule mining is complete. Previ-
ous methods for rule mining typically generate only a subset of rules based 
on various heuristics (see Chapter 3).  

Example 2: Fig. 1 shows a set of 7 transactions. Each transaction ti is a set 
of items purchased in a basket in a store by a customer. The set I is the set 
of all items sold in the store.  

t1: Beef, Chicken, Milk 
t2: Beef, Cheese 
t3: Cheese, Boots 
t4: Beef, Chicken, Cheese 
t5: Beef, Chicken, Clothes, Cheese, Milk 
t6: Chicken, Clothes, Milk 
t7: Chicken, Milk, Clothes 

Fig. 1.  An example of a transaction set 

Given the user-specified minsup = 30% and minconf = 80%, the following 
association rule (sup is the support, and conf is the confidence) 

Chicken, Clothes → Milk  [sup = 3/7, conf = 3/3] 

is valid as its support is 42.84% (> 30%) and its confidence is 100% (> 
80%). The rule below is also valid, whose consequent has two items:  

 Clothes → Milk, Chicken  [sup = 3/7, conf = 3/3] 

Clearly, more association rules can be discovered, as we will see later.  ▀ 

We note that the data representation in the transaction form of Fig. 1 is a 
simplistic view of shopping baskets. For example, the quantity and price of 
each item are not considered in the model.  

We also note that a text document or even a sentence in a single docu-
ment can be treated as a transaction without considering word sequence 
and the number of occurrences of each word. Hence, given a set of docu-
ments or a set of sentences, we can find word co-occurrence relations.  

A large number of association rule mining algorithms have been re-
ported in the literature, which have different mining efficiencies. Their re-
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sulting sets of rules are, however, all the same based on the definition of 
association rules. That is, given a transaction data set T, a minimum sup-
port and a minimum confidence, the set of association rules existing in T is 
uniquely determined. Any algorithm should find the same set of rules al-
though their computational efficiencies and memory requirements may be 
different. The best known mining algorithm is the Apriori Algorithm 
proposed in [11], which we study next.  

2.2 Apriori Algorithm 

The Apriori algorithm works in two steps: 

1. Generate all frequent itemsets: A frequent itemset is an itemset that 
has transaction support above minsup.  

2. Generate all confident association rules from the frequent itemsets: 
A confident association rule is a rule with confidence above minconf.   

We call the number of items in an itemset its size, and an itemset of size k 
a k-itemset. Following Example 2 above, {Chicken, Clothes, Milk} is a fre-
quent 3-itemset as its support is 3/7 (minsup = 30%). From the itemset, we 
can generate the following three association rules (minconf = 80%): 

Rule 1: Chicken, Clothes → Milk  [sup = 3/7, conf = 3/3] 
Rule 2:  Clothes, Milk  → Chicken  [sup = 3/7, conf = 3/3] 
Rule 3:  Clothes → Milk, Chicken  [sup = 3/7, conf = 3/3] 

Below, we discuss the two steps in turn.  

2.2.1 Frequent Itemset Generation 

The Apriori algorithm relies on the Apriori or downward closure property 
to efficiently generate all frequent itemsets.  

Downward closure property: If an itemset has minimum support, then 
every non-empty subset of this itemset also has minimum support. 

The idea is simple because if a transaction contains a set of items X, 
then it must contain any non-empty subset of X. This property and the 
minsup threshold prune a large number of itemsets that cannot be frequent.  

To ensure efficient itemset generation, the algorithm assumes that the 
items in I are sorted in lexicographic order (a total order). The order is 
used throughout the algorithm in each itemset. We use the notation {w[1], 
w[2], …, w[k]} to represent a k-itemset w consisting of items w[1], w[2], 
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…, w[k], where w[1] < w[2] < … < w[k] according to the total order.  
The Apriori algorithm for frequent itemset generation, which is given in 

Fig. 2, is based on level-wise search. It generates all frequent itemsets by 
making multiple passes over the data. In the first pass, it counts the sup-
ports of individual items (line 1) and determines whether each of them is 
frequent (line 2). F1 is the set of frequent 1-itemsets. In each subsequent 
pass k, there are three steps: 

1. It starts with the seed set of itemsets Fk-1 found to be frequent in the (k-
1)-th pass. It uses this seed set to generate candidate itemsets Ck (line 
4), which are possible frequent itemsets. This is done using the candi-
date-gen() function.  

Algorithm Apriori(T) 
1 C1 ← init-pass(T);   // the first pass over T  
2 F1 ← {f | f ∈ C1, f.count/n ≥ minsup};  // n is the no. of transactions in T 
3 for (k = 2; Fk-1 ≠ ∅; k++) do // subsequent passes over T 
4 Ck ← candidate-gen(Fk-1); 
5 for each transaction t ∈ T do // scan the data once 
6 for each candidate c ∈ Ck do    
7 if c is contained in t then  
8  c.count++;  
9 end 
10 end 
11 Fk ← {c ∈ Ck | c.count/n ≥ minsup} 
12 end 
13 return F ← Uk Fk; 

Fig. 2. The Apriori Algorithm for generating all frequent itemsets 

Function candidate-gen(Fk-1)  
1 Ck ← ∅;  // initialize the set of candidates 
2 forall f1, f2 ∈ Fk-1  // traverse all pairs of frequent itemsets 
3 with f1 = {i1, … , ik-2, ik-1}  // that differ only in the last item  
4 and  f2 = {i1, … , ik-2, i’k-1}   
5 and ik-1 < i’k-1 do  // according to the lexicographic order 
6 c ← {i1, …, ik-1, i’k-1};  // join the two itemsets f1 and f2 
7 Ck ← Ck ∪ {c};  // add the new itemset c to the candidates  
8 for each (k-1)-subset s of c do 
9 if (s ∉ Fk-1) then   
10 delete c from Ck; // delete c from the candidates 
11 end 
12 end 
13 return Ck;  // return the generated candidates 

Fig. 3. The candidate-gen function  
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2. The transaction database is then scanned and the actual support of each 
candidate itemset c in Ck is counted (lines 5-10). Note that we do not 
need to load the whole data into memory before processing. Instead, at 
any time, only one transaction resides in memory. This is a very impor-
tant feature of the algorithm. It makes the algorithm scalable to huge 
data sets, which cannot be loaded into memory.  

3. At the end of the pass or scan, it determines which of the candidate 
itemsets are actually frequent (line 11).  

The final output of the algorithm is the set F of all frequent itemsets (line 
13). The candidate-gen() function is discussed below.  

Candidate-gen function: The candidate generation function is given in 
Fig. 3. It consists of two steps, the join step and the pruning step.  

Join step (lines 2-6 in Fig. 3): This step joins two frequent (k-1)-itemsets to 
produce a possible candidate c (line 6). The two frequent itemsets f1 and 
f2 have exactly the same items except the last one (lines 3-5). c is added 
to the set of candidates Ck (line 7).  

Pruning step (lines 8-11 in Fig. 3): A candidate c from the join step may 
not be a final candidate. This step determines whether all the k-1 sub-
sets (there are k of them) of c are in Fk-1. If anyone of them is not in Fk-1, 
c cannot be frequent according to the downward closure property, and 
is thus deleted from Ck.  

The correctness of the candidate-gen() function is easy to show (see [11]). 
Here, we use an example to illustrate the working of the function.  

Example 3: Let the set of frequent itemsets at level 3 be 
F3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}} 

For simplicity, we use numbers to represent items. The join step (which 
generates candidates for level 4) will produce 2 candidate itemsets, {1, 2, 
3, 4} and {1, 3, 4, 5}. {1, 2, 3, 4} is generated by joining the first and the 
second itemsets in F3 as their first and second items are the same respec-
tively. {1, 3, 4, 5} is generated by joining {1, 3, 4} and {1, 3, 5}.  

After the pruning step, we have only: 
C4 = {{1, 2, 3, 4}} 

because {1, 4, 5} is not in F3 and thus {1, 3, 4, 5} cannot be frequent.  

Example 4: Let us see a complete running example of the Apriori Algo-
rithm based on the transactions in Fig. 1. We use minsup = 30%.  

F1:   {{Beef}:4, {Chicken}:5, {Clothes}:3, {Cheese}:4, {Milk}:4} 
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 Note: the number after each frequent itemset is the support count of the 
itemset, i.e., the number of transactions containing the itemset. A mini-
mum support count of 3 is sufficient because the support of 3/7 is greater 
than 30%, where 7 is the total number of transactions.  

C2:  {{Beef, Chicken}, {Beef, Clothes}, {Beef, Cheese}, {Beef, Milk},  
 {Chicken, Clothes}, {Chicken, Cheese}, {Chicken, Milk}, 

  {Clothes, Cheese}, {Clothes, Milk}, {Cheese, Milk}} 

F2: {{Beef, Chicken}:3, {Beef, Cheese}:3, {Chicken, Clothes}:3,  
  {Chicken, Milk}:4, {Clothes, Milk}:3} 

C3: {{Chicken, Clothes, Milk}} 

 Note: {Beef, Chicken, Cheese} is also produced in line 6 of Fig. 3. 
However, {Chicken, Cheese} is not in F2, and thus the itemset {Beef, 
Chicken, Cheese} is not included in C3.  

F3: {{Chicken, Clothes, Milk}:3} ▀ 

Finally, some remarks about the Apriori algorithm are in order:  

• Theoretically, this is an exponential algorithm. Let the number of items 
in I be m. The space of all itemsets is O(2m) because each item may or 
may not be in an itemset. However, the mining algorithm exploits the 
sparseness of the data and the high minimum support value to make the 
mining possible and efficient. The sparseness of the data in the context 
of market basket analysis means that the store sells a lot of items, but 
each shopper only purchases a few of them. This is true for text docu-
ments as well. The set I, which is the vocabulary, is usually very large, 
but each document only contains a small subset of the words.  

• The algorithm can scale up to large data sets as it does not load the en-
tire data into the memory. It only scans the data K times, where K is the 
size of the largest itemset. In practice, K is often small (e.g., < 10). This 
scale-up property is very important in practice because many real-world 
data sets are so large that they cannot be loaded into the main memory.  

• The algorithm is based on level-wise search. It has the flexibility to stop 
at any level. This is useful in practice because in many applications, 
long frequent itemsets or rules are not needed as they are hard to use.  

• As mentioned earlier, once a transaction set T, a minsup and a minconf 
are given, the set of frequent itemsets that can be found in T is uniquely 
determined. Any algorithm should find the same set of frequent item-
sets. This property about association rule mining does not hold for many 
other data mining tasks, e.g., classification or clustering, for which dif-
ferent algorithms may produce very different results.  

• The main problem of association rule mining is that it often produces a 
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huge number of itemsets (and rules), tens of thousands, or more, which 
makes it hard for the user to analyze them to find those truly useful 
ones. This is called the interestingness problem. Researchers have pro-
posed several methods to tackle this problem [e.g., 307, 313, 438, 463]. 

An efficient implementation of the Apriori algorithm involves sophisti-
cated data structures and programming techniques, which are beyond the 
scope of this book. Apart from the Apriori algorithm, there is a large num-
ber of other algorithms, e.g., FP-growth [201] and many others. 

2.2.2 Association Rule Generation 

In many applications, frequent itemsets are already useful and sufficient. 
Then, we do not need to generate association rules. In applications where 
rules are desired, we use frequent itemsets to generate all association rules.  

Compared with frequent itemset generation, rule generation is relatively 
simple. To generate rules for every frequent itemset f, we use all non-
empty subsets of f. For each such subset α, we output a rule of the form   

(f − α) → α,  if 

,
).(

. minconf
countf

countfconfidence ≥
−

=
α

 
(3) 

where f.count ((f−α).count) is the support count of f ((f − α)). The support 
of the rule is f.count/n, where n is the number of transactions in the trans-
action set T. All the support counts needed for confidence computation are 
available because if f is frequent, then any of its non-empty subset is also 
frequent and its support count has been recorded in the mining process. 
Thus, no data scan is needed in rule generation.  

This exhaustive rule generation strategy is, however, inefficient. To de-
sign an efficient algorithm, we observe that the support count of f in the 
above confidence computation does not change as α changes. It follows 
that for a rule (f − α) → α to hold, all rules of the form (f − αsub) → αsub 
must also hold, where αsub is a non-empty subset of α, because the support 
count of (f − αsub) must be less than or equal to the support count of (f − α). 
For example, given an itemset {A, B, C, D}, if the rule (A, B → C, D) holds, 
then the rules (A, B, C → D) and (A, B, D → C) must also hold. 

Thus, for a given frequent itemset f, if a rule with consequent α holds, 
then so do rules with consequents that are subsets of α. This is similar to 
the downward closure property that, if an itemset is frequent, then so are 
all its subsets. Therefore, from the frequent itemset f, we first generate all 
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rules with one item in the consequent. We then use the consequents of 
these rules and the function candidate-gen() (Fig. 3) to generate all possi-
ble consequents with two items that can appear in a rule, and so on. An 
algorithm using this idea is given in Fig. 4. Note that all 1-item consequent 
rules (rules with one item in the consequent) are first generated in line 2 of 
the function genRules(). The confidence is computed using Equation (3).   

Example 5: We again use transactions in Fig. 1, minsup = 30% and min-
conf = 80%. The frequent itemsets are as follows (see Example 4):  

F1:   {{Beef}:4, {Chicken}:5, {Clothes}:3, {Cheese}:4, {Milk}:4} 
F2: {{Beef, Chicken}:3, {Beef, Cheese}:3, {Chicken, Clothes}:3,  
 {Chicken, Milk}:4, {Clothes, Milk}:3} 
F3: {{Chicken, Clothes, Milk}:3} 

We use only the itemset in F3 to generate rules (generating rules from each 
itemset in F2 can be done in the same way). The itemset in F3 generates the 
following possible 1-item consequent rules:  

Rule 1: Chicken, Clothes → Milk  [sup = 3/7, conf = 3/3] 
Rule 2:  Chicken, Milk → Clothes  [sup = 3/7, conf = 3/4] 
Rule 3:  Clothes, Milk  → Chicken  [sup = 3/7, conf = 3/3] 

Algorithm genRules(F) // F is the set of all frequent itemsets 
1  for each frequent k-itemset fk in F, k ≥ 2 do 
2 output every 1-item consequent rule of fk with confidence ≥ minconf and 

support ← fk.count/n // n is the total number of transactions in T 
3  H1 ←{consequents of all 1-item consequent rules derived from fk above}; 
4  ap-genRules(fk, H1); 
5  end 
 
Procedure ap-genRules(fk, Hm) // Hm is the set of m-item consequents 
1 if (k > m + 1) AND (Hm ≠ ∅) then  
2 Hm+1← candidate-gen(Hm); 
3 for each hm+1in Hm+1do 
4 conf  ← fk.count/(fk − hm+1).count; 
5 if (conf ≥ minconf) then 
6 output the rule (fk − hm+1) → hm+1 with confidence = conf and sup-

port = fk.count/n; // n is the total number of transactions in T 
7 else 
8 delete hm+1 from Hm+1; 
9 end 
10 ap-genRules(fk, Hm+1); 
11 end 

Fig. 4. The association rule generation algorithm.  
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Due to the minconf requirement, only Rule 1 and Rule 3 are output in line 
2 of the algorithm genRules(). Thus, H1 = {{Chicken}, {Milk}}. The function 
ap-genRules() is then called. Line 2 of ap-genRules() produces H2 = 
{{Chicken, Milk}}. The following rule is then generated:  

Rule 4:  Clothes → Milk, Chicken  [sup = 3/7, conf = 3/3] 

Thus, three association rules are generated from the frequent itemset 
{Chicken, Clothes, Milk} in F3, namely Rule 1, Rule 3 and Rule 4.  ▀ 

2.3  Data Formats for Association Rule Mining 

So far, we have used only transaction data for mining association rules. 
Market basket data sets are naturally of this format. Text documents can be 
seen as transaction data as well. Each document is a transaction, and each 
distinctive word is an item. Duplicate words are removed.  

However, mining can also be performed on relational tables. We just 
need to convert a table data set to a transaction data set, which is fairly 
straightforward if each attribute in the table takes categorical values. We 
simply change each value to an attribute-value pair.  

Example 6: The table data in Fig. 5(A) can be converted to the transaction 
data in Fig. 5(B). Each attribute-value pair is considered an item. Using 
only values is not appropriate in the transaction form because different at-
tributes may have the same values. For example, without including attrib-
ute names, the value a for Attribute1 and Attribute2 are not distinguishable. 
After the conversion, Fig. 5(B) can be used in association rule mining. ▀ 

If any attribute takes numerical values, it becomes complex. We need to 
first discretize its value range into intervals, and treat each interval as a 
categorical value. For example, an attribute’s value range is from 1-100, 
i.e., [1, 100]. We may want to divide it into 5 equal-sized intervals, 1-20, 
21-40, 41-60, 61-80, and 80-100. Each interval is then treated as a cate-
gorical value. Discretization can be done manually based on expert knowl-
edge or automatically. There are several existing algorithms [138, 446].  

A point to note is that for a table data set, the join step of the candidate 
generation function (Fig. 3) needs to be slightly modified in order to en-
sure that it does not join two itemsets to produce a candidate itemset con-
taining two items from the same attribute. 

 Clearly, we can also convert a transaction data set to a table data set us-
ing a binary representation and treating each item in I as an attribute. If a 
transaction contains an item, its attribute value is 1, and 0 otherwise.  
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2.4 Mining with Multiple Minimum Supports  

The key element that makes association rule mining practical is the minsup 
threshold. It is used to prune the search space and to limit the number of 
rules generated. However, using only a single minsup implicitly assumes 
that all items in the data are of the same nature and/or have similar fre-
quencies in the database. This is often not the case in real-life applications. 
In many applications, some items appear very frequently in the data, while 
some other items rarely appear. If the frequencies of items vary a great 
deal, we will encounter two problems [306]:  

1. If the minsup is set too high, we will not find rules that involve infre-
quent items or rare items in the data.  

2. In order to find rules that involve both frequent and rare items, we have 
to set the minsup very low. However, this may cause combinatorial ex-
plosion to produce too many meaningless rules, because those frequent 
items will be associated with one another in all possible ways. 

Example 7: In a supermarket transaction data set, in order to find rules in-
volving those infrequently purchased items such as FoodProcessor and 
CookingPan (they generate more profits per item), we need to set the min-
sup to very low (say, 0.5%). We may find the following useful rule: 

 FoodProcessor → CookingPan    [sup = 0.5%, conf = 60%] 

However, this low minsup may also cause the following meaningless rule 
to be found:   

 Bread, Cheese, Milk → Yogurt   [sup = 0.5%, conf = 60%] 

Knowing that 0.5% of the customers buy the 4 items together is useless 

Attribute1 Attribute2 Atribute3 
a a x 
b n y 

(A) Table Data 

t1:    (Attribute1, a), (Attribute2, a), (Attribute3, x) 
t2:    (Attribute1, b), (Attribute2, n), (Attribute3, y) 

(B) Transaction Data 

Fig. 5. From a relational table and a transaction set  
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because all these items are frequently purchased in a supermarket and each 
of them makes little profit. Worst still, it may cause combinatorial explora-
tion! For the rule to be useful, the support needs to be much higher. In 
some applications, such a rule may not be useful at all no matter how high 
its support may be because it is known that customers frequently buy these 
food items together. Then the question is whether the algorithm can auto-
matically suppress the rule, i.e., not to generate it.  ▀ 

This dilemma is called the rare item problem. Using a single minsup 
for the whole data set is inadequate because it cannot capture the inherent 
natures and/or frequency differences of the items in the database. By the 
natures of items we mean that some items, by nature, appear more fre-
quently than others. For example, in a supermarket, people buy FoodProc-
essor and CookingPan much less frequently than they buy Bread and Milk. 
In general, those durable and/or expensive goods are bought less often, but 
each of them generates more profit. It is thus important to capture those 
rules involving less frequent items. However, we must do so without al-
lowing frequent items to produce too many meaningless rules with very 
low supports and possibly to cause combinatorial explosion. 

One common solution used in many applications is to partition the data 
into several smaller blocks (subsets), each of which contains only items of 
similar frequencies. Mining is then done separately for each block using a 
different minsup. This approach is not satisfactory because rules that in-
volve items across different blocks will not be found. 

A better solution is to allow the user to specify multiple minimum sup-
ports, i.e., to specify a different minimum item support (MIS) to each 
item. Thus, different rules need to satisfy different minimum supports de-
pending on what items are in the rules. This model thus enables us to 
achieve our objective of producing rare item rules without causing fre-
quent items to generate too many meaningless rules.  

An important by-product of this model is that it enables the user to eas-
ily instruct the algorithm not to generate any rules involving some items by 
setting their MIS values to 100% (or 101% to be safe). This is useful be-
cause in practice the user may only be interested in certain types of rules.  

2.4.1 Extended Model 

To allow multiple minimum supports, the original model in Section 2.1 
needs to be extended. In the extended model, the minimum support of a 
rule is expressed in terms of minimum item supports (MIS) of the items 
that appear in the rule. That is, each item in the data can have a MIS value 
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specified by the user. By providing different MIS values for different 
items, the user effectively expresses different support requirements for dif-
ferent rules. It seems that specifying a MIS value for each item is a diffi-
cult task. This is not so as we will see at the end of Section 2.4.2.  

Let MIS(i) be the MIS value of item i. The minimum support of a rule 
R is the lowest MIS value among the items in the rule. That is, a rule R,  

 i1, i2, …, ik → ik+1, …, ir, 

satisfies its minimum support if the rule’s actual support in the data is 
greater than or equal to:  

 min(MIS(i1), MIS(i2), …, MIS(ir)).  

Minimum item supports thus enable us to achieve the goal of having 
higher minimum supports for rules that only involve frequent items, and 
having lower minimum supports for rules that involve less frequent items.  

Example 8: Consider the set of items in a data set, {Bread, Shoes, 
Clothes}. The user-specified MIS values are as follows: 

MIS(Bread) = 2%  MIS(Clothes) = 0.2% MIS(Shoes) = 0.1% 

The following rule doesn’t satisfy its minimum support: 

 Clothes → Bread  [sup = 0.15%, conf = 70%] 

This is so because min(MIS(Bread), MIS(Clothes)) = 0.2%. The following 
rule satisfies its minimum support: 

 Clothes → Shoes  [sup = 0.15%, conf = 70%] 

because min(MIS(Clothes), MIS(Shoes)) = 0.1%.  ▀  

As we explained earlier, the downward closure property holds the key 
to pruning in the Apriori algorithm. However, in the new model, if we use 
the Apriori algorithm to find all frequent itemsets, the downward closure 
property no longer holds.  

Example 9: Consider the four items 1, 2, 3 and 4 in a data set. Their mini-
mum item supports are: 

 MIS(1) = 10%  MIS(2) = 20% MIS(3) = 5%  MIS(4) = 6% 

If we find that itemset {1, 2} has 9% of support at level 2, then it does not 
satisfy either MIS(1) or MIS(2). Using the Apriori algorithm, this itemset 
is discarded since it is not frequent. Then, the potentially frequent itemsets 
{1, 2, 3} and {1, 2, 4} will not be generated for level 3. Clearly, itemsets {1, 
2, 3} and {1, 2, 4} may be frequent because MIS(3) is only 5% and MIS(4) 
is 6%. It is thus wrong to discard {1, 2}. However, if we do not discard {1, 
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2}, the downward closure property is lost.   ▀ 

Below, we present an algorithm to solve this problem. The essential idea 
is to sort the items according to their MIS values in ascending order to 
avoid the problem.  

2.4.2 Mining Algorithm 

The new algorithm generalizes the Apriori algorithm for finding frequent 
itemsets. We call the algorithm, MSapriori. When there is only one MIS 
value (for all items), it reduces to the Apriori algorithm.  

Like Apriori, MSapriori is also based on level-wise search. It generates 
all frequent itemsets by making multiple passes over the data. However, 
there is an exception in the second pass as we will see later.  

The key operation in the new algorithm is the sorting of the items in I in 
ascending order of their MIS values. This order is fixed and used in all 
subsequent operations of the algorithm. The items in each itemset follow 
this order. For example, in Example 9 of the four items 1, 2, 3 and 4 and 
their given MIS values, the items are sorted as follows: 3, 4, 1, 2. This or-
der helps solve the problem identified above. 

Let Fk denote the set of frequent k-itemsets. Each itemset w is of the fol-
lowing form, {w[1], w[2], …, w[k]}, which consists of items, w[1], w[2], 
…, w[k], where MIS(w[1]) ≤ MIS(w[2]) ≤ … ≤ MIS(w[k]). The algorithm 
MSapriori is given in Fig. 6. Line 1 performs the sorting on I according to 
the MIS value of each item (stored in MS). Line 2 makes the first pass over 
the data using the function init-pass(), which takes two arguments, the data 
set T and the sorted items M, to produce the seeds L for generating candi-
date itemsets of length 2, i.e., C2. init-pass() has two steps:  

1. It first scans the data once to record the support count of each item.  
2. It then follows the sorted order to find the first item i in M that meets 

MIS(i). i is inserted into L. For each subsequent item j in M after i, if 
j.count/n ≥ MIS(i), then j is also inserted into L, where j.count is the 
support count of j, and n is the total number of transactions in T.  

Frequent 1-itemsets (F1) are obtained from L (line 3). It is easy to show 
that all frequent 1-itemsets are in F1.  

Example 10: Let us follow Example 9 and the given MIS values for the 
four items. Assume our data set has 100 transactions (not limited to the 
four items). The first pass over the data gives us the following support 
counts: {3}.count = 6, {4}.count = 3, {1}.count = 9 and {2}.count = 25. Then,  

L = {3, 1, 2}, and F1 = {{3}, {2}} 
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Item 4 is not in L because 4.count/n < MIS(3) (= 5%), and {1} is not in F1 
because 1.count / n < MIS(1) (= 10%).  ▀ 

For each subsequent pass (or data scan), say pass k, the algorithm per-
forms three operations.  

1. The frequent itemsets in Fk-1 found in the (k-1)th pass are used to gener-
ate the candidates Ck using the MScondidate-gen() function (line 7). 
However, there is a special case, i.e., when k = 2 (line 6), for which the 
candidate generation function is different, i.e., level2-candidate-gen().  

2. It then scans the data and updates various support counts of the candi-
dates in Ck (line 9-16). For each candidate c, we need to update its sup-
port count (lines 11-12) and also the support count (called tailCount) of 
c without the first item (lines 13-14), i.e., c – {c[1]}, which is used in 
rule generation and will be discussed in Section 2.4.3. If rule generation 
is not required, lines 13 and 14 can be deleted.  

3. The frequent itemsets (Fk) for the pass are identified in line 17.  
We present candidate generation functions level2-candidate-gen() and 

MScandidate-gen() below. 

Level2-candidate-gen function: It takes an argument L, and returns a su-
perset of the set of all frequent 2-itemsets. The algorithm is given in Fig. 7.  

Algorithm MSapriori(T, MS) // MS stores all MIS values 
1 M ← sort(I, MS);  // according to MIS(i)’s stored in MS  
2 L ← init-pass(M, T);   // make the first pass over T  
3 F1 ← {{l} | l ∈ L, l.count/n ≥ MIS(l)};  // n is the size of T 
4 for (k = 2; Fk-1 ≠ ∅; k++) do 
5 if k = 2 then   
6 Ck ← level2-candidate-gen(L) // k = 2 
7 else Ck ← MScandidate-gen(Fk-1)  
8 end 
9 for each transaction t ∈ T do 
10 for each candidate c ∈ Ck do   
11 if c is contained in t then // c is a subset of t 
12  c.count++ 
13 if c – {c[1]} is contained in t then // c without the first item 
14  c.tailCount++ 
15 end 
16 end 
17 Fk ← {c ∈ Ck | c.count/n ≥ MIS(c[1])} 
18 end 
19 Return F = Uk Fk; 

Fig. 6. The MSapriori algorithm 
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Example 11: Let us continue with Example 10. Recall the MIS values of 
the four items are (in Example 9): 

 MIS(1) = 10%  MIS(2) = 20% 
 MIS(3) = 5%  MIS(4) = 6% 

The level2-candidate-gen() function in Fig. 7 produces   

 C2 = {{3, 1}, {3, 2}} 

{1, 2} is not a candidate because the support count of item 1 is only 9 (or 
9%), less than MIS(1) (= 10%). Hence, {1, 2} cannot be frequent. ▀ 

Note that we must use L rather than F1 because F1 does not contain those 
items that may satisfy the MIS of an earlier item (in the sorted order) but 
not the MIS of itself, e.g., item 1. Using L, the problem discussed in Sec-
tion 2.4.2 is solved for C2.    

Function level2-candidate-gen(L) 
1 C2 ← ∅; // initialize the set of candidates 
2 for each item l in L in the same order do 
3 if l.count/n ≥ MIS(l) then 
4 for each item h in L that is after l do 
5 if h.count/n ≥ MIS(l) then 
6 C2 ← C2 ∪ {{l, h}};  // insert the candidate {l, h} into C2 

Fig. 7. The level2-candidate-gen function 

Function MScandidate-gen(Fk-1)  
1 Ck ← ∅;  // initialize the set of candidates 
2 forall f1, f2 ∈ Fk  // traverse all pairs of frequent itemsets 
3 with f1 = {i1, … , ik-2, ik-1}  // that differ only in the last item  
4 and  f2 = {i1, … , ik-2,  i’k-1}   
5 and ik-1 < i’k-1 do   
6 c ← {i1, …, ik-1, i’k-1};  // join the two itemsets f1 and f2 
7 Ck ← Ck ∪ {c};  // insert the candidate itemset c into Ck  
8 for each (k-1)-subset s of c do 
9 if (c[1] ∈ s) or (MIS(c[2]) = MIS(c[1])) then 
10 if (s ∉ Fk-1) then   
11 delete c from Ck; // delete c from to the candidates 
12 end 
13 end 
14 return Ck;  // return the generated candidates 

Fig. 8. The MScandidate-gen function 
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MScandidate-gen function: The algorithm is given in Fig. 8, which is 
similar to the candidate-gen function in the Apriori algorithm. It also has 
two steps, the join step and the pruning step. The join step (lines 2-6) is 
the same as that in the candidate-gen() function. The pruning step (lines 8-
12) is, however, different.  

For each (k-1)-subset s of c, if s is not in Fk-1, c can be deleted from Ck. 
However, there is an exception, which is when s does not include c[1] 
(there is only one such s). That is, the first item of c, which has the lowest 
MIS value, is not in s. Even if s is not in Fk-1, we cannot delete c because 
we cannot be sure that s does not satisfy MIS(c[1]), although we know that 
it does not satisfy MIS(c[2]), unless MIS(c[2]) = MIS(c[1]) (line 9). 

Example 12: Let F3 = {{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {1, 4, 
6}, {2, 3, 5}}. Items in each itemset are in the sorted order. The join step 
produces 

 {1, 2, 3, 5}, {1, 3, 4, 5} and {1, 4, 5, 6} 

The pruning step deletes {1, 4, 5, 6} because {1, 5, 6} is not in F3. We are 
then left with C4 = {{1, 2, 3, 5}, {1, 3, 4, 5}}. {1, 3, 4, 5} is not deleted al-
though {3, 4, 5} is not in F3 because the minimum support of {3, 4, 5} is 
MIS(3), which may be higher than MIS(1). Although {3, 4, 5} does not sat-
isfy MIS(3), we cannot be sure that it does not satisfy MIS(1). However, if 
MIS(3) = MIS(1), then {1, 3, 4, 5} can also be deleted.  ▀ 

The problem discussed in Section 2.4.1 is solved for Ck (k > 2) because, 
due to the sorting, we do not need to extend a frequent (k-1)-itemset with 
any item that has a lower MIS value. Let us see a complete example.  

Example 13: Given the following 7 transactions,  
 Beef, Bread 

 Bread, Clothes 
Bread, Clothes, Milk 
Cheese, Boots 
Beef, Bread, Cheese, Shoes 
Beef, Bread, Cheese, Milk 
Bread, Milk, Clothes 

and MIS(Milk) = 50%, MIS(Bread) = 70%, and 25% for all other items. 
We obtain the following frequent itemsets 

F1 = {{Beef}, {Cheese}, {Clothes}, {Bread}} 
F2 = {{Beef, Cheese}, {Beef, Bread}, {Cheese, Bread}  
 {Clothes, Bread}, {Clothes, Milk}} 
F3 = {{Beef, Cheese, Bread}, {Clothes, Milk, Bread}} ▀ 
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To conclude this sub-section, let us discuss some interesting issues: 

1. Specify MIS values for items: This is usually done in two ways,  
• Group items into clusters. Items in each cluster have similar frequen-

cies. All the items in the same cluster are given the same MIS value.   
• Assign a MIS value to each item according to its actual sup-

port/frequency in the data set T.  For example, if the actual support of 
item i in T is support(i), then the MIS value for i may be computed 
with λ×support(i), where λ is a parameter (0 ≤ λ ≤ 1) and is the same 
for all items in T.   

2. Generate itemsets that must contain certain items: As mentioned earlier 
in the section, the extended model enables the user to instruct the algo-
rithm to generate itemsets that contain certain items, or not to generate 
any itemsets consisting of only the other items. Let us see an example.  

Example 14: Given the data set in Example 13, if we only want to gen-
erate frequent itemsets that contain at least one item in {Bread, Milk, 
Cheese, Boots, Shoes}, or not to generate itemsets involving only Beef 
and/or Chicken, we can simply set  

 MIS(Beef) = 101%, and MIS(Chicken) = 101%.  

Then the algorithm will not generate the itemsets, {Beef}, {Chicken} 
and {Beef, Chicken}. However, it can still generate such frequent item-
sets as {Cheese, Beef} and {Clothes, Chicken}. ▀ 

In many applications, this feature is useful because the user is often 
only interested in certain types of itemsets or rules. Then, those irrele-
vant itemsets and rules should not be generated.  

3. Do not mix very rare items with very frequent items: In some applica-
tions, it may not make sense to have very rare items and very frequent 
items appearing in the same itemset, e.g., bread and television in a store. 
To restrict this, we can introduce a parameter to limit the difference be-
tween the smallest MIS and the largest MIS values of the items in an 
itemset so that it will not exceed a user-specified threshold. The mining 
algorithm can be slightly changed to accommodate this parameter.  

2.4.3  Rule Generation 

Association rules are generated using frequent itemsets. In the case of a 
single minsup, if f is a frequent itemset and fsub is a subset of f, then fsub 
must also be a frequent itemset. All their support counts are computed and 
recorded by the Apriori algorithm. Then, the confidence of each possible 
rule can be easily calculated without seeing the data again.       
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However, in the case of MSapriori, if we only record the support count 
of each frequent itemset, it is not sufficient. Let us see why.  

Example 15: Recall in Example 8, we have 
MIS(Bread) = 2%  MIS(Clothes) = 0.2% MIS(Shoes) = 0.1% 

If the actual support for the itemset {Clothes, Bread} is 0.15%, and for the 
itemset {Shoes, Clothes, Bread} is 0.12%, according to MSapriori, 
{Clothes, Bread} is not a frequent itemset since its support is less than 
MIS(Clothes). However, {Shoes, Clothes, Bread} is a frequent itemset as 
its actual support is greater than  
 min(MIS(Shoes), MIS(Clothes), MIS(Bread)) = MIS(Shoes)). 

We now have a problem in computing the confidence of the rule,  

Clothes, Bread → Shoes 

because the itemset {Clothes, Bread} is not a frequent itemset and thus its 
support count is not recorded. In fact, we may not be able to compute the 
confidences of the following rules either: 

Clothes → Shoes, Bread 
Bread → Shoes, Clothes 

because {Clothes} and {Bread} may not be frequent.  ▀ 

Lemma: The above problem may occur only when the item that has the 
lowest MIS value in the itemset is in the consequent of the rule (which 
may have multiple items). We call this problem the head-item problem. 

Proof by contradiction: Let f be a frequent itemset, and a ∈ f be the item 
with the lowest MIS value in f (a is called the head item). Thus, f uses 
MIS(a) as its minsup. We want to form a rule, X → Y, where X, Y ⊂ f, X ∪ 
Y = f and X ∩ Y = ∅. Our examples above already show that the head-item 
problem may occur when a ∈ Y. Now assume that the problem can also 
occur when a ∈ X. Since a ∈ X and X ⊂ f, a must have the lowest MIS 
value in X and X must be a frequent itemset, which is ensured by the 
MSapriori algorithm. Hence, the support count of X is recorded. Since f is 
a frequent itemset and its support count is also recorded, then we can com-
pute the confidence of X → Y. This contradicts our assumption.  ▀ 

The lemma indicates that we need to record the support count of f – {a}. 
This can be easily achieved by lines 13-14 in MSapriori (Fig. 6). A similar 
rule generation function as genRules() in the Apriori algorithm can be de-
signed to generate rules with multiple minimum supports.  
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2.5 Mining Class Association Rules 

The mining models studied so far do not use any targets. That is, any item 
can appear as a consequent or a condition of a rule. However, in some ap-
plications, the user is only interested in rules with a target item on the 
right-hand-side (consequent). For example, the user has a collection of text 
documents from some topics (target items). He/she wants to find out what 
words are correlated with each topic. As another example, the user has a 
data set that contains attribute settings and modes of operations of cellular 
phones. The modes of operations are normal and abnormal. He/she wants 
to know what attribute values are associated with abnormal operations in 
order to find possible causes of such undesirable situations.  

2.5.1 Problem Definition 

Let T be a transaction data set consisting of n transactions. Each transac-
tion is labeled with a class y. Let I be the set of all items in T, Y be the set 
of all class labels (or target items) and I ∩ Y = ∅. A class association 
rule (CAR) is an implication of the form  

 X → y, where X ⊆ I, and y ∈ Y.  

The definitions of support and confidence are the same as those for nor-
mal association rules. In general, a class association rule is different from a 
normal association rule in two ways: 

1. The consequent of a CAR has only a single item, while the consequent 
of a normal association rule can have any number of items.  

2. The consequent y of a CAR can only be from the class label set Y, i.e., y 
∈ Y. No item from I can appear as the consequent, and no class label 
can appear as a rule condition. In contrast, a normal association rule can 
have any item as a condition or a consequent.  

Objective: The problem of mining CARs is to generate the complete set of 
CARs that satisfies the user-specified minimum support (minsup) and 
minimum confidence (minconf) constraints.  

Example 16: Fig. 9 shows a data set which has 7 text documents. Each 
document is a transaction and consists of a set of keywords. Each transac-
tion is also labeled with a topic class (education or sport). We have 

I = {Student, Teacher, School, City, Game, Baseball, Basketball, Team, 
Coach, Player} 

Y = {Education, Sport} 
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 Transactions  Class 
doc 1:  Student, Teach, School  : Education 
doc 2:  Student, School  : Education   
doc 3:  Teach, School, City, Game  : Education 
doc 4:  Baseball, Basketball : Sport 
doc 5:  Basketball, Player, Spectator   : Sport 
doc 6:  Baseball, Coach, Game, Team  : Sport 
doc 7:  Basketball, Team, City, Game  : Sport 

Fig. 9. An example of a data set 

Let minsup = 20% and minconf = 60%. The following are two examples of 
class association rules: 

Student, School → Education [sup= 2/7, conf = 2/2] 
Game → Sport [sup= 2/7, conf = 2/3] ▀ 

A question that one may ask is: can we mine the data by simply using the 
Apriori algorithm and then perform a post-processing of the resulting rules 
to select only those class association rules? In principle, the answer is yes 
because CARs are a special type of association rules. However, in practice 
this is often difficult or even impossible because of combinatorial explo-
sion, i.e., the number of rules generated in this way can be huge.   

2.5.2 Mining Algorithm 

Unlike normal association rules, CARs can be mined directly in a single 
step. The key operation is to find all ruleitems that have support above 
minsup. A ruleitem is of the form: 

(condset, y) 

where condset ⊆ I is a set of items, and  y ∈ Y is a class label. The support 
count of a condset (called condsupCount) is the number of transactions in 
T that contain the condset. The support count of a ruleitem (called rule-
supCount) is the number of transactions in T that contain the condset and 
are labeled with class y. Each ruleitem basically represents a rule:     

 condset → y, 

whose support is (rulesupCount / n), where n is the total number of trans-
action in T, and whose confidence is (rulesupCount / condsupCount).  

Ruleitems that satisfy the minsup are called frequent ruleitems, while 
the rest are called infrequent ruleitems. For example, ({Student, School}, 
Education) is a ruleitem in T of Fig. 9. The support count of the condset 
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{Student, School} is 2, and the support count of the ruleitem is also 2. Then 
the support of the ruleitem is 2/7(= 28.6%), and the confidence of the rule-
item is 100%. If minsup = 10%, then the ruleitem satisfies the minsup 
threshold. We say that it is frequent. If minconf = 80%, then the ruleitem 
satisfies the minconf threshold. We say that the ruleitem is confident. We 
thus have the class association rule: 

Student, School → Education [sup= 2/7, conf = 2/2] 

The rule generation algorithm, called CARapriori, is given in Fig. 10, 
which is based on the Apriori algorithm. Like the Apriori algorithm, 
CARapriori generates all the frequent ruleitems by making multiple passes 
over the data. In the first pass, it computes the support count of each 1-
ruleitem (containing only one item in its condset) (line 1). The set of all 1-
candidate ruleitems considered is:  

C1 = {({i}, y) | i ∈ I, and y ∈ Y}, 

which basically associates each item in I (or in the transaction data set T) 
with every class label. Line 2 determines whether the candidate 1-
ruleitems are frequent. From frequent 1-ruleitems, we generate 1-condition 
CARs (rules with only one condition) (line 3). In a subsequent pass, say k, 
it starts with the seed set of (k-1)-ruleitems found to be frequent in the (k-
1)-th pass, and uses this seed set to generate new possibly frequent k-
ruleitems, called candidate k-ruleitems (Ck in line 5). The actual support 

Algorithm CARapriori (T) 
1 C1 ← init-pass(T);   // the first pass over T  
2 F1 ← {f | f ∈ C1, f. rulesupCount / n ≥ minsup};  
3 CAR1 ← {f | f ∈ F1, f.rulesupCount / f.condsupCount ≥ minconf};  
4 for (k = 2; Fk-1 ≠ ∅; k++) do  
5 Ck ← CARcandidate-gen(Fk-1);    
6 for each transaction t ∈ T do  
7 for each candidate c ∈ Ck do    
8 if c.condset is contained in t then // c is a subset of t 
9 c.condsupCount++;  
10 if t.class = c.class then  
11 c.rulesupCount++ 
12 end 
13 end  
14 Fk ← {c ∈ Ck | c.rulesupCount / n ≥ minsup}; 
15 CARk ← {f | f ∈ Fk, f.rulesupCount / f.condsupCount ≥ minconf};  
16 end 
17 return CAR ← Uk CARk; 

Fig. 10. The CARapriori algorithm 
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counts, both condsupCount and rulesupCount, are updated during the scan 
of the data (lines 6-13) for each candidate k-ruleitem. At the end of the 
data scan, it determines which of the candidate k-ruleitems in Ck are actu-
ally frequent (line 14). From the frequent k-ruleitems, line 15 generates k-
condition CARs (class association rules with k conditions).  

One interesting note about ruleitem generation is that if a ruleitem/rule 
has a confidence of 100%, then extending the ruleitem with more condi-
tions (adding items to its condset) will also result in rules with 100% con-
fidence although their supports may drop with additional items. In some 
applications, we may consider these subsequent rules redundant because 
additional conditions do not provide any more information. Then, we 
should not extend such ruleitems in candidate generation for the next level, 
which can reduce the number of generated rules substantially. If desired, 
redundancy handling can be added in the CARapriori algorithm easily.  

The CARcandidate-gen() function is very similar to the candidate-gen() 
function in the Apriori algorithm, and it is thus omitted. The only differ-
ence is that in CARcandidate-gen() ruleitems with the same class are 
joined by joining their condsets. 

Example 17: Let us work on a complete example using our data in Fig. 9. 
We set minsup = 15%, and minconf = 70%  

F1:    {({School}, Education):(3, 3),  ({Student}, Education):(2, 2), 
  ({Teach}, Education):(2, 2),  ({Baseball}, Sport):(2, 2), 
  ({Basketball}, Sport):(3, 3), ({Game}, Sport):(3, 2),  
  ({Team}, Sport):(2, 2) 

Note: The two numbers within the brackets after each ruleitem are its 
condSupCount and ruleSupCount respectively. 

CAR1:  School → Education [sup = 3/7, conf = 3/3] 
 Student → Education [sup = 2/7, conf = 2/2] 
 Teach → Education [sup = 2/7, conf = 2/2] 
 Baseball → Sport [sup = 2/7, conf = 2/2] 
 Basketball → Sport [sup = 3/7, conf = 3/3] 
 Team → Sport [sup = 2/7, conf = 2/2]  

Note: We do not deal with rule redundancy in this example.   

C2:   { ({School, Student}, Education),  ({School, Teach}, Education),  
  ({Student, Teach}, Education),  ({Baseball, Basketball}, Sport), 
  ({Baseball, Game}, Sport), ({Baseball, Team}, Sport),  

  ({Basketball, Game}, Sport),  ({Basketball, Team}, Sport), 
  ({Game, Team}, Sport)} 

F2:   { ({School, Student}, Education):(2, 2),   
 ({School, Teach}, Education):(2, 2), ({Game, Team}, Sport):(2, 2)} 
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CAR2:  School, Student → Education [sup = 2/7, conf = 2/2] 
 School, Teach → Education [sup = 2/7, conf = 2/2] 
 Game, Team → Sport [sup = 2/7, conf = 2/2] ▀ 

Class association rules turned out to be quite useful. First, they can be 
emplyed to build machine learning models (classification models) as we 
will see in the next chapter. Second, they can be used to find useful or ac-
tionable knowledge in an application domain. For example, a deployed 
data mining system based on such rules is reported in [313]. The system is 
used in Motorola Inc. for analyzing its engineering and service data sets to 
identify causes of product issues. Class association rules are particularly 
suited for such kind of diagnostic data mining (see [313] for details).  

We note that for the above applications, the data sets used are normally 
relational tables. They need to be converted to transaction forms before 
mining. We can use the method described in Section 2.3 for this purpose.  

Example 18: In Fig. 11(A), the data set has three data attributes and a 
class attribute with two possible values, positive and negative. It is con-
verted to the transaction data in Fig. 11(B). Notice that for each class, we 
only use its original value. There is no need to attach the attribute “Class” 
because there is no ambiguity. As discussed in Section 2.3, for each nu-
meric attribute, its value range needs to be discretized into intervals either 
manually or automatically before conversion and rule mining. There are 
many discretization algorithms. Interested readers are referred to [138]. ▀ 

2.5.3 Mining with Multiple Minimum Supports 

The concept of mining with multiple minimum supports discussed in Sec-
tion 2.4 can be incorporated in class association rule mining in two ways: 
1. Multiple minimum class supports: The user can specify different 

minimum supports for different classes. For example, the user has a data 

Attribute1 Attribute2 Atribute3 Class 
a a x positive 
b n y negative 

(A) Table Data 

t1:    (Attribute1, a), (Attribute2, a), (Attribute3, x)  : Positive 
t2:    (Attribute1, b), (Attribute2, n), (Attribute3, y)  : negative 

(B) Transaction Data 

Fig. 11. Converting a table data set (A) to a transactional data set (B).  
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set with two classes, Yes and No. Based on the application requirement, 
he/she may want all rules of class Yes to have the minimum support of 
5% and all rules of class No to have the minimum support of 20%.  

2. Multiple minimum item supports The user can specify a minimum 
item support for every item (either a class item/label or a non-class 
item). This is more general and is similar to normal association rule 
mining discussed in Section 2.4.  

For both approaches, similar mining algorithms to that given in Section 2.4 
can be devised. Like normal association rule mining with multiple mini-
mum supports, by setting minimum class and/or item supports to more 
than 100% for some items, the user effectively instructs the algorithm not 
to generate rules involving only these items.  

Finally, although we have discussed only multiple minimum supports so 
far, we can easily use different minimum confidences for different classes 
as well, which provides an additional flexibility in applications.  

2.6 Sequential Pattern Mining 

Association rule mining does not consider the order of transactions. How-
ever, in many applications such orderings are significant. For example, in 
market basket analysis, it is interesting to know whether people buy some 
items in sequence, e.g., buying bed first and then buying bed sheets some 
time later. In natural language processing or text mining, considering the 
ordering of words in a sentence is vital in finding language or linguistic 
patterns. For such applications, association rules are no longer appropriate. 
Sequential patterns are needed. Sequential patterns have been used exten-
sively in Web usage mining (see Chapter 12) for finding navigational pat-
terns of users in the Web site. They have also been applied to finding lin-
guistic patterns for opinion mining (see Chapter 11).  

2.6.1 Problem Definition 

Let I = {i1, i2, …, im} be a set of items. A sequence is an ordered list of 
itemsets. Recall an itemset X is a non-empty set of items X ⊆ I. We denote 
a sequence s by 〈a1a2…ar〉, where ai is an itemset, which is also called an 
element of s.  We denote an element (or an itemset) of a sequence by {x1, 
x2, …, xk}, where xj ∈ I is an item. We assume without loss of generality 
that items in an element of a sequence are in lexicographic order. An item 
can occur only once in an element of a sequence, but can occur multiple 
times in different elements. The size of a sequence is the number of ele-
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ments (or itemsets) in the sequence. The length of a sequence is the num-
ber of items in the sequence. A sequence of length k is called k-sequence. 
If an item occurs multiple times in different elements of a sequence, each 
occurrence contributes to the value of k. A sequence s1 = 〈a1a2…ar〉 is a 
subsequence of another sequence s2 = 〈b1b2…bv〉, or s2 is a supersequence 
of s1, if there exist integers 1 ≤ j1 < j2 < … < jr-1 < jr ≤ v such that a1 ⊆ bj1, 
a2 ⊆ bj2, …, ar ⊆ bjr. We also say that s2 contains s1.  

Example 19: Let I = {1, 2, 3, 4, 5, 6, 7, 8, 9}. The sequence 〈{3}{4, 5}{8}〉 is 
contained in (or is a subsequence of) 〈{6} {3, 7}{9}{4, 5, 8}{3, 8}〉 because {3} 
⊆ {3, 7}, {4, 5} ⊆ {4, 5, 8}, and {8} ⊆ {3, 8}. However, 〈{3}{8}〉 is not con-
tained in 〈{3, 8}〉 or vice versa. The size of the sequence 〈{3}{4, 5}{8}〉 is 3, 
and the length of the sequence is 4.  ▀ 

Objective: Given a set S of input data sequences, the problem of mining 
sequential patterns is to find all the sequences that have a user-specified 
minimum support. Each such sequence is called a frequent sequence, 
or a sequential pattern. The support for a sequence is the fraction of 
total data sequences in S that contains this sequence. 

Example 20: We use the market basket analysis as an example. Each se-
quence in this context represents an ordered list of transactions of a par-
ticular customer. A transaction is a set of items that the customer pur-
chased at a time (called the transaction time). Then transactions in the 
sequence are ordered by increasing transaction time. Table 1 shows a 
transaction database which is already sorted according customer ID (the 
major key) and transaction time (the minor key). Table 2 gives the data se-
quences (also called customer sequences). Table 3 gives the output se-
quential patterns with the minimum support of 25%, i.e., 2 customers.  ▀ 

Table 1. A set of transactions sorted by customer ID and transaction time 

Customer ID Transaction Time Transaction (items bought) 
1 July 20, 2005 30 
1 July 25, 2005 90 
2 July 9, 2005 10, 20 
2 July 14, 2005 30 
2 July 20, 2005 40, 60, 70 
3 July 25, 2005 30, 50, 70 
4 July 25, 2005 30 
4 July 29, 2005 40, 70 
4 August 2, 2005 90 
5 July 12, 2005 90 
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Table 2. Data sequences produced from the transaction database in Table 1. 

Customer ID Data Sequence 
1 〈{30} {90}〉 
2 〈{10, 20} {30} {40, 60, 70}〉
3 〈{30, 50, 70}〉 
4 〈{30} {40, 70} {90}〉 
5 〈{90}〉 

Table 3. The final output sequential patterns 

 Sequential Patterns with Support ≥ 25% 
1-sequences 〈{30}〉, 〈{40}〉, 〈{70}〉, 〈{90}〉  
2-sequences 〈{30} {40}〉, 〈{30} {70}〉, 〈{30} {90}〉, 〈{40, 70}〉  
3-sequences 〈{30} {40, 70}〉 

As noted earlier, in text processing, frequent sequences can represent 
language patterns. To mine such patterns, we treat each sentence as a se-
quence. For example, the sentence “this is a great movie” can be repre-
sented with the sequence 〈{this}{is}{a}{great}{movie}〉. If we also want to 
consider the part-of-speech tags of each word in pattern mining, the sen-
tence can be represented with 〈{PRN, this}{VB, is}{DT, a}{JJ, great}{NN, 
movie}〉, where PRN stands for pronoun, VB for verb, DT for determiner, 
JJ for adjective and NN for noun. A set of such sequences can be used to 
find language patterns that involve both part-of-speech tags and actual 
words. We will see an application in Chapter 11.  

2.6.2 Mining Algorithm 

This section describes an algorithm called Apriori-SPM for mining fre-
quent sequences (or sequential patterns) using a single minimum support. 
It works in almost the same way as the Apriori algorithm. We still use Fk 
to store the set of all frequent k-sequences, and Ck to store the set of all 
candidate k-sequences. The algorithm is given in Fig. 12. The main differ-
ence is in the candidate generation, candidate-gen-SPM(), which is given 
in Fig. 13. We use an example to explain the working of the function.  
Example 21:  Table 4 shows F3, and C4 after the join and prune steps. In 
the join step, the sequence 〈{1, 2}{4}〉 joins with 〈{2}{4, 5}〉 to produce 〈{1, 
2}{4, 5}〉, and joins with 〈{2}{4}{6}〉 to produce 〈{1, 2}{4} {6}〉. The other se-
quences cannot be joined. For instance, 〈{1}{4, 5}〉 does not join with any 
sequence since there is no sequence of the form 〈{4, 5}{x}〉 or 〈{4, 5, x}〉. In 
the prune step, 〈{1, 2}{4} {6}〉 is removed since 〈{1}{4} {6}〉 is not in F3.  ▀ 
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Table 4. Candidate generation: an example 

Candidate 4-sequences Frequent 
3-sequences after joining after pruning
〈{1, 2} {4}〉 〈{1, 2} {4, 5}〉 〈{1, 2} {4, 5}〉 
〈{1, 2} {5}〉 〈{1, 2} {4} {6}〉  
〈{1} {4, 5}〉   
〈{1, 4} {6}〉   
〈{2} {4, 5}〉   
〈{2} {4} {6}〉   

Algorithm Apriori-SPM(S) 
1 C1 ← init-pass(S);   // the first pass over S  
2 F1 ← {〈{f}〉| f ∈ C1, f.count/n ≥ minsup};  // n is the number of sequences in S 
3 for (k = 2; Fk-1 ≠ ∅; k++) do // subsequent passes over S 
4 Ck ← candidate-gen-SPM(Fk-1); 
5 for each data sequence s ∈ S do // scan the data once 
6 for each candidate c ∈ Ck do    
7 if c is contained in s then  
8  c.count++;  // increment the support count 
9 end 
10 end 
11 Fk ← {c ∈ Ck | c.count/n ≥ minsup} 
12 end 
13 return Uk Fk; 

Fig. 12. The Apriori-SPM Algorithm for generating sequential patterns 

Function candidate-gen-SPM(Fk-1)  
1. Join step. Candidate sequences are generated by joining Fk-1 with Fk-1. A se-

quence s1 joins with s2 if the subsequence obtained by dropping the first item 
of s1 is the same as the subsequence obtained by dropping the last item of s2. 
The candidate sequence generated by joining s1 with s2 is the sequence s1 ex-
tended with the last item in s2. There are two cases:  
• the added item forms a separate element if it was a separate element in s2, 

and is appended at the end of s1 in the merged sequence, and    
• the added item is part of the last element of s1 in the merged sequence oth-

erwise.  
When joining F1 with F1, we need to add the item in s2 both as part of an 
itemset and as a separate element. That is, joining 〈{x}〉 with 〈{y}〉 gives us 
both 〈{x, y}〉 and 〈{x}{y}〉. Note that x and y in {x, y} are ordered.  

2. Prune step. A candidate sequence is pruned if any one of its (k-1)-
subsequence is infrequent (without minimum support).  

Fig. 13. The candidate-gen-SPM function  
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There are several sequential pattern mining algorithms. The algorithm 
described in this section is based on the GSP algorithm in [445]. Some re-
cent algorithms have improved its efficiency [e.g., 27, 200, 394] 

2.6.3 Mining with Multiple Minimum Supports 

As in association rule mining, using a single minimum support in sequen-
tial pattern mining is also limited because, in many applications, some 
items appear very frequently in the data, while some others appear rarely.  

We again use the concept of minimum item supports (MIS). The user 
is allowed to assign each item a MIS value. By providing different MIS 
values for different items, the user essentially expresses different support 
requirements for different sequential patterns. To ease the task of specify-
ing many MIS values by the user, the same strategies as those for mining 
association rules can also be applied here (see Section 2.4.2).  

Let MIS(i) be the MIS value of item i. The minimum support of a se-
quential pattern P is the lowest MIS value among the items in the pattern. 
Let the set of items in P be: i1, i2, …, ir. The minimum support for P is:  

 minsup(P) = min(MIS(i1), MIS(i2), …, MIS(ir)).  

The new algorithm, called MSapriori-SPM, is given in Fig. 14. It gen-
eralizes the Apriori-SPM algorithm in Fig. 12. Like Apriori-SPM, MSapri-
ori-SPM is also based on level-wise search. Line 1 sorts the items in 
ascending order according to their MIS values stored in MS. Line 2 makes 
the first pass over the sequence data using the function init-pass, which 
performs the same function as that in MSapriori to produce the seeds set L 
for generating the set of candidate sequences of length 2, i.e., C2. Frequent 
1-sequences (F1) are obtained from L (line 3).  

For each subsequent pass, the algorithm works similarly to MSapriori. 
The function level2-candidate-gen-SPM() can be designed based on 
level2-candidate-gen in MSapriori and the join step in Fig. 13. MScandi-
date-gen-SPM() is, however, complex, which we will discuss shortly.  

In line 13, c.minMISItem gives the item that has the lowest MIS value in 
the candidate sequence c. Unlike that in MSapriori, where the first item in 
each itemset has the lowest MIS value, in sequential pattern mining the 
item with the lowest MIS value may appear anywhere in a sequence. Simi-
lar to those in MSapriori, lines 13 and 14 are used to ensure that all se-
quential rules can be generated after MSapriori-SPM without scanning the 
original data. Note that in traditional sequential pattern mining, sequential 
rules are not defined. We will define them in the next sub-section.   
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Let us now discuss MScandidate-gen-SPM(). In MSapriori, the ordering 
of items is not important and thus we put the item with the lowest MIS 
value in each itemset as the first item of the itemset, which simplifies the 
join step. However, for sequential pattern mining, we cannot artificially 
put the item with the lowest MIS value as the first item in a sequence be-
cause the ordering of items is significant. This causes problems for joining. 

Example 22: Assume we have a sequence s1 = 〈{1, 2}{4}〉 in F3, from which 
we want to generate candidate sequences for the next level. Suppose that 
item 1 has the lowest MIS value in s1. We use the candidate generation 
function in Fig. 13. Assume also that the sequence s2 = 〈{2}{4, 5}〉 is not in 
F3 because its minimum support is not satisfied. Then we will not generate 
the candidate 〈{1, 2}{4, 5}〉. However, 〈{1, 2}{4, 5}〉 can be frequent because 
items 2, 4, and 5 may have higher MIS values than item 1.  ▀ 

To deal with this problem, let us make an observation. The problem 
only occurs when the first item in the sequence s1 or the last item in the se-
quence s2 is the only item with the lowest MIS value, i.e., no other item in 
s1 (or s2) has the same lowest MIS value. If the item (say x) with the lowest 
MIS value is not the first item in s1, then s2 must contain x, and the candi-
date generation function in Fig. 13 will still be applicable. The same rea-

Algorithm MSapriori-SPM(S, MS) // MS stores all MIS values 
1 M ← sort(I, MS);  // according to MIS(i)’s stored in MS  
2 L ← init-pass(S, MS);   // make the first pass over S  
3 F1 ← {〈{l}〉 | l ∈ L, l.count/n ≥ MIS(l)};  // n is the size of S 
4 for (k = 2; Fk-1 ≠ ∅; k++) do 
5  if k = 2 then   
6 Ck ← level2-candidate-gen-SPM(L)  
7 else Ck ← MScandidate-gen-SPM(Fk-1) 
8 end 
9 for each data sequence s ∈ S do 
10 for each candidate c ∈ Ck do   
11 if c is contained in s then  
12  c.count++ 
13 if c’ is contained in s, where c’ is c after an occurrence of 

c.minMISItem is removed from c then 
14  c.tailCount++ 
15 end 
16 end 
17 Fk ← {c ∈ Ck | c.count/n ≥ MIS(c.minMISItem)} 
18 end 
19 Return F = Uk Fk; 

Fig. 14. The MSapriori-SPM algorithm 
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soning goes for the last item of s2. Thus, we only need special treatment for 
these two cases.  

Let us see how to deal with the first case, i.e., the first item is the only 
item with the lowest MIS value. We use an example to develop the idea. 
Assume we have the frequent 3-sequence of s1 = 〈{1, 2}{4}〉. Based on the 
algorithm in Fig. 13, s1 may be extended to generate two possible candi-
dates using 〈{2}{4}{x}〉 and 〈{2}{4, x}〉  

c1 = 〈{1, 2}{4}{x}〉  and  c2 = 〈{1, 2}{4, x}〉, 
where x is an item. However, 〈{2}{4}{x}〉 and 〈{2}{4, x}〉 may not be frequent 
because items 2, 4, and x may have higher MIS values than item 1,  but we 
still need to generate c1 and c2 because they can be frequent. A different 
join strategy is thus needed.  

We observe that for c1 to be frequent, the subsequence s2 = 〈{1}{4}{x}〉 
must be frequent. Then, we can use s1 and s2 to generate c1. c2 can be gen-
erated in a similar manner with s2 = 〈{1}{4, x}〉. s2 is basically the subse-
quence of c1 (or c2) without the second item. Here we assume that the MIS 
value of x is higher than item 1. Otherwise, it falls into the second case. 

Let us see the same problem for the case where the last item has the 
only lowest MIS value. Again, we use an example to illustrate. Assume we 
have the frequent 3-sequence s2 = 〈{3, 5}{1}〉. It can be extended to produce 
two possible candidates based on the algorithm in Fig. 13,  

c1 = 〈{x}{3, 5}{1}〉, and c2 = 〈{x, 3, 5}{1}〉. 
For c1 to be frequent, the subsequence s1 = 〈{x}{3}{1}〉 has to be frequent 
(we assume that the MIS value of x is higher than that of item 1). Thus, we 
can use s1 and s2 to generate c1. c2 can be generated with s1 = 〈{x, 3}{1}〉. s1 
is basically the subsequence of c1 (or c2) without the second last item.  

The MScandidate-gen-SPM() function is given in Fig. 15, which is self-
explanatory. Some special treatments are needed for 2-sequences because 
the same s1 (or s2) may generate two candidate sequences. We use two ex-
amples to show the working of the function.  

Example 23: Consider the items 1, 2, 3, 4, 5, and 6 with their MIS values,  
MIS(1) = 0.03  MIS(2) = 0.05  MIS(3) = 0.03  
MIS(4) = 0.07  MIS(5) = 0.08  MIS(6) = 0.09 

The dataset has 100 sequences. The following frequent 3-sequences are in 
F3 with their actual support counts attached after “:”:  

(a). 〈{1}{4}{5}〉:4  (b). 〈{1}{4}{6}〉:5  (c). 〈{1}{5}{6}〉:6 
(d). 〈{1}{5, 6}〉:5 (e). 〈{1}{6}{3}〉:4  (f). 〈{6}{3}{6}〉:9 
(g). 〈{5, 6}{3}〉:5  (h). 〈{5}{4}{3}〉:4 (i). 〈{4}{5}{3}〉:7 
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For sequence (a) (= s1), item 1 has the lowest MIS value. It cannot join 
with sequence (b) because condition (1) in Fig. 15 is not satisfied. How-
ever, (a) can join with (c) to produce the candidate sequence, 〈{1}{4}{5}{6}〉. 
(a) can also join with (d) to produce 〈{1}{4}{5, 6}〉. (b) can join with (e) to 
produce 〈{1}{4}{6}{3}〉, which is pruned subsequently because 〈{1}{4}{3}〉 is 
infrequent. (d) and (e) can be joined to give 〈{1}{5, 6}{3}〉, but it is pruned 
because 〈{1}{5}{3}〉 does not exist. (e) can join with (f) to produce 
〈{1}{6}{3}{6}〉 which is done in line 4 because both item 1 and item 3 in (e) 
have the same MIS value. However, it is pruned because 〈{1}{3}{6}〉 is in-
frequent. We do not join (d) and (g), although they can be joined based on 
the algorithm in Fig. 13, because the first item of (d) has the lowest MIS 
value and we use a different join method for such sequences.  

Now we look at 3-sequences whose last item has strictly the lowest MIS 
value. (i) (= s1) can join with (h) (= s2) to produce 〈{4}{5}{4}{3}〉. However, 
it is pruned because 〈{4}{4}{3}〉 is not in F3. ▀ 

Function MScandidate-gen-SPM(Fk-1)  
1 Join Step:  
2 if the MIS value of the first item in a sequence s1 is less than (<) the MIS 

value of every other item in s1 then 
 Sequence s1 joins with s2 if (1) the subsequences obtained by dropping the 

second item of s1 and the last item of s2 are the same, (2) the MIS value of 
the last item of s2 is greater than that of the first item of s1. Candidate se-
quences are generated by extending s1 with the last item of s2:  
• if the last item l in s2 is a separate element then  
 {l} is appended at the end of s1 as a separate element to form a candi-

date sequence c1. 
if (the length and the size of s1 are both 2) AND (the last item of s2 is 

greater than the last item of s1) then  // maintain lexicographic order 
l is added at the end of the last element of s1 to form another candi-

date sequence c2. 
• else  if (the length of s1 is 2 and the size of s1 is 1) or (the length of s1 is 

greater than 2) then  
 the last item in s2 is added at the end of the last element of s1 to 

form the candidate sequence c2. 
3 elseif the MIS value of the last item in a sequence s2 is less than (<) the MIS 

value of every other item in s2 then 
 A similar method to the one above can be used in the reverse order.  
4  else  use the Join Step in Fig. 14  
5 Prune step: A candidate sequence is pruned if any one of its (k-1)-

subsequence is infrequent (without minimum support) except the subse-
quence that does not contain the item with strictly the lowest MIS value.  

Fig. 15. The MScandidate-gen-SPM function 
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Example 24: Now we consider generating candidates from frequent 2-
sequenes, which is special as we noted earlier. We use the same items and 
MIS values in Example 23. The following frequent 2-sequences are in F2 
with their actual support counts attached after “:”:  

(a). 〈{1}{5}〉:6  (b). 〈{1}{6}〉:7  (c) 〈{5}{4}〉:8  
(d). 〈{1, 5}〉:6 (e). 〈{1, 6}〉:6  

(a) can join with (b) to produce both 〈{1}{5}{6}〉 and 〈{1}{5, 6}〉. (b) can join 
with (d) to produce 〈{1, 5}{6}〉. (e) can join with (a) to produce 〈{1, 6}{5}〉. 
Again, (a) will not join with (c).  ▀ 

Finally, as in multiple minimum support association rule mining, the 
user can also instruct the algorithm to generate only certain sequential pat-
terns and not generate others by setting MIS values of items suitably. The 
algorithm can also be modified so that very rare items and very frequent 
items will not appear in the same pattern.  

2.6.4 Sequential Rules  

In classic sequential pattern mining, no rules are generated. It only finds all 
frequent sequences (or sequential patterns). Let us define sequential rules 
here, which are analogous to association rules.  

A sequential rule (SR) is an implication of the form  
X → Y, 

where Y is a sequence and X is a proper subsequence of Y, i.e., X is a sub-
sequence of Y and the length Y is greater than the length of X.  

Given a minimum support and a minimum confidence, according to the 
downward closure property, all the rules can be generated from frequent 
sequences without going to the original sequence data. Let us see an ex-
ample of a sequential rule found from the data sequences in Table 5.  

Table 5. A sequence database for mining sequential rules 

 Data Sequence 
1 〈{1}{3}{5}{7, 8, 9}〉 
2 〈{1}{3}{6}{7, 8}〉 
3 〈{1, 6}{7}〉 
4 〈{1} {3} {5, 6}〉 
5 〈{1}{3}{4}〉 

Example 25: Given the sequence database in Table 5, the minimum sup-
port of 30% and the minimum confidence of 30%, one of the sequential 
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rules found is the following,  

〈{1}{7}〉 → 〈{1}{3}{7, 8}〉  [sup = 2/5, conf = 2/3] 

Data sequences 1, 2 and 3 contain 〈{1}{7}〉, and data sequences 1 and 2 con-
tain 〈{1}{3}{7, 8}〉.  ▀ 

If multiple minimum supports are used, we can use the frequent se-
quences found by MSapriori-SPM to generate all the rules.  

2.6.5 Label Sequential Rules  

Sequential rules may not be restrictive enough in some applications. We 
introduce a special kind of sequential rules called label sequential rules. 
A label sequential rule (LSR) is of the following form,  

X → Y, 
where Y is a sequence and X is a sequence produced from Y by replacing 
some of its items with wildcards. A wildcard is denoted by an “*” which 
matches any item.   

Example 26: Using the data sequence in Table 5 and the same minimum 
support and minimum confidence thresholds, we have a similar rule to that 
in Example 25,  

〈{1}{*}{7, *}〉 → 〈{1}{3}{7, 8}〉  [sup = 2/5, conf = 2/2] 

Notice the confidence change compared to the rule in Example 25. The 
supports of the two rules are the same. In this case, data sequences 1, 2, 
and 4 contain 〈{1}{*}{7, *}〉, but only data sequences 1 and 2 contain 
〈{1}{3}{7, 8}〉. ▀ 

LSRs are useful because one may be interested in predicting some spe-
cial items in an input data sequence, e.g., items 3 and 8 in the example. 
The confidence of the rule simply gives us the probability that the two “*”s 
are 3 and 8 given that an input sequence contains 〈{1}{*}{7, *}〉. We will 
show an application in Chapter 11.  

Due to the use of the wildcards, frequent sequences alone are not suffi-
cient for computing rule confidences. We need to scan the data.  

2.6.6 Class Sequential Rules 

Class sequential rules (CSR) are analogous to class association rules 
(CAR). Let S be a set of data sequences. Each sequence is also labeled 
with a class y. Let I be the set of all items in S, and Y be the set of all class 
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labels, I ∩ Y = ∅. Thus, the input data D for mining is represented with D 
= {(s1, y1), (s2, y2), …, (sn, yn)}, where si is a sequence and yi ∈ Y is its 
class. A class sequential rule (CSR) is an implication of the form  

 X → y, where X is a sequence, and y ∈ Y.  

A data instance (si, yi) is said to cover a CSR, X → y, if X is a subsequence 
of si. A data instance (si, yi) is said to satisfy a CSR if X is a subsequence 
of si and yi = y.  

Example 27: Table 6 gives an example of a sequence database with five 
sequences and two classes, c1 and c2. Using the minimum support of 20% 
and the minimum confidence of 40%, one of the discovered CSRs is:  

〈{1}{3}{7, 8}〉 → c1  [sup = 2/5, conf = 2/3] 

Data sequences 1 and 2 satisfy the rule, and data sequences 1, 2 and 5 
cover the rule.  ▀ 

Table 6. An example sequence database for mining CSRs 

 Data Sequence Class 
1 〈{1}{3}{5}{7, 8, 9}〉 c1 
2 〈{1}{3}{6}{7, 8}〉 c1 
3 〈{1, 6}{9}〉 c2 
4 〈{3}{5, 6}〉 c2 
5 〈{1}{3}{4}{7, 8}〉 c2 

As in class association rule mining, we can modify the Aprior-SPM to 
produce an algorithm for mining all CSRs. Similarly, we can also use mul-
tiple minimum class supports and multiple minimum item supports as in 
class association rule mining.   

Bibliographic Notes 

Association rule mining was introduced in 1993 by Agrawal et al. [9]. 
Since then, numerous research papers have been published on the topic. As 
given a data set and a minimum support and a minimum confidence, the 
solution is unique, most papers improve the mining efficiency. The most 
well-known algorithm is the Apriori algorithm proposed by Agrawal and 
Srikant [11], which has been studied in this chapter. Another important al-
gorithm is the FP-growth algorithm proposed by Han et al. [201]. This al-
gorithm compresses the data and stores it in memory using a frequent pat-
tern tree. It then mines all frequent itemsets without candidate generation. 
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Other notable algorithms include those by Agarwal et al. [2], Mannila et al. 
[322], Park et al. [390], Zaki et al. [520] and among others. An efficiency 
comparison of various algorithms is reported by Zheng et al. [541].  

Apart from performance improvements, several variations of the origi-
nal model were also proposed. Srikant and Agrawal [444], and Han and Fu 
[198] proposed two algorithms for mining generalized association rules 
or multi-level association rules. Liu et al. [306] extended the original 
model to take multiple minimum supports, which was also studied by 
Wang et al. [475], and Seno and Karypis [432]. Srikant et al. [447] pro-
posed to mine association rules with item constraints, which restrict the 
rules that should be generated. Ng et al. [364] generalized the idea, which 
was followed by many subsequent papers in the area of constrained rule 
mining.  

It is well known that association rule mining typically generates a huge 
number of rules. Bayado [39], and Lin and Kedem [297] introduced the 
problem of mining maximal frequent itemsets, which are itemsets with 
no frequent superset. Improved algorithms were reported in [2] and [67]. 
Since maximal pattern mining only finds longest patterns, the support in-
formation of their subsets, which are obvious also frequent, is not found. 
The next significant development was the mining of closed frequent 
itemsets given by Pasquier et al [391], Zaki and Hsiao [517], and Wang et 
al. [470]. Closed itemsets are better than maximal itemsets because closed 
itemsets provide a lossless concise representation of all frequent itemsets.  

Other developments on association rules include cyclic association 
rules proposed by Ozden et al. [376] and periodic patterns by Yang et al. 
[502], negative association rules by Savasere [426] and Wu et al. [497], 
weighted association rules by Wang et al [479], association rules with 
numerical variables by Webb [481], class association rules by Liu et al. 
[305] and many others. Recently, Cong et al [100, 101] introduced associa-
tion rule mining from bioinformatics data, which typically have a very 
large number of attributes (more than ten thousands) but only a very small 
number of records or transactions (less than 100).  

Regarding sequential pattern mining, the first algorithm was proposed 
by Agrawal and Srikant [12], which was a direct application of the Apriori 
algorithm. Improvements were made subsequently by several researchers, 
e.g., Ayres et al. [27], Pei et al. [394], Srikant and Agrawal [445], etc. 
Mining sequential patterns and rules with multiple minimum supports is 
introduced in this book. Both label and class sequential rules are used in 
[232, 233] for mining comparative sentences and relations from text 
documents for opinion extraction. 



Chapter 3: Supervised Learning 

Supervised learning has been a great success in real-world applications. It 
is used in almost every domain, including text and Web domains. Super-
vised learning is also called classification or inductive learning in ma-
chine learning. This type of learning is analogous to human learning from 
past experiences to gain new knowledge in order to improve our ability to 
perform real-world tasks. However, since computers do not have “experi-
ences”, machine learning learns from data, which are collected in the past 
and represent past experiences in some real-world applications.  

There are several types of supervised learning tasks. In this chapter, we 
focus on one particular type, namely, learning a target function that can be 
used to predict the values of a discrete class attribute. This type of learning 
has been the focus of the machine learning research and is perhaps also the 
most widely used learning paradigm in practice. This chapter introduces a 
number of such supervised learning techniques.  

3.1 Basic Concepts 

A data set used in the learning task consists of a set of data records, which 
are described by a set of attributes A = {A1, A2, …, A|A|}, where |A| denotes 
the number of attributes or the size of the set A. The data set also has a 
special target attribute C, which is called the class attribute. In our subse-
quent discussions, we consider C separately from attributes in A due to its 
special status, i.e., we assume that C is not in A. The class attribute C has a 
set of discrete values, i.e., C = {c1, c2, …, c|C|}, where |C| is the number of 
classes and |C| ≥ 2. A class value is also called a class label. A data set for 
learning is simply a relational table. Each data record describes a piece of 
“past experience”. In the machine learning and data mining literature, a 
data record is also called an example, an instance, a case or a vector. A 
data set basically consists of a set of examples or instances.  

Given a data set D, the objective of learning is to produce a classifica-
tion/prediction function to relate values of attributes in A and classes in 
C. The function can be used to predict the class values/labels of the future 
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data. The function is also called a classification model, a predictive 
model or simply a classifier. We will use these terms interchangeably in 
this book. It should be noted that the function/model can be in any form, 
e.g., a decision tree, a set of rules, a Bayesian model or a hyperplane.  

Example 1: Table 1 shows a small loan application data set. It has 4 at-
tributes. The first attribute is Age, which has three possible values, young, 
middle and old. The second attribute is Has_Job, which indicates whether 
an applicant has a job. Its values are true (has a job), or false (does not 
have a job). The third attribute is Own_house, which shows whether an 
applicant owns a house. The fourth attribute is Credit_rating, which has 
three values, fair, good and excellent. The last column is the Class attrib-
ute, which shows whether each loan application was approved (denoted by 
Yes) or not (denoted by No) in the past.  

Table 1: A loan application data set  

ID Age Has_Job Own_House Credit_Rating Class 
1 young false false fair No 
2 young false false good No 
3 young true false good Yes 
4 young true true fair Yes 
5 young false false fair No 
6 middle false false fair No 
7 middle false false good No 
8 middle true true good Yes 
9 middle false true excellent Yes 

10 middle false true excellent Yes 
11 old false true excellent Yes 
12 old false true good Yes 
13 old true false good Yes 
14 old true false excellent Yes 
15 old false false fair No 

We want to learn a classification model from this data set that can be 
used to classify future loan applications. That is, when a new customer 
comes into the bank to apply for a loan, after inputting his/her age, whether 
he/she has a job, whether he/she owns a house, and his/her credit rating, 
the classification model should predict whether his/her loan application 
should be approved.  ▀ 

Our learning task is called the supervision learning because the class 
labels (e.g., Yes and No values of the class attribute in Table 1) are pro-
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vided in the data. It is like that some teacher tells us the classes. This is in 
contrast to the unsupervised learning, where the classes are not known 
and the learning algorithm needs to automatically generate classes. Unsu-
pervised learning is the topic of the next Chapter.  

The data set used for learning is called the training data (or the train-
ing set). After a model is learned or built from the training data by a 
learning algorithm, it is evaluated using a set of test data (or unseen 
data) to assess the model accuracy.  

It is important to note that the test data is not used in learning the classi-
fication model. The examples in the test data usually also have class labels. 
That is why the test data can be used to assess the accuracy of the learned 
model because we can check whether the class predicted for each test case 
by the model is the same as the actual class of the test case. In order to 
learn and also to test, the available data (which has classes) for learning is 
usually split into two disjoint subsets, the training set (for learning) and the 
test set (for testing). We will discuss this further in Section 3.3.  

The accuracy of a classification model on a test set is defined as:  

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
=Accuracy  (1) 

where a correct classification means that the learned model predicts the 
same class as the original class of the test case. There are also other meas-
ures that can be used. We will discuss them in Section 3.3.  

We pause here to raises two important questions:  
1. What do we mean by learning by a computer system? 
2. What is the relationship between the training and the test data?  
We answer the first question first. Given a data set D representing past 
“experiences”, a task T and a performance measure M, a computer system 
is said to learn from the data to perform the task T if after learning the sys-
tem’s performance on the task T improves as measured by M. In other 
words, the learned model or knowledge helps the system to perform the 
task better as compared to no learning. Learning is the process of building 
the model or extracting the knowledge.  

We use the data set in Example 1 to explain the idea. The task is to pre-
dict whether a loan application should be approved. The performance 
measure M is the accuracy in Equation (1). With the data set in Table 1, if 
there is no learning, all we can do is to guess randomly or to simply take 
the majority class (which is the Yes class). Suppose we use the majority 
class and announce that every future instance or case belongs to the class 
Yes. If the future data are drawn from the same distribution as the existing 
training data in Table 1, the estimated classification/prediction accuracy on 
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the future data is 9/15 = 0.6 as there are 9 Yes class examples out of the to-
tal of 15 examples in Table 1. The question is: can we do better with learn-
ing? If the learned model can indeed improve the accuracy, then the learn-
ing is said to be effective. 

The second question in fact touches the fundamental assumption of 
machine learning, especially the theoretical study of machine learning. 
The assumption is that the distribution of training examples is identical to 
the distribution of test examples (including future unseen examples). In 
practical applications, this assumption is often violated to a certain degree. 
Strong violations will clearly result in poor classification accuracy, which 
is quite intuitive because if the test data behave very differently from the 
training data then the learned model will not perform well on the test data. 
To achieve good accuracy on the test data, training examples must be suf-
ficiently representative of the test data.   

We now illustrate the steps of learning in Fig. 1 based on the preceding 
discussions. In step 1, a learning algorithm uses the training data to gener-
ate a classification model. This step is also called the training step or 
training phase. In step 2, the learned model is tested using the test set to 
obtain the classification accuracy. This step is called the testing step or 
testing phase. If the accuracy of the learned model on the test data is satis-
factory, the model can be used in real-world tasks to predict classes of new 
cases (which do not have classes). If the accuracy is not satisfactory, we 
may need to go back and choose a different learning algorithm and/or do 
some further processing of the data (this step is called data preprocessing, 
not shown in the figure). A practical learning task typically involves many 
iterations of these steps before a satisfactory model is built. It is also pos-
sible that we are unable to build a satisfactory model due to a high degree 
of randomness in the data or limitations of current learning algorithms.  

 
Fig. 1. The basic learning process: training and testing 

So far we have assumed that the training and test data are available for 
learning. However, in many text and Web page related learning tasks, this 
is not true. Usually, we need to collect raw data, design attributes and 
compute attribute values from the raw data. The reason is that the raw data 
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algorithm model Accuracy Test 

data 
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data 

        Step 1: Training    Step 2: Testing 
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in text and Web applications are often not suitable for learning either be-
cause their formats are not right or because there are no obvious attributes 
in the raw text documents and Web pages.  

3.2 Decision Tree Induction 

Decision tree learning is one of the most widely used techniques for classi-
fication. Its classification accuracy is competitive with other learning 
methods, and it is very efficient. The learned classification model is repre-
sented as a tree, called a decision tree. The techniques presented in this 
section are based on the C4.5 system from Quinlan [406]. 

Example 2: Fig. 2 shown a possible decision tree learned from the data in 
Table 1. The decision tree has two types of nodes, decision nodes (which 
are internal nodes) and leaf nodes. A decision node specifies some test 
(i.e., asks a question) on a single attribute. A leaf node indicates a class.  

 
Fig. 2. A decision tree for the data in Table 1.  

The root node of the decision tree in Fig. 2 is Age, which basically asks 
the question: what is the age of the applicant? It has three possible answers 
or outcomes, which are the three possible values of Age. These three val-
ues form three tree branches/edges. The other internal nodes have the same 
meaning. Each leaf node gives a class value (Yes or No). (x/y) below each 
class means that x out of y training examples that reach this leaf node have 
the class of the leaf. For instance, the class of the left most leaf node is 
Yes. Two training examples (examples 3 and 4 in Table 1) reach here and 
both of them are of class Yes.  ▀ 

To use the decision tree in testing, we traverse the tree top-down ac-
cording to the attribute values of the given test instance until we reach a 
leaf node. The class of the leaf is the predicted class of the test instance. 

Age? 

Has_job? Own_house? Credit_rating? 
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  true    false 

Yes          No 
(2/2) (3/3) 

  true    false 

Yes          No 
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Example 3: We use the tree to predict the class of the following new in-
stance, which describes a new loan applicant.  

Age  Has_Job  Own_house  Credit-Rating   Class  
young  false  false good  ? 

Going through the decision tree, we find that the predicted class is No as 
we reach the second leaf node from the left.   ▀ 

A decision tree is constructed by partitioning the training data so that the 
resulting subsets are as pure as possible. A pure subset is one that con-
tains only training examples of a single class. If we apply all the training 
data in Table 1 on the tree in Fig. 2, we will see that the training examples 
reaching each leaf node form a subset of examples that have the same class 
as the class of the leaf. In fact, we can see that from the x and y values in 
(x/y). We will discuss the decision tree building algorithm in Section 3.2.1. 

An interesting question is: Is the tree in Fig. 2 unique for the data in Ta-
ble 1? The answer is no. In fact, there are many possible trees that can be 
learned from the data. For example, Fig. 3 gives another decision tree, 
which is much smaller and is also able to partition the training data per-
fectly according to their classes.  

 
Fig. 3. A smaller tree for the data set in Table 1.  

In practice, one wants to have a small and accurate tree due to many 
reasons. A smaller tree is more general and also tends to be more accurate 
(we will discuss this later). It is also easier to understand by human users. 
In many applications, the user understanding of the classifier is important. 
For example, in some medical applications, doctors want to understand the 
model that classifies whether a person has a particular disease. It is not sat-
isfactory to simply produce a classification because without understanding 
why the decision is made the doctor may not trust the system and/or does 
not gain useful knowledge.  

It is useful to note that in both Fig. 2 and Fig. 3, the training examples 
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that reach each leaf node all have the same class (see the values of (x/y) at 
each leaf node). However, for most real-life data sets, this is usually not 
the case. That is, the examples that reach a particular leaf node are not of 
the same class, i.e., x ≤ y. The value of x/y is, in fact, the confidence (conf) 
value used in association rule mining, and x is the support count. This 
suggests that a decision tree can be converted to a set of if-then rules.  

Yes, indeed. The conversion is done as follows: Each path from the root 
to a leaf forms a rule. All the decision nodes along the path form the condi-
tions of the rule and the leaf node or the class forms the consequent. For 
each rule, a support and confidence can be attached. Note that in most 
classification systems, these two values are not provided. We add them 
here to see the connection of association rules and decision trees.  

Example 4: The tree in Fig. 3 generates three rules. “,” means “and”.  
Own_house = true → Class =Yes  [sup=6/15, conf=6/6] 
Own_house = false, Has_job = true → Class = Yes [sup=5/15, conf=5/5] 
Own_house = false, Has_job = false → Class = No [sup=4/15, conf=4/4] 

We can see that these rules are of the same format as association rules. 
However, the rules above are only a small subset of the rules that can be 
found in the data of Table 1. For instance, the decision tree in Fig. 3 does 
not find the following rule:  

Age = young, Has_job = false → Class = No [sup=3/15, conf=3/3] 

Thus, we say that a decision tree only finds a subset of rules that exist in 
data, which is sufficient for classification. The objective of association rule 
mining is to find all rules subject to some minimum support and minimum 
confidence constraints. Thus, the two methods have different objectives. 
We will discuss these issues again in Section 3.4 when we show that asso-
ciation rules, more precisely, class association rules, can be used for 
classification as well, which is obvious.  

An interesting and important property of a decision tree and its resulting 
set of rules is that the tree paths or the rules are mutually exclusive and 
exhaustive. This means that every data instance (training and testing) is 
covered by a single rule (a tree path) and a single rule only. By covering a 
data instance, we mean that the instance satisfies the conditions of the rule. 

We also say that a decision tree generalizes the data as a tree is a 
smaller (compact) description of the data, i.e., it captures the key regulari-
ties in the data. Then, the problem becomes building the best tree that is 
small and accurate. It turns out that finding the best tree that models the 
data is a NP-complete problem [226]. All existing algorithms use heuristic 
methods for tree building. Below, we study one of the most successful 
techniques.  
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3.2.1 Learning Algorithm 

As indicated earlier, a decision tree T simply partitions the training data set 
D into disjoint subsets so that each subset is as pure as possible (of the 
same class). The learning of a tree is typically done using the divide-and-
conquer strategy that recursively partitions the data to produce the tree. At 
the beginning, all the examples are at the root. As the tree grows, the ex-
amples are sub-divided recursively. A decision tree learning algorithm is 
given in Fig. 4. For now, we assume that every attribute in D takes discrete 
values. This assumption is not necessary as we will see later.  

The stopping criteria of the recursion are in lines 1-4 in Fig. 4. The al-
gorithm stops when all the training examples in the current data are of the 
same class, or when every attribute has been used along the current tree 

. Algorithm decisionTree(D, A, T) 
1  if D contains only training examples of the same class cj ∈ C then 
2 make T a leaf node labeled with class cj; 
3 elseif A = ∅ then  
4  make T a leaf node labeled with cj, which is the most frequent class in D 
5 else // D contains examples belonging to a mixture of classes. We select a single 
6 // attribute to partition D into subsets so that each subset is purer 
7 p0 = impurityEval-1(D);  
8 for each attribute Ai ∈ A (={A1, A2, …, Ak}) do  
9 pi = impurityEval-2(Ai, D)  
10  end 
11 Select Ag ∈ {A1, A2, …, Ak} that gives the biggest impurity reduction, 

computed using p0 – pi; 
12 if p0 – pg < threshold then  // Ag does not significantly reduce impurity p0 
13  make T a leaf node labeled with cj, the most frequent class in D. 
14 else  // Ag is able to reduce impurity p0 
15 Make T a decision node on Ag; 
16 Let the possible values of Ag be v1, v2, …, vm. Partition D into m 

disjoint subsets D1, D2, …, Dm based on the m values of Ag.  
17 for each Dj in {D1, D2, …, Dm} do  
18 if Dj ≠ ∅ then 
19 create a branch (edge) node Tj for vj as a child node of T; 
20 decisionTree(Dj, A-{Ag}, Tj) // Ag is removed 
21 end 
22  end 
23  end 
24 end 

Fig. 4. A decision tree learning algorithm 
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path. In tree learning, each successive recursion chooses the best attribute 
to partition the data at the current node according to the values of the at-
tribute. The best attribute is selected based on a function that aims to 
minimize the impurity after the partitioning (lines 7-11). In other words, it 
maximizes the purity. The key in decision tree learning is thus the choice 
of the impurity function, which is used in lines 7, 9 and 11 in Fig. 4. The 
recursive recall of the algorithm is in line 20, which takes the subset of 
training examples at the node for further partitioning to extend the tree.  

This is a greedy algorithm with no backtracking. Once a node is created, 
it will not be revised or revisited no matter what happens subsequently.  

3.2.2 Impurity Function 

Before presenting the impurity function, we use an example to show what 
the impurity function aims to do intuitively.  

Example 5: Fig. 5 shows two possible root nodes for the data in Table 1.  

 
Fig. 5. Two possible root nodes or two possible attributes for the root node 

Fig. 5(A) uses Age as the root node, and Fig. 5(B) uses Own_house as 
the root node. Their possible values (or outcomes) are the branches. At 
each branch, we listed the number of training examples of each class (No 
or Yes) that land or reach there. Fig. 5(B) is obviously a better choice for 
the root. From a prediction or classification point of view, Fig. 5(B) makes 
fewer mistakes than Fig. 5(A). In Fig. 5(B), when Own_house=true every 
example has the class Yes. When Own_house=false, if we take majority 
class (the most frequent class), which is No, we make 3 mistakes/errors. If 
we look at Fig. 5(A), the situation is worse. If we take the majority class 
for each branch, we make 5 mistakes (marked in bold). Thus, we say that 
the impurity of the tree in Fig. 5(A) is higher than the tree in Fig. 5(B). To 
learn a decision tree, we prefer Own_house to Age to be the root node. In-
stead of counting the number of mistakes or errors, C4.5 uses a more prin-
cipled approach to perform this evaluation on every attribute in order to 
choose the best attribute to build the tree. ▀ 
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The most popular impurity functions used for decision tree learning are 
information gain and information gain ratio, which are used in C4.5 as 
two options. Let us first discuss information gain, which can be extended 
slightly to produce information gain ratio.  

The information gain measure is based on the entropy function from in-
formation theory [433]:  

,1)Pr(

)Pr(log)Pr()(

||

1

||

1
2

∑

∑

=

=

=

−=

C

j
j

j

C

j
j

c

ccDentropy

 

(2) 

where Pr(cj) is the probability of class cj in data set D, which is the number 
of examples of class cj in D divided by the total number of examples in D. 
In the entropy computation, we define 0log0 = 0. The unit of entropy is 
bit. Let us use an example to get a feeling of what this function does. 

Example 6: Assume we have a data set D with only two classes, positive 
and negative. Let us see the entropy values for three different compositions 
of positive and negative examples:  

1.  The data set D has 50% positive examples (Pr(positive) = 0.5) and 50% 
negative examples (Pr(negative) = 0.5). 

15.0log5.05.0log5.0)( 22 =×−×−=Dentropy   

2.  The data set D has 20% positive examples (Pr(positive) = 0.2) and 80% 
negative examples (Pr(negative) = 0.8). 

722.08.0log8.02.0log2.0)( 22 =×−×−=Dentropy   

3.  The data set D has 100% positive examples (Pr(positive) = 1) and no 
negative examples, (Pr(negative) = 0). 

00log01log1)( 22 =×−×−=Dentropy   

We can see a trend: When the data becomes purer and purer, the entropy 
value becomes smaller and smaller. In fact, it can be shown that for this 
binary case (two classes), when Pr(positive) = 0.5 and Pr(negative) = 0.5 
the entropy has the maximum value, i.e., 1 bit. When all the data in D be-
long to one class the entropy has the minimum value, 0 bit. ▀ 

It is clear that the entropy measures the amount of impurity or disorder 
in the data. That is exactly what we need in decision tree learning. We now 
describe the information gain measure, which uses the entropy function.  
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Information gain 

The idea is the following: 

1. Given a data set D, we first use the entropy function (Equation (2)) to 
compute the impurity value of D, which is entropy(D). The impuri-
tyEval-1 function in line 7 of Fig. 4 performs this task.  

2. Then, we want to know which attribute can improve the impurity most 
if it is used to partition D. To find out, every attribute is evaluated (lines 
8-10 in Fig. 4). Let the number of possible values of the attribute Ai be v. 
If we are going to use Ai to partition the data D, we will divide D into v 
disjoint subsets D1, D2, …, Dv. The entropy after the partition is 
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 The impurityEval-2 function in line 9 of Fig. 4 performs this task.  
3. The information gain of attribute Ai is computed with: 

)()(),( DentropyDentropyADgain
iAi −=  (4) 

Clearly, the gain criterion measures the reduction in impurity or disorder. 
The gain measure is used in line 11 of Fig. 4, which chooses the attribute 
Ag resulting in the largest reduction in impurity. If the gain of Ag is too 
small, the algorithm stops for the branch (line 12). Normally a threshold is 
used here. If choosing Ag is able to reduce impurity significantly, Ag is em-
ployed to partition the data to extend the tree further, and so on (lines 15-
21 in Fig. 4). The process goes on recursively by building sub-trees using 
D1, D2, …, Dm (line 20). For subsequent tree extensions, we do not need Ag 
any more, as all training examples in each branch has the same Ag value. 

Example 7: Let us compute the gain values for attributes Age, Own_house 
and Credit_Rating using the whole data set D in Table 1, i.e., we evaluate 
for the root node of a decision tree.  

First, we compute the entropy of D. Since D has 6 No class training ex-
amples, and 9 Yes class training examples, we have  

971.0
15
9log

15
9

15
6log

15
6)( 22 =×−×−=Dentropy  

 

We then try Age, which partitions the data into 3 subsets (as Age has 
three possible values) D1 (with Age=young), D2 (with Age=middle), and D3 
(with Age=old). Each subset has 5 training examples. In Fig. 5, we also see 
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the number of No class examples and the number of Yes examples in each 
subset (or in each branch).  
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Likewise, we compute for Own_house, which partitions D into two sub-
sets, D1 (with Own_house=true) and D2 (with Own_house=false).  
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Similarly, we obtain entropyHas_job(D) = 0.647, entropyCredit_rating(D) = 
0.608. The gains for the attributes are:  

gain(D, Age) = 0.971 − 0.888 = 0.083 
gain(D, Own_house) = 0.971 − 0.551 = 0.420 
gain(D, Has_Job) = 0.971 − 0.647 = 0.324 
gain(D, Credit_Rating) = 0.971 − 0.608 = 0.363 

Own_house is the best attribute for the root node. Fig. 5 shows the root 
node using Own_house. Since the left branch has only one class (Yes) of 
data, it results in a leaf node (line 1 in Fig. 4). For Own_house = false, fur-
ther extension is needed. The process is the same as above, but we only 
use the subset of the data with Own_house = false, i.e., D2.  ▀ 

Information gain ratio 

The gain criterion tends to favor attributes with many possible values. An 
extreme situation is that the data contain an ID attribute that is an identifi-
cation of each example. If we consider using this ID attribute to partition 
the data, each training example will form a subset and has only one class, 
which results in entropyID(D) = 0. So the gain by using this attribute is 
maximal. From a prediction point of review, such a partition is useless.  

Gain ratio (Equation (5)) remedies this bias by normalizing the gain us-
ing the entropy of the data with respect to the values of the attribute. Our 
previous entropy computations are done with respect to the class attribute.  
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where s is the number of possible values of Ai, and Dj is the subset of data 
that has the jth value of Ai. |Dj|/|D| simply corresponds to the probability in 
Equation (2). Using Equation (5), we simply choose the attribute with the 
highest gainRatio value to extend the tree.  

This method works because if Ai has too many values the denominator 
will be large. For instance, in our above example of the ID attribute, the 
denominator will be log2|D|. The denominator is called the split info in 
C4.5. One note is that gainRatio can be 0 or very small. Some heuristic so-
lutions can be devised to deal with them [404].  

3.2.3 Handling of Continuous Attributes 

It seems that the decision tree algorithm can only handle discrete attrib-
utes. In fact, continuous attributes can be dealt with easily as well. In a real 
life data set, there are often both discrete attributes and continuous attrib-
utes. Handling both types in an algorithm is an important advantage.  

To apply the decision tree building method, we can divide the value 
range of attribute Ai into intervals at a particular tree node. Each interval 
can then be considered a discrete value. Based on the intervals, gain or 
gainRatio is evaluated in the same way as in the discrete case. Clearly, we 
can divide Ai into any number of intervals at a tree node. However, two in-
tervals are usually sufficient. This binary split is used in C4.5. We need to 
find a threshold value for the division.  

Clearly, we should choose the threshold that maximizes the gain (or 
gainRatio). We need to examine all possible thresholds. This is not a prob-
lem because although for a continuous attribute Ai the number of possible 
values that it can take is infinite, the number of actual values that appear in 
the data is always finite. Let the set of distinctive values of attribute Ai that 
occur in the data be {v1, v2, …, vr}, which are sorted in an ascending order. 
Clearly, any threshold value lying between vi and vi+1 will have the same 
effect of dividing the training examples into those whose value of attribute 
Ai lies in {v1, v2, …, vi} and those whose value lies in {vi+1, vi+2, …, vr}. 
There are thus only r-1 possible splits on Ai, which can all be evaluated.   

The threshold value can be the middle point between vi and vi+1, or just 
on the “right side” of value vi, which results in two intervals Ai ≤ vi and Ai 
> vi. This latter approach is used in C4.5. The advantage of this approach is 



62      Chapter 3: Supervised Learning 

that the values appearing in the tree actually occur in the data. The thresh-
old value that maximizes the gain (gainRatio) value is selected. We can 
modify the algorithm in Fig. 4 (lines 8-11) easily to accommodate this 
computation so that both discrete and continuous attributes are considered.  

A change to line 20 of the algorithm in Fig. 4 is also needed. For a con-
tinuous attribute, we do not remove attribute Ag because an interval can be 
further split recursively in subsequent tree extensions. Thus, the same con-
tinuous attribute may appear multiple times in a tree path (see Example 9), 
which does not happen for a discrete attribute.  

From a geometric point of view, a decision tree built with only continu-
ous attributes represents a partitioning of the data space. A series of splits 
from the root node to a leaf node represents a hyper-rectangle. Each side of 
the hyper-rectangle is an axis-parallel hyperplane. 

Example 8: The hyper-rectangular regions in Fig. 6(A), which partitions 
the data space, are produced by the decision tree in Fig. 6(B). There are 
two classes in the data, represented by empty circles and filled rectangles.  

 
Fig. 6. A partitioning of the data space and its corresponding decision tree ▀ 

Handling of continuous (numeric) attributes has an impact on the effi-
ciency of the decision tree algorithm. With only discrete attributes the al-
gorithm grows linearly with the size of the data set D. However, sorting of 
a continuous attribute takes |D|log|D| time, which can dominate the tree 
learning process. Sorting is important as it ensures that gain or gainRatio 
can be computed in one pass of the data.  

3.2.4 Some Other Issues  

We now discuss several other issues in decision tree learning.  

Tree pruning and overfitting: A decision tree algorithm recursively parti-
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tions the data until there is no impurity or there is no attribute left. This 
process may result in trees that are very deep and many tree leaves may 
cover very few training examples. If we use such a tree to predict the train-
ing set, the accuracy will be very high. However, when it is used to clas-
sify unseen test set, the accuracy may be very low. The learning is thus not 
effective, i.e., the decision tree does not generalize the data well. This 
phenomenon is called overfitting. More specifically, we say that a classi-
fier f1 overfits the data if there is another classifier f2 such that f1 achieves a 
higher accuracy on the training data than f2, but a lower accuracy on the 
unseen test data than f2 [344].  

Overfitting is usually caused by noise in the data, i.e., wrong class val-
ues/labels and/or wrong values of attributes, but it may also be due to the 
complexity and randomness of the application domain. These problems 
cause the decision tree algorithm to refine the tree by extending it to very 
deep using many attributes.  

To reduce overfitting in the context of decision tree learning, we per-
form pruning of the tree, i.e., to delete some branches or sub-trees and re-
place them with leaves of majority classes. There are two main methods to 
do this, stopping early (which is also called pre-pruning) in tree building 
and pruning the tree after it is built (which is called post-pruning). Both 
approaches have been experimented by researchers. Post-pruning has been 
shown more effective. Early-stopping can be dangerous because it is not 
clear what will happen if the tree is extended further (without stopping). 
Post-pruning is more effective because after we have extended the tree to 
the fullest, it becomes clearer what branches/sub-trees may not be useful 
(may overfit the data). The general idea of post-pruning is to estimate the 
error of each tree node. If the estimated error for a node is less than the es-
timated error of its extended sub-tree, then the sub-tree is pruned. Most ex-
isting tree learning algorithms takes this approach. See [406] for a tech-
nique called the pessimistic error based pruning.  

Example 9: In Fig. 6(B), the sub-tree represents the rectangular region 

 X ≤ 2, Y > 2.5, Y ≤ 2.6 

in Fig.6(A) is very likely to be overfitting. The region is very small and 
contains only a single data point, which may be an error (or noise) in the 
data collection. If it is pruned, we obtain Fig.7(A) and (B).  ▀ 

Another common approach to pruning is to use a separate set of data 
called the validation set, which is not used in training and neither in test-
ing. After a tree is built, it is used to classify the validation set. Then, we 
can find the errors at each node on the validation set. This enables us to 
know what to prune based on the errors at each node.  



64      Chapter 3: Supervised Learning 

 
Fig. 7. The data space partition and the decision tree after pruning  

Rule pruning: We note earlier that a decision tree can be converted to a 
set of rules. In fact, C4.5 also prunes the rules to simplify them and to re-
duce overfitting. First, the tree (C4.5 uses the unpruned tree) is converted 
to a set of rules in the way discussed in Example 4. Rule pruning is then 
performed by removing some conditions to make the rules shorter and 
fewer (after pruning some rules may become redundant). In most cases, 
pruning results in a more accurate rule set as shorter rules are less likely to 
overfit the training data. Pruning is also called generalization as it makes 
rules more general (with fewer conditions). A rule with more conditions is 
more specific than a rule with fewer conditions.  

Example 10: The sub-tree below X ≤ 2 in Fig. 6(B) produces these rules: 

Rule 1:  X ≤ 2, Y > 2.5, Y > 2.6 →  
Rule 2:  X ≤ 2, Y > 2.5, Y ≤2.6 → O 
Rule 3:  X ≤ 2, Y ≤ 2.5 →  

Note that Y > 2.5 in Rule 1 is not useful because of Y > 2.6, and thus Rule 
1 should be  

Rule 1:  X ≤ 2, Y > 2.6 →  

In pruning, we may be able to delete the conditions Y > 2.6 from Rule 1 to 
produce:  

X ≤ 2 →  

Then Rule 2 and Rule 3 become redundant and can be removed.  ▀ 

A useful point to note is that after pruning the resulting set of rules may 
no longer be mutually exclusive and exhaustive. There may be data 
points that satisfy the conditions of more than one rule, and if inaccurate 
rules are discarded, of no rules. A sorting of the rules is needed to ensure 
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that when classifying a test case only one rule (the first one) will be ap-
plied to determine the class of the test case. To deal with the situation that 
a test case does not satisfy the conditions of any rule, a default class is 
used, which is the majority class.  

Handling missing attribute values: In many practical data sets, some at-
tribute values are missing or not available due to various reasons. There 
are many ways to deal with the problem. For example, we can fill each 
missing value with the special value “unknown” or the most frequent value 
of the attribute if the attribute is discrete. If the attribute is continuous, use 
the mean of the attribute for each missing value.  

The decision tree algorithm in C4.5 takes another approach: At a tree 
node, distribute the training example with missing value for the attribute to 
each branch of the tree proportionally according to the distribution of the 
training examples that have values for the attribute.  

Handling skewed class distribution: In many applications, the propor-
tions of data for different classes can be very different. For instance, in a 
data set of intrusion detection in computer networks, the proportion of in-
trusion cases is extremely small (< 1%) compared with normal cases. Di-
rectly applying the decision tree algorithm for classification or prediction 
of intrusions is usually not effective. The resulting decision tree often con-
sists of a single leaf node “normal”, which is useless for intrusion detec-
tion. One way to deal with the problem is to over-sample the intrusion ex-
amples to increase its proportion. Another solution is to rank the new cases 
according to how likely they may be intrusions. The human users can then 
investigate the top ranked cases.  

3.3 Classifier Evaluation 

After a classifier is constructed, it needs to be evaluated for accuracy. Ef-
fective evaluation is crucial because without knowing the approximate ac-
curacy of a classifier, it cannot be used in real-world tasks.  

There are many ways to evaluate a classifier, and there are also many 
measures. The main measure is the classification accuracy (Equation (1)), 
which is the number of correctly classified instances in the test set divided 
by the total number of instances in the test set. Some researchers also use 
the error rate, which is 1 – accuracy. Clearly, if we have several classifi-
ers, the one with the highest accuracy is preferred. Statistical significance 
tests may be used to check whether one accuracy is significantly better 
than another given the same training and test data sets. Below, we first pre-
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sent several common methods for classifier evaluation, and then introduce 
some other evaluation measures.  

3.3.1 Evaluation Methods 

Holdout set: The available data set D is divided into two disjoint subsets, 
the training set Dtrain and the test set Dtest, D = Dtrain ∪ Dtest and Dtrain ∩ 
Dtest = ∅. The test set is also called the holdout set. Note that the examples 
in the original data set D are all labeled with classes. This method is 
mainly used when the data set D is large.  

As we discussed earlier, the training set is used for learning a classifier 
while the test set is used to evaluate the resulting classifier. The training 
set should not be used to evaluate the classifier as the classifier is biased 
toward the training set. That is, the classifier may overfit the training set, 
which results in very high accuracy on the training set but low accuracy on 
the test set. Using the unseen test set gives an unbiased estimate of the 
classification accuracy. As for how many percent of the data should be 
used for training and how many percent for testing, it depends on the data 
set size. 50-50 and two third for training and one third for testing are 
commonly used.  

To partition D into training and test sets, we can use a few approaches: 

1. We randomly sample a set of training examples from D for learning and 
use the rest for testing.  

2. If the data is collected over time, then we can use the earlier part of the 
data for training and the later part of the data for testing. In many appli-
cations, this is a more suitable approach because when the classifier is 
used in the real-world the data are from the future. Thus this approach 
better reflects the dynamic aspects of applications. 

Multiple random sampling: When the available data set is small, using 
the above methods can be unreliable because the test set would be too 
small to be representative. One approach to deal with the problem is to 
perform the above random sampling n times. Each time a different training 
set and a different test set are produced. This produces n accuracies. The 
final estimated accuracy on the data is the average of the n accuracies.  

Cross-validation: When the data set is small, the n-fold cross-validation 
method is also (more) commonly used. In this method, the available data is 
partitioned into n equal-size disjoint subsets. We then use each subset as 
the test set and combine the rest n-1 subsets as the training set to learn a 
classifier. This procedure is then run n times, which give n accuracies. The 
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final estimated accuracy of learning from this data set is the average of the 
n accuracies. 10-fold and 5-fold cross-validations are often used.  

A special case of cross-validation is the leave-one-out cross-validation. 
In this method, each fold of the cross validation has only a single test ex-
ample and all the rest of the data is used in training. That is, if the original 
data has m examples, then this is m-fold cross-validation. This method is 
normally used when the available data is very small. It is not efficient for a 
large data set as m classifiers need to be built. 

In Section 3.2.4, we mentioned that a validation set can be used to prune 
a decision tree or a set of rules. If a validation set is employed for that 
purpose, it should not be used in testing. In that case, the available data is 
divided into three subsets, a training set, a validation set and a test set. 
Apart from using a validation set to help tree or rule pruning, a validation 
set is also used frequently to estimate parameters in learning algorithms. In 
such cases, the values that give the best accuracy on the validation set are 
used as the final values of the parameters. Cross-validation can be used for 
parameter estimating as well. Then, there is no need to have a separate 
validation set. Instead, the whole training set is used in cross validation.  

3.3.2 Precision, Recall, F-score and Breakeven Point 

In some applications, we are only interested in one class. This is particu-
larly true for text and Web applications. For example, we may be inter-
ested in only the documents or web pages of a particular topic. Also, in 
classification involving skewed or highly imbalanced data, e.g., network 
intrusion and financial fraud detection, we are typically interested in only 
in the minority class. The class that the user is interested in is commonly 
called the positive class, and the rest negative classes (the negative classes 
may be combined into one negative class). Accuracy is not a suitable 
measure because we may achieve a very high accuracy, but may not iden-
tify a single intrusion. For instance, 99% of the cases are normal in an in-
trusion detection data set. Then a classifier can achieve 99% accuracy 
without doing anything but simply classify every test case as “not intru-
sion”. This is, however, useless.  

Precision and recall are more suitable in such applications because they 
measure how precise and how complete the classification is on the positive 
class. It is convenient to introduce these measures using a confusion ma-
trix (Table 2). A confusion matrix contains information about actual and 
predicted results given by a classifier.  
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Table 2. Confusion Matrix of a classifier 

 Classified Positive Classified Negative 
Actual Positive TP FN 
Actual Negative FP TN 

where 

TP: the number of correct classifications of the positive examples (true positive)  
FN: the number of incorrect classifications of positive examples (false negative) 
FP: the number of incorrect classifications of negative examples (false positive)  
TN: the number of correct classifications of negative examples (true negative)  

Based on the confusion matrix, the precision (p) and recall (r) of the posi-
tive class are defined as follows:  

.       .
FNTP

TP r
FPTP

TPp
+

=
+

=  (6) 

In words, precision p is the number of correctly classified positive ex-
amples divided by the total number examples that are classified as posi-
tive. Recall r is the number of correctly classified positive examples di-
vided by the total number of actual positive examples in the test set. The 
intuitive meanings of these two measures are quite obvious.  

However, it is hard to compare classifiers based on two measures, which 
are not functionally related. For a test set, the precision may be very high 
but the recall can be very low, and vice versa.  

Example 11: A test data set has 100 positive examples and 1000 negative 
examples. After classification using a classifier, we have the following 
confusion matrix (Table 3), 

Table 3. Confusion Matrix of a classifier 

 Classified Positive Classified Negative 
Actual Positive 1 99 
Actual Negative 0 1000 

This confusion matrix gives the precision p = 100% and the recall r = 1% 
because we only classified one positive example correctly and no negative 
examples wrongly. ▀ 

Although in theory precision and recall are not related, in practice high 
precision is achieved almost always at the expense of recall and high recall 
is achieved at the expense of precision. In an application, which measure is 
more important depends on the nature of the application. If we need a sin-
gle measure to compare different classifiers, F-score is often used.  
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F-score (also called F1-score) is the harmonic mean of precision and recall.  

rp

F 11
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+
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The harmonic mean of two numbers tends to be closer to the smaller of 
the two. Thus, for F-score to be high, both p and r must be high.  

There is also another measure, called precision and recall breakeven 
point, which is used in the information retrieval community. The break-
even point is when the precision and the recall are equal. This measure as-
sumes that the test cases can be ranked by the classifier based on their like-
lihoods of being positive. For instance, in decision tree classification, we 
can use the confidence of each leaf node as the value to rank test cases.  

Example 12: We have the following ranking of 20 test documents. 1 
represents the highest rank and 20 represents the lowest rank. “+” (“−”) 
represents an actual positive (negative) documents.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
+ + + − + − + − + + − − + − − − + − − + 

Assume that the test set has 10 positive examples.  
At rank 1:   p = 1/1 = 100%  r = 1/10 = 10% 
At rank 2:  p = 2/2 = 100%  r = 2/10 = 20% 
… … … 
At rank 9:   p = 6/9 = 66.7%  r = 6/10 = 60% 
At rank 10:   p = 7/10 = 70%  r = 7/10 = 70% 

The breakeven point is p = r = 70%. Note that interpolation is needed if 
such a point cannot be found.  ▀ 

3.4 Rule Induction 

In Section 3.2, we show that a decision tree can be converted to a set of 
rules. Clearly, the set of rules can be used for classification as the tree. A 
natural question is whether it is possible to learn classification rules di-
rectly. The answer is yes. The process of learning such rules is called rule 
induction or rule learning. We study two approaches in the Section. 
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3.4.1 Sequential Covering 

Most rule induction systems use an algorithm called sequential covering. 
A classifier built with this algorithm consists of a list of rules, which is 
also called a decision list [414]. In the list, the ordering of the rules is sig-
nificant.  

The basic idea of sequential covering is to learn a list of rules sequen-
tially, one at a time, to cover the training data. After each rule is learned, 
the training examples covered by the rule are removed. Only the remaining 
data are used to find subsequent rules. Recall that a rule covers an example 
if the example satisfies the conditions of the rule. We study two specific 
algorithms based on this general strategy. The first algorithm is based on 
the CN2 system [92], and the second algorithm is based on the ideas in 
FOIL [405], I-REP [171], REP [65], and RIPPER [94] systems.  

Algorithm 1 (ordered rules) 

This algorithm learns each rule without pre-fixing a class. That is, in each 
iteration, a rule of any class may be found. Thus rules of different classes 
may intermix in the final rule list. The sequence of the rules is important. 

This algorithm is given in Fig. 8. D is the training data. RuleList is the 
list of rules, which is initialized to empty set (line 1). Rule is the best rule 
found in each iteration. The function learn-one-rule-1() learns the Rule 
(lines 2 and 6). The stopping criteria for the while-loop can be of various 
kinds. Here we use D = ∅ or Rule is NULL (a rule is not learned). Once a 
rule is learned from the data, it is inserted into RuleList at the end (line 4). 
All the training examples that are covered by the rule are removed from 
the data (line 5). The remaining data is used to find the next rule and so on. 
After rule learning ends, a default class is inserted at the end of RuleList. 
This is because there may still be some training examples that are not cov-
ered by any rule as no good rule can be found from them, or because some 
test cases may not be covered by any rule and thus cannot be classified. 
The final list of rules is as follows:  

<r1, r2, …, rk, default-class> (9) 

where ri is a rule.  

Algorithm 2 (ordered classes) 

This algorithm learns all rules for each class together. After rule learning 
for one class is completed, it moves to the next class. Thus all rules for 
each class appear together in the rule list. The sequence of the rules for 
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each class is unimportant, but the rule subsets for different classes are or-
dered. Typically, the algorithm finds rules for the least frequent class first, 
then the second least frequent class and so on. This ensures that some rules 
are learned for rare classes. Otherwise, they may be dominated by frequent 
classes and end up with no rules if considered after frequent classes.  

The algorithm is given in Fig. 9. The data set D is split into two subsets, 
Pos and Neg, where Pos contains all the examples of class c from D, and 
Neg the rest of the examples in D (line 3). Two stopping conditions for 
rule learning of each class are in line 4 and line 6. The other parts of the 
algorithm are quite similar to those of the first algorithm in Fig. 8. Both 
learn-one-rule-1() and learn-one-rule-2() functions are described in Section 
3.4.2.  

Algorithm sequential-covering-1(D) 
1 RuleList  ← ∅;   
2 Rule ← learn-one-rule-1(D); 
3 while Rule is not NULL AND D ≠ ∅ do  
4 RuleList ← insert Rule at the end of RuleList;  
5 Remove from D the examples covered by Rule; 
6  Rule ← learn-one-rule-1(D)  
7 endwhile 
8 insert a default class c at the end of RuleList, where c is the majority class 

in D; 
9 return RuleList 

Fig. 8. The first rule learning algorithm based on sequential covering 

Algorithm sequential-covering-2(D, C) 
1 RuleList  ← ∅; // empty rule set at the beginning 
2 for each class c ∈ C do 
3 prepare data (Pos, Neg), where Pos contains all the examples of class 

c from D, and Neg contains the rest of the examples in D; 
4 while Pos ≠ ∅ do  
5 Rule ← learn-one-rule-2(Pos, Neg, c);  
6 if Rule is NULL then  
7 exit-while-loop  
8 else RuleList ← insert Rule at the end of RuleList;  
9  Remove examples covered by Rule from (Pos, Neg) 
10 endif 
11 endwhile 
12 endfor 
13 return RuleList 

Fig. 9. The second rule learning algorithm based on sequential covering 
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Use of rules for classification 

To use a list of rules for classification is straightforward. For a test case, 
we simply try each rule in the list sequentially. The class of the first rule 
that covers this test case is assigned as the class of the test case. Clearly, if 
no rule applies to the test case, the default class is used. 

3.4.2 Rule learning: Learn-one-rule Function 

We now present the function learn-one-rule, which works as follows: It 
starts with an empty set of conditions. In the first iteration, one condition is 
added. In order to find the best condition to add, all possible conditions are 
tried, which form candidate rules. A condition is of the form Ai op v, 
where Ai is an attribute and v is a value of Ai. We also call it an attribute-
value pair. For a discrete attribute, op is “=”. For a continuous attribute, 
op ∈ {>, ≤}. The algorithm evaluates all the candidates to find the best one 
(the rest are discarded). After the first best condition is added, it tries to 
add the second condition and so on in the same fashion until some stop-
ping condition is satisfied. Note that we omit the rule class here because it 
is implied, i.e., the majority class of the data covered by the conditions.  

This is a heuristic and greedy algorithm in that after a condition is 
added, it will not be changed or removed through backtracking. Ideally, we 
would try all possible combinations of attribute-value pairs. However, this 
is not practical as the number of possibilities grows exponentially. Hence, 
in practice, the above greedy algorithm is used. However, instead of keep-
ing only the best set of conditions, we can improve the procedure a little by 
keeping k best sets of conditions (k > 1) in each iteration. This is called the 
beam search (k beams), which ensures that a larger space is explored.  

We present two specific implementations of the algorithm, namely 
learn-one-rule-1() and learn-one-rule-2(). learn-one-rule-1() is used in the 
sequential-covering-1 algorithm, and learn-one-rule-2() is used the sequen-
tial-covering-2 algorithm.  

Learn-one-rule-1 

This function uses beam search (Fig. 10). The number of beams is k. Best-
Cond stores the conditions of the rule to be returned. The class is omitted 
as it is the majority class of the data covered by BestCond. candidate-
CondSet stores the current best condition sets (which are the frontier 
beams) and its size is less than or equal to k. Each condition set contains a 
set of conditions connected by “and” (conjunction). newCandidateCondSet 
stores all the new candidate condition sets after adding each attribute-value 
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pair (a possible condition) to every candidate in candidateCondSet (lines 
5-11). Lines 13-17 update the BestCond. Specifically, an evaluation func-
tion is used to assess whether each new candidate condition set is better 
than the existing best condition set BestCond (line 14). If so, it replaces the 
current BestCond (line 15). Line 18 updates candidateCondSet, which se-
lects k new best condition sets (new beams).  
 

Function learn-one-rule-1(D), 
1 BestCond ← ∅;  // rule with no condition.  
2 candidateCondSet ← {bestCond}; 
3 attributeValuePairs ← the set of all attribute-value pairs in D of the form 

(Ai op v), where Ai is an attribute and v is a value or an interval; 
4 while candidateCondSet ≠ ∅ do 
5 newCandidateCondSet ← ∅; 
6 for each candidate cond in candidateCondSet do 
7 for each attribute-value pair a in attributeValuePairs do 
8 newCond ← cond ∪ {a};  
9 newCandidateCondSet ← newCandidateCondSet ∪ {newCond} 
10 endfor 
11 endfor 
12 remove duplicates and inconsistencies, e.g., {Ai = v1, Ai = v2}; 
13 for each candidate newCond in newCandidateCondSet do  
14 if  evaluation(newCond, D) > evaluation(BestCond, D)  then 
15 BestCond ← newCond; 
16 endif 
17 endfor 
18 candidateCondSet ← the k best members of newCandidateCondSet 

according to the results of the evaluation function; 
19 endwhile 
20 if evaluation(BestCond, D) – evaluation(∅, D) > threshold then 
21  return the rule: “BestCond → c” where is c the majority class of the 

data covered by BestCond; 
22 else  return NULL  
23 endif 

Fig. 10. The learn-one-rule-1() function 

Function evaluation(BestCond, D) 
1 D’ ← the subset of training examples in D covered by BestCond; 
2 ∑ =

−=
||

1 2 )Pr(log)Pr()'( C

j
jj ccDentropy ; 

3 return  – entropy(D’) // since entropy measures impurity.  

Fig. 11. The entropy based evaluation function 
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Once the final BestCond is found, it is evaluated to see if it is signifi-
cantly better than without any condition (∅) using a threshold (line 20). If 
yes, a rule will be formed using BestCond and the most frequent (or the 
majority) class of the data covered by BestCond (line 21). If not, NULL is 
returned to indicate that no significant rule is found.  

The evaluation() function (Fig. 11) uses the entropy function as in the 
decision tree learning. Other evaluation functions are possible too. Note 
that when BestCond = ∅, it covers every example in D, i.e., D = D’. 

Learn-one-rule-2 

In the learn-one-rule-2() function (Fig. 12), a rule is first generated and 
then it is pruned. This method first splits the positive and negative training 
data Pos and Neg, into a growing and pruning sets respectively. The grow-
ing sets, GrowPos and GrowNeg, are used to generate a rule, called Be-
stRule. The pruning sets, PrunePos and PruneNeg are used to prune the 
rule because BestRule may overfit the data. Note that PrunePos and Prun-
eNeg are actually validation sets discussed in Sections 3.2.4 and 3.3.1.  

growRule() function: growRule() generates a rule (called BestRule) by 
repeatedly adding a condition to its condition set that maximizes an 
evaluation function until the rule covers only some positive examples in 
GrowPos but no negative examples from GrowNeg. This is basically the 
same as lines 4-17 in Fig.10, but without beam search (i.e., only the best 
rule is kept in each iteration). Let the current partially developed rule be R: 

R:  av1, .., avk → class 

where each avj is a condition (an attribute-value pair). By adding a new 
condition avk+1, we obtain the rule R+: av1, .., avk, avk+1→ class. The evalua-
tion function for R+ is the following information gain criterion (which is 
different from the gain function used in decision tree learning). 

Function learn-one-rule-2(Pos, Neg, class) 
1 split (Pos, Neg) into (GrowPos, GrowNeg) and (PrunePos, PruneNeg) 
2 BestRule ← GrowRule(GrowPos, GrowNeg, class) // grow a new rule 
3 BestRule ← PruneRule(BestRule, PrunePos, PruneNeg) // prune the rule 
4 if the error rate of BestRule on (PrunePos, PruneNeg) exceeds 50% then  
5 return NULL 
6 endif 
7 return BestRule 

Fig. 12. The learn-one-rule-2() function 
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where p0 (respectively, n0) is the number of positive examples covered by 
R in Pos (Neg), and p1 (n1) is the number of positive examples covered by 
R+ in Pos (Neg). The GrowRule() function simply returns the rule R+ that 
maximizes the gain.  

PruneRule() function: To prune a rule, we consider deleting every subset 
of conditions from the BestRule, and choose the deletion that maximizes 
the function:  

np
npPruneNegPrunePosBestRulev

+
−

=),,(  (11) 

where p (respectively n) is the number of examples in PrunePos (Prune-
Neg) covered by the current rule (after a deletion).  

3.4.3 Discussion 

Separate-and-conquer vs. divide-and-conquer: Decision tree learning is 
said to use the divide-and-conquer strategy. At each step, all attributes are 
evaluated and one is selected to partition/divide the data into m disjoint 
subsets, where m is the number of values of the attribute. Rule induction 
discussed in this section is said to use the separate-and-conquer strategy, 
which evaluates all attribute-value pairs (conditions) (which are much lar-
ger in number than the number of attributes) and selects only one. Thus, 
each step of divide-and-conquer expands m rules, while each step of sepa-
rate-and-conquer expands only one rule. Due to both effects, the separate-
and-conquer strategy is much slower than the divide-and-conquer strategy.  

Rule understandability: If-then rules are easy to understand by human 
users. However, a word of caution about rules generated by sequential 
covering is in order. Such rules can be misleading because the covered 
data are removed after each rule is generated. Thus the rules in the rule list 
are not independent of each other. A rule r may be of high quality in the 
context of the data D’ from which r was generated. However, it may be a 
weak rule with a very low accuracy (confidence) in the context of the 
whole data set D (D’ ⊆ D) because many training examples that can be 
covered by r have already been removed by rules generated before r. If 
you want to understand the rules and possibly use them in some real-world 
tasks, you should be aware of this fact.  
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3.5 Classification Based on Associations 

In Section 3.2, we show that a decision tree can be converted to a set of 
rules, and in Section 3.4, we see that a set of rules may also be found di-
rectly for classification. It is thus only natural to expect that association 
rules, in particular class association rules (CAR), may be used for classi-
fication as well. Recall that a CAR is an association rule with a single class 
value/label on the right-hand-side of the rule as its consequent. For in-
stance, from the data in Table 1, the following rule can be found: 

Own_house = false, Has_job = true → Class = Yes [sup=5/15, conf=5/5] 

which was also a rule from the decision tree in Fig. 3. In fact, syntactically 
there is no difference between rules from a decision tree (or a rule induc-
tion system) and CARs if we consider only categorical (or discrete) attrib-
utes (more on this later). The differences are in the mining processes, ob-
jectives and the final rule sets.  

Class association rule mining finds all rules in data that satisfy some 
user-specified minimum support (minsup) and the minimum confidence 
(minconf) constraints. A decision tree or a rule induction system finds only 
a subset of the rules (expressed as a tree or a list of rules) for classification 

Example 11: Recall the decision tree in Fig. 3 gives the following rules:  

Own_house = true → Class =Yes  [sup=6/15, conf=6/6] 
Own_house = false, Has_job = true → Class=Yes [sup=5/15, conf=5/5] 
Own_house = false, Has_job = false → Class=No [sup=4/15, conf=4/4] 

However, there are many other rules that exist in data, e.g.,  

Age = young, Has_job = true → Class=Yes [sup=2/15, conf=2/2] 
 Age = young, Has_job = false → Class=No [sup=3/15, conf=3/3] 
 Credit_Rating = fair → Class=No [sup=4/15, conf=4/4] 
 Credit_Rating = good → Class=Yes [sup=5/15, conf=5/6] 

and many more, if we use minsup = 2/15 = 13.3% and minconf = 80%. ▀ 

In many cases, rules that are not in the decision tree (or a rule list) may 
be able to perform classification more accurately. Empirical comparisons 
reported by several researchers show that classification using CARs can 
perform more accurately on many data sets than decision trees and rule 
lists from rule induction systems (see Bibliographic notes for references).  
 The complete set of rules from CAR mining is also beneficial from a 
rule usage point of view. In some applications, the user wants to act on 
some interesting rules. For example, in an application of finding causes of 
product problems, more rules are preferred to fewer rules because with 
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more rules the user is more likely to find rules that indicate causes of the 
problems. Such rules may not be generated by a decision tree or a rule in-
duction system. A deployed data mining system based on CARs is re-
ported in [313]. However, we should also bear in mind of the following:  

1. Decision tree learning and rule induction do not use minimum support 
(minsup) or minimum confidence (minconf) constraints. Thus, some 
rules that they find can have very low supports, which of course are 
likely to be pruned in tree pruning or rule pruning because the chance 
that they overfit the training data is high. Although we can set a low 
minsup for CAR mining, it may cause combinatorial explosion and gen-
erates too many rules (the mining process may not be able to complete). 
In practice, a limit on the total number of rules to be generated may be 
used to control the CAR generation process. When the number of gener-
ated rules reaches the limit, the algorithm stops. However, with this 
limit, we may not be able to generate long rules (rules with many condi-
tions). In some applications, this might not be a problem. Recall that the 
Apriori algorithm works in a level-wise fashion, i.e., short rules are gen-
erated before long rules. For practical applications, short rules are pre-
ferred and are often sufficient for classification and for action. Long 
rules normally have very low supports and tend to overfit the data.  

2. CAR mining does not use continuous (numeric) attributes, while deci-
sion trees deal with continuous attributes naturally. Rule induction can 
use continuous attributes as well. There is still no satisfactory method to 
deal with such attributes directly in association rule mining. Fortunately, 
many attribute discretization algorithms exist that can automatically dis-
cretize the value range of a continuous attribute into suitable intervals 
[e.g., 138, 156], which are then considered as discrete values.  

There are several methods that use CARs to build classifiers. We study one 
of them here, which is a simplified version of the method in the CBA sys-
tem [305]. CBA builds a classifier in two steps. It first mines all CARs and 
then identifies a subset of rules to build a classifier.  

3.5.1 Mining Class Association Rules for Classification 

Mining of CARs has been discussed in Chapter 2, so we will not repeat the 
algorithm here. Here we only highlight some issues on rule mining that af-
fect the constructed classifiers.  

Multiple minimum class supports: As discussed in Chapter 2, the most 
important parameter in association rule mining is the minimum support (or 
minsup for short), which greatly impacts on the number rules generated 
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and the kinds of rules generated. Similar to normal association rule mining, 
using a single minsup is inadequate for mining of CARs because many 
practical classification data sets have uneven class distributions, i.e., some 
classes cover a large proportion of data, while others cover only a small 
proportion of data (which are called rare or infrequent classes). As we 
discussed in Chapter 2, using a single minsup may not be adequate.  

Example 12: Suppose we have a dataset with 2 classes, Y and N. 99% of 
the data belong to the Y class, and only 1% of the data belong to the N 
class. If we set minsup = 1.5%, we will not find any rule for class N. To 
solve the problem, we need to lower down the minsup. Suppose we set 
minsup = 0.2%. Then, we may find a huge number of overfitting rules for 
class Y because minsup = 0.2% is too low for class Y.  ▀ 

Multiple class minimum class supports can be applied to deal with the 
problem. We can assign a minimum class support minsupi for each class ci. 

minsupi: For each class ci, we set a different minimum class support min-
supi according to the frequency of the class and other application specific 
information. All the final rules for class ci must satisfy minsupi. Alterna-
tively, we can provide one single total minsup, denoted by t_minsup,  
which is then distributed to each class according to the class distribution: 

minsupi = t_minsup × freq(ci) (12) 

where freq(ci) is the proportion of training examples with class ci. The 
formula gives frequent classes higher minsups and infrequent classes lower 
minsups. This ensures that we will generate sufficient rules for infrequent 
classes without producing many overfitting rules for frequent classes.  

Parameter selection: The parameters used in CAR mining are the mini-
mum supports and the minimum confidences. Note that a different mini-
mum confidence may also be used for each class along with its minsupi. 
However, minimum confidences do not have much impact on the classifi-
cation because classifiers tend to use high confidence rules. One minimum 
confidence is sufficient as long as it is not set too high. To determine the 
best minsupi for each class ci, we can try a range of values to build classifi-
ers and then use a validation set to select the final value. Cross-validation 
may be used as well.   

Data formats: The algorithm for CAR mining given in Chapter 2 is for 
mining a transaction data set. However, most classification data sets are in 
the table format. As we discussed in Chapter 2, a tabular data set can be 
easily converted to a transaction data set.  
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Finally, rule pruning may also be performed to remove overfitting rules 
before classifier building. CBA uses a similar method to that in C4.5. 
Other methods can be used as well, e.g., [292] uses chi-square test.  

3.5.2 Classifier Building  

After all rules are found, a classifier is built using the rules. Clearly, there 
are many possible methods to build/learn a classifier from CARs. For in-
stance, a simple and lazy approach is “do-nothing”. That is, we simply use 
CARs directly for classification. For each test instance, we find the most 
confident rule (the rule with the highest confidence) that covers the in-
stance. Recall that a rule covers an instance if the instance satisfies the 
conditions of the rule. The class of the rule is assigned as the class of the 
test instance. This simple method performs in fact quite well. However, on 
average CBA performs better. Let us study the method in CBA, which is 
similar to the sequential covering method, but applied to class association 
rules with additional enhancements as discussed in the last sub-section.  

Let the set of all discovered CARs be S. Let the training data set be D. 
The basic idea of CBA is to select a subset L (⊆ S) of high confidence 
rules to cover the training data D. The set of selected rules including a de-
fault class is then used as a classifier. The selection of rules is based on a 
total order defined on the rules in S.  

Definition: Given two rules, ri and rj, ri f rj (also called ri precedes rj or ri 
has a higher precedence than rj) if  
1. the confidence of ri is greater than that of rj, or 
2. their confidences are the same, but the support of ri is greater than 

that of rj, or  
3. both the confidences and supports of ri and rj are the same, but ri is 

generated earlier than rj. 

A CBA classifier L is of the form:  

 L = <r1, r2, …, rk, default-class>  

where ri ∈ S, ra f rb if b > a. In classifying an unseen or test case, the first 
rule that satisfies the case classifies it. If no rule applies to the case, it takes 
the default class (default_class). A simplified version of the algorithm for 
building such a classifier is given in Fig. 13. The classifier is the RuleList. 

This algorithm can be easily implemented by making one pass through 
the training data for every rule. However, this is extremely inefficient for 
large data sets. An efficient algorithm which makes at most two passes 
over the data is given in [305].  
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3.6 Naïve Bayesian Classification 

Supervised learning can be naturally studied from a probabilistic point of 
view. The task of classification can be regarded as estimating the class 
posterior probabilities given a test example d, i.e.,  

Pr(C= cj | d) (13) 

and then see which class ci is more probable. The class with the highest 
probability is assigned to the example d.  

Formally, let A1, A2, …, A|A| be the set of attributes with discrete values 
in the data set D. Let C be the class attribute with |C| values, c1, c2, …, c|C|. 
Given a test example d with observed attribute values a1 through a|A|, 
where ai is a possible value of Ai (or a member of the domain of Ai), i.e.,  

 d = <A1=a1, ..., A|A|=a|A|>.  

The prediction is class ci such that Pr(C=cj | A1=a1, ..., A|A|=a|A|) is maxi-
mal. ci is called a maximum a posterior (MAP) hypothesis.  

By Bayes’ rule, the above quantity (13) can be expressed as 
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Pr(C=cj) is the class prior probability in D, which can be easily estimated 

Algorithm CBA(S, D) 
1 S = sort(S);   // sorting is done according to the precedence f  
2 RuleList = ∅;  // the rule list classifier 
3 for each rule r ∈ S in sequence do  
4 if D ≠ ∅ AND r classifies at least one example in D correctly then  
5 delete from D all training examples covered by r; 
6 add r at the end of RuleList 
7 end 
8 end 
9 add the majority class as the default class at the end of RuleList 
Fig. 13. A simple classifier building algorithm 
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from the training data. It is simply the percentage of data in D with class ci.  
If we are only interested in making a classification, Pr(A1=a1, ..., 

A|A|=a|A|) is irrelevant for decision making because it is the same for every 
class. Thus, we only need to compute Pr(A1=a1 ∧ ... ∧ A|A|=a|A| | C=cj), 
which can be written as  

Pr(A1=a1, ..., A|A|=a|A| | C=cj) 
= Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj)×Pr(A2=a2, ..., A|A|=a|A| | C=cj) 

(15) 

Recursively, the second factor above (i.e., Pr(A2=a2, ..., A|A|=a|A||C=cj)) 
can be written in the same way, and so on. However, to further our deriva-
tion, we need to make an important assumption.  

Conditional independence assumption: We assume that all attributes are 
conditionally independent given the class C = cj. Formally, we assume, 

Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj) = Pr(A1=a1 | C=cj) (16) 

and so on for A2 through A|A|. We then obtain  
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Then, We need to estimate the prior probabilities Pr(C=cj) and the condi-
tional probabilities Pr(Ai=ai | C=cj) from the training data, which are 
straightforward.  
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If we only need a decision on the most probable class for the test instance, 
we only need the numerator of Equation (18) since the denominator is the 
same for every class. Thus, given a test example, we compute the follow-
ing to decide the most probable class for the test example.  
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Example 13: Suppose that we have the training data set in Fig.14, which 
has two attributes A and B, and the class C. We can compute all the prob-
ability values required to learn a naïve Bayesian classifier.  

A B C 
m b t 
m s t 
g q t 
h s t 
g q t 
g q f 
g s f 
h b f 
h q f 
m b f 

Fig. 14. An example training data set.  

Pr(C = t) = 1/2,         Pr(C= f) = 1/2 

Pr(A=m | C=t) = 2/5  Pr(A=g | C=t) = 2/5  Pr(A=h | C=t) = 1/5 
Pr(A=m | C=f) = 1/5  Pr(A=g | C=f) = 2/5  Pr(A=h | C=n) =2/5 
Pr(B=b | C=t) = 1/5  Pr(B=s | C=t) = 2/5  Pr(B=q | C=t) = 2/5 
Pr(B=b | C=f) = 2/5  Pr(B=s | C=f) = 1/5  Pr(B=q | C=f) = 2/5 

Now we have a test example:  
 A = m B = q C = ? 

We want to know its class. Equation (21) is applied. For C = t, we have 
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For class C = f, we have 
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Since C = t is more probable, t is the predicted class of the test example.  ▀ 

It is easy to see that the probabilities (i.e., Pr(C=cj) and Pr(Ai=ai | C=cj)) 
required to build a naïve Bayesian classifier can be found in one scan of 



3.6 Naïve Bayesian Classification      83 

the data. Thus, the algorithm is linear in the number of training examples, 
which is one of the great strengths of the naïve Bayes, i.e., it is extremely 
efficient. In terms of classification accuracy, although the algorithm makes 
the strong assumption of conditional independence, several researchers 
have shown that its classification accuracies are surprisingly strong. See 
experimental comparisons of various techniques in [135, 255, 310].  

To learn practical naïve Bayesian classifiers, we still need to address 
some additional issues: how to handle numeric attributes, zero counts, and 
missing values. Below, we deal with each of them in turn.  

Numeric attributes: The above formulation of the naïve Bayesian learn-
ing assumes that all attributes are categorical. However, most real life data 
sets have numeric attributes. Therefore, in order to use the naïve Bayeisan 
algorithm, each numeric attribute needs to be discretized into intervals. 
This is the same as for class association rule mining. Existing 
discretization algorithms in [e.g., 138, 156] can be used.   

Zero counts: It is possible that a particular attribute value never occurs to-
gether with a class in the training set. This is problematic because it will 
result in a 0 probability, which wipes out all the other probabilities 
Pr(Ai=ai | C=cj) when they are multiplied according to Equation (21) or 
Equation (18). A principled solution to this problem is to incorporate a 
small-sample correction into all probabilities.  

Let nij be the number of examples that have both Ai = ai and C = cj. Let nj 
be the total number of examples with C=cj in the training data set. The un-
corrected estimate of Pr(Ai=ai | C=cj) is nij/nj, and the corrected estimate is  
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where mi is the number of values of attribute Ai (e.g., 2 for a Boolean at-
tribute), and λ is a multiplicative factor, which is commonly set to λ = 1/n, 
where n is the number of examples in the training set D [135, 255]. When 
λ = 1, we get the well known Laplace’s law of succession [185]. The gen-
eral form of Equation (22) is called the Lidstone’s law of succession 
[294].  Applying the correction λ = 1/n, the probabilities of Example 13 
are revised. For example,  

Pr(A=m | C=t) = (2+1/10) / (5 + 3*1/10) = 2.1/5.3 = 0.396 
Pr(B=b | C=t) = (1+1/10) / (5 + 3*1/10) = 1.1/5.3 = 0.208 

Missing values: Missing values are ignored, both in computing the prob-
ability estimates in training and in classifying test instances.  
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3.7 Naïve Bayesian Text Classification 

Text classification or categorization is the problem of learning classifica-
tion models from training documents labeled with pre-defined classes. 
That learned models are then used to classify future documents. For exam-
ple, we have a set of news articles of three classes or topics, Sport, Politics, 
and Science. We want to learn a classifier that is able to classify future 
news articles into these classes.   

Due to the rapid growth of online documents in organizations and on the 
Web, automated document classification becomes an important problem. 
Although the techniques discussed in the previous sections can be applied 
to text classification, it has been shown that they are not as effective as the 
methods presented in this section and in the next two sections. In this sec-
tion, we study a naïve Bayesian learning method that is specifically formu-
lated for texts, which makes use of some text specific features. However, 
the ideas are similar to those in Section 3.6. We first present a probabilistic 
framework of texts, and then study the naïve Bayesian equations for their 
classification. There are some slight variations of the model. This section 
is mainly based on the technique given in [326]. 

3.7.1  Probabilistic Framework 

The naive Bayesian learning method for text classification is derived based 
on a probabilistic generative model. It assumes that each document is 
generated by a parametric distribution governed by a set of hidden pa-
rameters. Training data will be used to estimate these parameters. The pa-
rameters are then used to classify each test document using Bayes’ rule by 
calculating the posterior probability that the distribution associated with 
a class (represented by the unobserved class variable) would have gener-
ated the given document. Classification then becomes a simple matter of 
selecting the most probable class.  

The generative model is based on two assumptions:  

1. The data (or the text documents) are generated by a mixture model,  
2. There is one-to-one correspondence between mixture components and 

document classes.   

A mixture model models the data with a number of statistical distribu-
tions. Intuitively, each distribution corresponds to a data cluster and the pa-
rameters of the distribution provide a description of the corresponding 
cluster. Each distribution in a mixture model is also called a mixture 
component (the distribution can be of any kind). Fig. 15 shows a plot of 
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the probability density function of a 1-dimensional data set (with two 
classes) generated by a mixture of two Gaussian distributions, one per 
class, whose parameters (denoted by θi) are the mean (µi) and the standard 
deviation (σi), i.e., θi = (µi, σi).  

 

 

 

 

 

 
Fig. 15. A mixture of two Gaussian distributions that generates the data set 

Let the number of mixture components (or distributions) in a mixture 
model be K, and the jth distribution have the parameters θj. Let Θ be the 
set of parameters of all components, Θ = {ϕ1, ϕ2, …, ϕK, θ1, θ2, …, θK}, 
where ϕj is the mixture weight (or mixture probability) of the mixture 
component j and θj is the parameters of component j. The mixture weights 
are subject to the constraint .11 =∑ =

K
j jϕ  The meaning of mixture weights (or 

probabilities) will be clear below.  
Let us see how the mixture model generates a collection of documents. 

Recall the classes C in our classification problem are c1, c2, …, c|C|. Since 
we assume that there is one-to-one correspondence between mixture com-
ponents and classes, each class corresponds to a mixture component. Thus 
|C| = K, and the jth mixture component can be represented by its corre-
sponding class cj and is parameterized by θj. The mixture weights are class 
prior probabilities, i.e., ϕj = Pr(cj|Θ). The mixture model generates each 
document di by:  

1. first selecting a mixture component (or class) according to class prior 
probabilities (i.e., mixture weights), ϕj = Pr(cj|Θ).  

2. then having this selected mixture component (cj) generate a document di 
according to its parameters, with distribution Pr(di|cj; Θ) or more pre-
cisely Pr(di|cj; θj).  

The probability that a document di is generated by the mixture model can 
be written as the sum of total probability over all mixture components. 
Note that to simplify the notation, we use cj instead of C = cj as in the pre-
vious section.  

class 1  class 2 
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Each document is also attached with its class label. We now derive the na-
ïve Bayesian model for text classification. Note that in the above probabil-
ity expressions, we include Θ to represent their dependency on Θ as we 
employ a generative model. In an actual implementation, we need not be 
concerned with Θ; it can be ignored.  

3.7.2  Naïve Bayesian Model 

A text document consists of a sequence of sentences, and each sentence 
consists of a sequence of words. However, due to the complexity of mod-
eling word sequence and their relationships, several assumptions are made 
in the derivation of the Bayesian classifier. That is also why we call the fi-
nal classification model, naïve Bayesian classification.  

Specifically, the naïve Bayesian classification treats each document as a 
“bag of words”. The generative model makes the following assumptions: 

1. Words of a document are generated independently of context, that is, 
independently of the other words in the same document given the class 
label. This is the familiar naïve Bayes assumption used before.   

2. The probability of a word is independent of its position in the document. 
For example, the probability of seeing the word “student” in the first 
position of a document is the same as seeing it in any other position. 
The document length is chosen independent of its class.  

With these assumptions, each document can be regarded as generated by a 
multinomial distribution. In order words, each document is drawn from a 
multinomial distribution of words with as many independent trials as the 
length of the document. The words are from a given vocabulary V = {w1, 
w2, …, w|V|}, |V| being the number of words in the vocabulary. To see why 
this is a multinomial distribution, we give a short introduction to the 
multinomial distribution.  

A multinomial trial is a process that can result in any of k outcomes, 
where k ≥ 2. Each outcome of a multinomial trial has a probability of oc-
currence. The probabilities of the k outcomes are denoted by p1, p2, …, pk. 
For example, the rolling of a die is a multinomial trial, with six possible 
outcomes 1, 2, 3, 4, 5, 6. For a fair die, p1 = p2 = … = pk = 1/6. 

Now assume n independent trials are conducted, each with the k possi-
ble outcomes and with the same probabilities, p1, p2, …, pk. Let us number 
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the outcomes 1, 2, 3, .., k. For each outcome, let Xt denote the number of 
trials that result in that outcome. Then, X1, X2, …, Xk are discrete random 
variables. The collection of X1, X2, …, Xk is said to have the multinomial 
distribution with parameters, n, p1, p2, …, pk.  

In our context, n corresponds to the length of a document, and the out-
comes correspond to all the words in the vocabulary V (k = |V|). p1, p2, …, 
pk correspond to the probabilities of occurrence of the words in V in a 
document, which are Pr(wt|cj; Θ). Xt is a random variable representing the 
number of times that word wt appears in a document. We can thus directly 
apply the probability function of the multinomial distribution to find the 
probability of a document given its class (including the probability of 
document length, Pr(|di|)):  
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where Nti is the number of times that word wt occurs in document di and  
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The parameters θj of the generative component for each class cj are the 
probabilities of all words wt in V, written as Pr(wt|cj; Θ), and the probabili-
ties of document lengths, which are the same for every class (or compo-
nent) due to our assumption. We assume that the set V is given.  

Parameter estimation: The parameters can be estimated from the training 
data D = {D1, D2, …, D|C|}, where Dj is the subset of the data for class cj 
(recall |C| is the number of classes). The vocabulary V is all the distinctive 
words in D. Note that we do not need to estimate the probability of each 
document length as it is not used in our final classifier. The estimate of Θ 
is written as Θ̂ . The parameters are estimated based on empirical counts.  

The estimated probability of word wt given class cj is simply the number 
of times that wt occurs in the training data Dj (of class cj) divided by the to-
tal number of word occurrences in the training data for that class.  
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In Equation (26), we do not use Dj explicitly. Instead, we include Pr(cj|di) 
to achieve the same effect because Pr(cj|di) = 1 for each document in Dj 
and Pr(cj|di) = 0 for documents of other classes. Again, Nti is the number of 
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times that word wt occurs in document di.  
In order to handle 0 counts for infrequent occurring words that do not 

appear in the training set, but may appear in the test set, we need to smooth 
the probability to avoid probabilities of 0 or 1. This is the same problem as 
in Section 3.6. The standard way of doing this is to augment the count of 
each distinctive word with a small quantity λ (0 ≤ λ ≤ 1) or a fraction of a 
word in both the numerator and denominator. Thus, any word will have at 
least a very small probability of occurrence.  
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This is called the Lidstone smoothing (Lidsone’s Law of succession). 
When λ = 1, the smoothing is commonly known as the Laplace smooth-
ing. Many experiments have shown that λ < 1 works better for text classi-
fication [7]. The best λ value for a data set can be found through experi-
ments using a validation set or through cross-validation.  

Finally, class prior probabilities, which are mixture weights ϕj, can be 
easily estimated using training data.  
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Classification: Given the estimated parameters, at the classification time, 
we need to compute the probability of each class cj for the test document 
di. That is, we compute the probability that a particular mixture component 
cj generated the given document di. Using Bayes rule and Equations (23), 
(24), (27), and (28), we have 
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where wdi,k is the word in position k of document di (which is the same as 
using wt and Nti). If the final classifier is to classify each document into a 
single class, the class with the highest posterior probability is selected: 

)ˆ;|Pr(maxarg Θ∈ ij
j

dcCc  (30) 
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3.7.3 Discussions 

Most assumptions made by naïve Bayesian learning are violated in prac-
tice. For example, words in a document are clearly not independent of each 
other. The mixture model assumption of one-to-one correspondence be-
tween classes and mixture components may not be true either because a 
class may contain documents from multiple topics. Despite such viola-
tions, researchers have shown that naïve Bayesian learning produces very 
accurate models.  

Naïve Bayesian learning is also very efficient. It scans the training data 
only once to estimate all the probabilities required for classification. It can 
be used as an incremental algorithm as well. That is, the model can be up-
dated easily as new data comes in because the probabilities can be conven-
iently revised. Naïve Bayesian learning is thus widely used in text classifi-
cation applications.  

The naïve Bayesian formulation presented here is based on a mixture of 
multinomial distributions. There is also a formulation based on 
multivariate Bernoulli distributions in which each word in the 
vocabulary is a binary feature, i.e., it either appears or does not appear in 
the document. Thus, it does not consider the number of times that a word 
occurs in a document. Experimental comparisons show that multinomial 
formulation consistently produces more accurate classifiers [326].  

3.8 Support Vector Machines 

Support vector machines (SVM) is another type of learning system 
[466], which has many desirable qualities that make it one of most popular 
algorithms. It not only has a solid theoretical foundation, but also performs 
classification more accurately than most other systems in many applica-
tions, especially those applications involving very high dimensional data. 
For instance, it has been shown by several researchers that SVM is perhaps 
the most accurate algorithm for text classification. It is also widely used in 
Web page classification and bioinformatics applications.  

In general, SVM is a linear learning system that builds two class clas-
sifiers. Let the set of training examples D be  

{(x1, y1), (x2, y2), …, (xn, yn)},  

where xi = (xi1, xi2, …, xir) is a r-dimensional input vector in a real-valued 
space X ⊆ ℜ 

r, yi is its class label (output value) and yi ∈ {1, -1}. 1 de-
notes the positive class and -1 denotes the negative class. Note that we use 
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slightly different notations in this section. For instance, we use y instead of 
c to represent a class because y is commonly used to represent classes in 
the SVM literature. Similarly, each data instance is called an input vector 
and denoted a bold face letter. In the following, we use bold face letters for 
all vectors.  

To build a classifier, SVM finds a linear function of the form  

f(x) = 〈w ⋅ x〉 + b (31) 

so that an input vector xi is assigned to the positive class if f(xi) ≥ 0, and to 
the negative class otherwise, i.e.,  
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Hence, f(x) is a real-valued function f: X ⊆ ℜ r→ ℜ. w = (w1, w2, …, wr) ∈ 
ℜ r is called the weight vector. b ∈ ℜ is called the bias. 〈w ⋅ x〉 is the dot 
product of w and x (or Euclidean inner product). Without using vector 
notation, Equation (31) can be written as: 

f(x1, x2, …, xr) = w1x1+w2x2 + … + wrxr + b, 

where xi is the variable representing the ith coordinate of the vector x. For 
convenience, we will use the vector notation from now on.  

In essence, SVM finds a hyperplane  

〈w ⋅ x〉 + b = 0 (33) 

that separates positive and negative training examples. This hyperplane is 
called a decision boundary or decision surface.  

Geometrically, the hyperplane 〈w ⋅ x〉 + b = 0 divides the input space 
into two half spaces: one half for positive examples and the other half for 
negative examples. Recall that a hyperplane is commonly called a line in a 
2-dimensional space and a plane in a 3-dimensional space.  

Fig. 16(A) shows an example in a 2-dimensional space. Positive in-
stances (also called positive data points or simply positive points) are rep-
resented with small filled rectangles, and negative examples are repre-
sented with small empty circles. The thick line in the middle is the 
decision boundary hyperplane (a line in this case), which separates positive 
(above the line) and negative (below the line) data points. Equation (31), 
which is also called the decision rule of the SVM classifier, is used to 
make classification decisions on test instances.  
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 (A) (B) 

Fig. 16. (A) A linearly separable data set and (B) possible decision boundaries 

Fig. 16(A) raises two interesting questions: 

1. There are an infinite number of lines that can separate the positive and 
negative data points as illustrated by Fig. 16(B). Which line should we 
choose?  

2. A hyperplane classifier is only applicable if the positive and negative 
data can be linearly separated. How can we deal with nonlinear separa-
tions or data sets that require nonlinear decision boundaries?  

The SVM framework provides good answers to both questions. Briefly, for 
question 1, SVM chooses the hyperplane that maximizes the margin (the 
gap) between positive and negative data points, which will be defined for-
mally below. For question 2, SVM uses kernel functions. Before we dive 
into the details, we should note that SVM requires numeric data and only 
builds two-class classifiers. At the end of the section, we will discuss how 
these limitations may be addressed.   

3.8.1  Linear SVM: Separable Case 

This sub-section studies the simplest case of linear SVM. It is assumed that 
the positive and negative data points are linearly separable.  

From the linear algebra, we know that in 〈w ⋅ x〉 + b = 0, w defines a di-
rection perpendicular to the hyperplane (see Fig. 17). w is also called the 
normal vector (or simply normal) of the hyperplane. Without changing 
the normal vector w, varying b moves the hyperplane parallel to itself. 
Note also that 〈w ⋅ x〉 + b = 0 has an inherent degree of freedom. We can 
rescale the hyperplane to 〈λw ⋅ x〉 + λb = 0 for λ ∈ ℜ + (positive real num-
bers) without changing the function/hyperplane.   

〈w ⋅ x〉 + b = 0 

y = 1 

y = -1 
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Fig. 17. Separating hyperplanes and margin of SVM: Support vectors are circled 

Since SVM maximizes the margin between positive and negative data 
points, let us find the margin. Let d+ (respectively d−) be the shortest dis-
tance from the separating hyperplane (〈w ⋅ x〉 + b = 0) to the closest posi-
tive (negative) data point. The margin of the separating hyperplane is 
d++d−. SVM looks for the separating hyperplane with the largest margin, 
which is also called the maximal margin hyperplane, as the final deci-
sion boundary. The reason for choosing this hyperplane to be the decision 
boundary is because theoretical results from structural risk minimization in 
computational learning theory show that maximizing the margin mini-
mizes the upper bound of classification errors.  

Let us consider a positive data point (x+, 1) and a negative (x-, -1) that 
are closest to the hyperplane <w ⋅ x> + b = 0. We define two parallel hyper-
planes, H+ and H-, that pass through x+ and x- respectively. H+ and H- are 
also parallel to <w ⋅ x> + b = 0. We can rescale w and b to obtain  

H+: 〈w ⋅ x+〉 + b = 1 (34) 
H-: 〈w ⋅ x-〉 + b = -1 (35) 
such that  〈w ⋅ xi〉 + b ≥ 1  if yi = 1 
 〈w ⋅ xi〉 + b ≤ -1 if yi = -1, 

which indicate that no training data fall between hyperplanes H+ and H-.  
Now let us compute the distance between the two margin hyperplanes 

H+ and H-. Their distance is the margin (d+ + d−.). Recall from vector 
space in linear algebra that the (perpendicular) Euclidean distance from a 
point xi to the hyperplane 〈w ⋅ x〉 + b = 0 is:  

〈w ⋅ x〉 + b = 0 
y = 1 

y = -1

w

||||
||

w
b  

H+: 〈w ⋅ x〉 + b = 1 

H-: 〈w ⋅ x〉 + b = -1 

x- 

x+ 
d− d+

margin 
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where ||w|| is the Euclidean norm of w,  
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To compute d+, instead of computing the distance from x+ to the separat-
ing hyperplane 〈w ⋅ x〉 + b = 0, we pick up any point xs on 〈w ⋅ x〉 + b = 0 
and compute the distance from xs to 〈w ⋅ x+〉 + b = 1 by applying Equation 
(36) and noticing 〈w ⋅ xs〉 + b = 0, 
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Likewise, we can compute the distance of xs to 〈w ⋅ x+〉 + b = -1 to obtain 
d− = 1/||w||. Thus, the decision boundary 〈w ⋅ x〉 + b = 0 lies half way be-
tween H+ and H-. The margin is thus 
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2
w
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In fact, we can compute the margin in many ways. For example, it can 
be computed by finding the distances from the origin to the three hyper-
planes, or by projecting the vector (x2

-− x1
+) to the normal vector w. 

Since SVM looks for the separating hyperplane that maximizes the mar-
gin, this gives us an optimization problem. Since maximizing the margin is 
the same as minimizing ||w||2/2 =〈w ⋅ w〉/2. We have the following linear 
separable SVM formulation. 

Definition (Linear SVM: separable case): Given a set of linearly separa-
ble training examples,  

D = {(x1, y1), (x2, y2), …, (xn, yn)} 

Learning is to solve the following constrained minimization problem, 

niby ii  ..., 2, 1,   ,1)(  :Subject to
2

   :Minimize
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xw

ww
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Note that the constraint niby ii  ..., 2, 1,   ,1( =≥+〉⋅〈 xw  summarizes:  
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 〈w ⋅ xi〉 + b ≥ 1  for yi = 1 
 〈w ⋅ xi〉 + b ≤ -1 for yi = -1. 

Solving the problem (40) will produce the solutions for w and b, which in 
turn give us the maximal margin hyperplane 〈w ⋅ x〉 + b = 0 with the mar-
gin 2/||w||.  

A full description of the solution method requires a significant amount 
of optimization theory, which is beyond the scope of this book. We will 
only use those relevant results from optimization without giving formal 
definitions, theorems or proofs.  

Since the objective function is quadratic and convex and the constraints 
are linear in the parameters w and b, we can use the standard Lagrangian 
multiplier method to solve it.  

Instead of optimizing only the objective function (which is called un-
constrained optimization), we need to optimize the Lagrangian of the prob-
lem, which considers the constraints at the same time. The need to con-
sider constraints is obvious because they restrict the feasible solutions. 
Since our inequality constraints are expressed using “≥”, the Lagrangian 
is formed by the constraints multiplied by positive Lagrange multipliers 
and subtracted from the objective function, i.e.,     
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where αi ≥ 0 are the Lagrange multipliers.  
The optimization theory says that an optimal solution to (41) must sat-

isfy certain conditions, called Kuhn-Tucker conditions. Kuhn-Tucker 
conditions play a central role in constrained optimization. Here, we give a 
brief introduction to these conditions. Let the general optimization prob-
lem be 

nibg
f
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=≤x
x  (42) 

where f is the objective function and gi is a constraint function (which is 
different from yi in (40) as yi is not a function but a class label of 1 or -1). 
The Lagrangian of (42) is,  
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An optimal solution to the problem in (42) must satisfy the following 
necessary (but not sufficient) conditions: 
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These conditions are called Kuhn-Tucker conditions. Note that (45) is 
simply the original set of constraints in (42). The condition (47) is called 
the complementarity condition, which implies that at the solution point,  

If  αi > 0  then  gi(x) = bi. 
If  gi(x) > bi  then  αi = 0. 

These mean that for active constraints, αi > 0, whereas for inactive con-
straints αi = 0. As we will see later, they give some very desirable proper-
ties to SVM.  

Let us come back to our problem. In the minimization problem (40), the 
Kuhn-Tucker conditions are (48)-(52).  
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niby ii  ..., 2, 1,   ,01)( =≥−+〉⋅〈 xw  (50) 
nii  ..., 2, 1,   ,0 =≥α  (51) 

niby iii  ..., 2, 1,   ,0)1)(( ==−+〉⋅〈 xwα  (52) 

(50) is the original set of constraints. We also note that although there is a 
Lagrange multiplier αi for each training data point, the complementarity 
condition (52) shows that only those data points on the margin hyperplanes 
(i.e., H+ and H-) can have αi > 0 since for them yi(〈w ⋅ xi〉 + b) – 1 = 0. 
These points are called the support vectors, which give the name to the 
algorithm, support vector machines. All the other parameters αi = 0. 

In general, Kuhn-Tucker conditions are necessary for an optimal solu-
tion, but not sufficient. However, for our minimization problem with a 
convex objective function and linear constraints, the Kuhn-Tucker condi-
tions are both necessary and sufficient for an optimal solution. 
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Solving the optimization problem is still a difficult task due to the ine-
quality constraints. However, the Lagrangian treatment of the convex op-
timization problem leads to an alternative dual formulation of the problem, 
which is easier to solve than the original problem, which is called the pri-
mal problem (LP is called the primal Lagrangian).  

The concept of duality is widely used in the optimization literature. The 
aim is to provide an alternative formulation of the problem which is more 
convenient to solve computationally and/or has some theoretical signifi-
cance. In the context of SVM, the dual problem is not only easy to solve 
computationally, but also crucial for using kernel functions to deal with 
nonlinear decision boundaries.  

To transform from the primal to a dual can be done by setting to zero 
the partial derivatives of the Lagrangian (41) with respect to the primal 
variables (i.e., w and b), and substituting the resulting relations back into 
the Lagrangian. This is to simply substitute (48), which is 
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and (49), which is 
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into the original Lagrangian (41) to eliminate the primal variables, which 
gives us the dual objective function (denoted by LD),  
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where .0
1
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i
iiy α  LD contains only dual variables and must be maxi-

mized under simpler constraints, (48) and (49), and αi ≥ 0. Note that (48) 
is not needed as it has already been substituted into the objective function 
LD. Hence, the dual of the primal Equation (40) is 
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(56) 
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This dual formulation is called the Wolfe dual. For our convex objec-
tive function and linear constraints of the primal, it has the property that 
the αi’s at the maximum of LD gives w and b occurring at the minimum of 
LP (the primal).  

Solving (56) requires numerical techniques and clever strategies beyond 
the scope of this book. After solving (56), we obtain the values for αi, 
which are used to compute the weight vector w and the bias b using Equa-
tions (48) and (52) respectively. Instead of depending on one support vec-
tor (αi > 0) to compute b, in practice all support vectors are used to com-
pute b, and then take their average as the final value for b. This is because 
the values of αi are computed numerically and can have numerical errors. 
Our final decision boundary (maximal margin hyperplane) is 
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where sv is the set of indices of the support vectors in the training data.  

Testing: We apply (57) for classification. Given a test instance z, we clas-
sify it using the following:  
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If (58) returns 1, then the test instance z is classified as positive; otherwise, 
it is classified as negative.  

3.8.2 Linear SVM: Non-separable Case 

The linear separable case is the ideal situation. In practice, however, the 
training data is almost always noisy, i.e., containing errors due to various 
reasons. For example, some examples may be labeled incorrectly. Fur-
thermore, practical problems may have some degree of randomness. Even 
for two identical input vectors, their labels may be different.  

For SVM to be practically useful, it must allow errors or noise in the 
training data. However, with noisy data the linear separable SVM will not 
find a solution because the constraints cannot be satisfied. For example, in 
Fig. 18, there is a negative point (which is circled) in the positive region, 
and a positive point in the negative region. Clearly, no feasible solution 
can be found for this problem.  

Recall that the primal for the linear separable case was: 
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To allow errors in data, we need to relax the margin constraints by in-
troducing slack variables, ξi (≥ 0) as follows:  

 〈w ⋅ xi〉 + b ≥ 1 − ξi for yi = 1 
 〈w ⋅ xi〉 + b ≤ −1 + ξi for yi = -1. 

Thus we have the new constraints: 

Subject to:  yi(〈w ⋅ xi〉 + b) ≥ 1 − ξi, i =1, 2, …, n, 
  ξi ≥ 0,  i =1, 2, …, n. 

The geometric interpretation is shown in Fig. 18, which has two error data 
points xa and xb (circled) in wrong regions.  

 
Fig. 18. The non-separable case: xa and xb are error data points. 

We also need to penalize the errors in the objective function. A natural 
way of doing it is to assign an extra cost for errors to change the objective 
function to  
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where C ≥ 0 is a user specified parameter. The resulting optimization prob-
lem is still a convex programming problem. k = 1 is commonly used, 
which has the advantage that neither ξi nor its Lagrangian multipliers ap-
pear in the dual formulation. We only discuss the k = 1 case below.  

The new optimization problem becomes:  

〈w ⋅ x〉 + b = 0 
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w
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This formulation is called the soft-margin SVM. The primal Lagrangian 
(denoted by LP) of this formulation is as follows     
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where αi, µi ≥ 0 are the Lagrange multipliers.  

Kuhn-Tucker conditions for optimality are the following:  
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niby iii  ..., 2, 1,   ,01)( =≥+−+〉⋅〈 ξxw  (66) 
nii  ..., 2, 1,   ,0 =≥ξ  (67) 
nii  ..., 2, 1,   ,0 =≥α  (68) 
nii  ..., 2, 1,   ,0 =≥µ  (69) 

niby iiii  ..., 2, 1,   ,0)1)(( ==+−+〉⋅〈 ξα xw  (70) 
niii  ..., 2, 1,   ,0 ==ξµ  (71) 

As the linear separable case, we then transform the primal to a dual by 
setting to zero the partial derivatives of the Lagrangian (62) with respect to 
the primal variables (i.e., w, b and ξi), and substituting the resulting rela-
tions back into the Lagrangian. That is, we substitute Equations (63), (64) 
and (65) into the primal Lagrangian (62). From Equation (65), C − αi − µi 
= 0, we can deduce that αi ≤ C because µi ≥ 0. Thus, the dual of (61) is 
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Interestingly, ξi and its Lagrange multipliers µi are not in the dual and the 
objective function is identical to that for the separable case. The only dif-
ference is the constraint αi ≤ C (inferred from C−αi−µi = 0 and µi ≥ 0). 

The dual problem (72) can also be solved numerically, and the resulting 
αi values are then used to compute w and b. w is computed using Equation 
(63) and b is computed using the Kuhn-Tucker complementarity condi-
tions (70) and (71). Since we do not have values for ξi, we need to get 
around it. From Equations (65), (70) and (71), we observe that if 0 < αi < 
C then both ξi = 0 and .0)1)( =+−+〉⋅〈 iii by ξxw  Thus, we can use any 
training data point for which 0 < αi < C and Equation (69) (with ξi = 0) to 
compute b.  
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Again, due to numerical errors, we can compute all possible b’s and 
then take their average as the final b value. 

Note that Equations (65), (70) and (71) in fact tell us more:  

αi = 0 ⇒  yi(〈w ⋅ xi〉 + b) ≥ 1  and ξi = 0 
0 < αi < C ⇒  yi(〈w ⋅ xi〉 + b) = 1  and ξi = 0 
αi = C ⇒  yi(〈w ⋅ xi〉 + b) ≤ 1  and ξi ≥ 0 

(74) 

Similar to support vectors for the separable case, (74) shows one of the 
most important properties of SVM: the solution is sparse in αi. Most train-
ing data points are outside the margin area and their αi’s in the solution are 
0. Only those data points that are on the margin (i.e., yi(〈w ⋅ xi〉 + b) = 1, 
which are support vectors in the separable case), inside the margin (i.e., αi 
= C and yi(〈w ⋅ xi〉 + b) < 1), or errors are non-zero. Without this sparsity 
property, SVM would not be practical for large data sets.  

The final decision boundary is (we note that many αi’s are 0) 
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byb
r
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The decision rule for classification (testing) is the same as the separable 
case, i.e., sign(〈w ⋅ x〉 + b).  

Finally, we still have the problem of determining the parameter C. The 
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value of C is usually chosen by trying a range of values on the training set 
to build multiple classifiers and then to test them on a validation set before 
selecting the one that gives the best classification result on the validation 
set. Cross-validation is commonly used as well. 

3.8.3 Nonlinear SVM: Kernel Functions 

The SVM formulations discussed so far require that positive and negative 
examples can be linearly separated, i.e., the decision boundary must be a 
hyperplane. However, for many real-life data sets, the decision boundaries 
are nonlinear. To deal with non-linearly separable data, the same formula-
tion and solution techniques as for the linear case are still used. We only 
transform the input data from its original space into another space (usually 
of a much higher dimensional space) so that a linear decision boundary can 
separate positive and negative examples in the transformed space, which is 
called the feature space. The original data space is called the input space.  

Thus, the basic idea is to map the data in the input space X to a feature 
space F via a nonlinear mapping φ, 

)(
:

xx φ
φ
a

FX →
 (76) 

After the mapping, the original training data set {(x1, y1), (x2, y2), …, 
(xn, yn)} becomes:  

{(φ(x1), y1), (φ(x2), y2), …, (φ(xn), yn)} (77) 

The same linear SVM solution method is then applied to F. Fig. 19 illus-
trates the process. In the input space (figure on the left), the training exam-
ples cannot be linearly separated. In the transformed feature space (figure 
on the right), they can be separated linearly.   

 
Fig. 19. Transformation from the input space to the feature space. 

With the transformation, the optimization problem in (61) becomes 
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The dual is  
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(79) 

The final decision rule for classification (testing) is  

by
r

i
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)()( xx φφα  (80) 

Example 21: Suppose our input space is 2-dimensional, and we choose the 
following transformation (mapping):  

)2 , ,() ,( 21
2

2
2

121 xxxxxx a  (81) 

The training example ((2, 3), -1) in the input space is transformed to the 
following training example in the feature space:  

 ((4, 9, 8.5), -1)  ▀ 

The potential problem with this approach of transforming the input data 
explicitly to a feature space and then applying the linear SVM is that it 
may suffer from the curse of dimensionality. The number of dimensions in 
the feature space can be huge with some useful transformations (see be-
low) even with reasonable numbers of attributes in the input space. This 
makes it computationally infeasible to handle.  

Fortunately, explicit transformations can be avoided if we notice that in 
the dual representation both the construction of the optimal hyperplane 
(79) in F and the evaluation of the corresponding decision/classification 
function (80) only require the evaluation of dot products 〈φ(x) ⋅ φ(z)〉 and 
never the mapped vector φ(x) in its explicit form. This is a crucial point.  

Thus, if we have a way to compute the dot product 〈φ(x) ⋅ φ(z)〉 in the 
feature space F using the input vectors x and z directly, then we would not 
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need to know the feature vector φ(x) or even the mapping function φ itself. 
In SVM, this is done through the use of kernel functions, denoted by K,  

K(x, z) = 〈φ(x) ⋅ φ(z)〉, (82) 

which are exactly the functions for computing dot products in the trans-
formed feature space using input vectors x and z. An example kernel func-
tion is the polynomial kernel, 

K(x, z) = 〈x ⋅ z〉d (83) 

Example 22: Let us compute this kernel with degree d = 2 in a 2-
dimensional space. Let x = (x1, x2) and z = (z1, z2).  
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(84) 

where ),2()( 22 1
22

1 xx,x,x  x =φ which shows that the kernel 〈x ⋅ z〉2 is a dot 
product in the transformed feature space. The number of dimensions in the 
feature space is 3. Note that φ(x) is actually the mapping function used in 
Example 21. Incidentally, in general the number of dimensions in the fea-
ture space for the polynomial kernel function K(x, z) = 〈x ⋅ z〉d is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
d
dn 1 , 

which is a huge number even with a reasonable number of attributes in the 
input space. Fortunately, by using the kernel function in (83), the huge 
number of dimensions in the feature space does not matter. ▀ 

The derivation in (84) is only for illustration purposes. We do not need 
to find the mapping function. We can simply apply the kernel function di-
rectly. That is, we replace all the dot products 〈φ(x) ⋅ φ(z)〉 in (79) and (80) 
with the kernel function K(x, z) (e.g., the polynomial kernel in (83)). This 
strategy of directly using a kernel function to replace dot products in the 
feature space is called the kernel trick. We would never need to explicitly 
know what φ is.   

However, the question is, how do we know whether a function is a ker-
nel without performing the derivation such as that in (84)? That is, how do 
we know that a kernel function is indeed a dot product in some feature 
space? This question is answered by a theorem called the Mercer’s theo-
rem, which we will not discuss here. See [106] for details.  
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It is clear that the idea of kernel generalizes the dot product in the input 
space. This dot product is also a kernel with the feature map being the 
identity  

K(x, z) = 〈x ⋅ z〉. (85) 

Commonly used kernels include 

Polynomial:      dK )(),( θ+〉⋅〈= zxzx  (86) 

Gaussian RBF: σ2|||| 2
),( zxzx −−= eK  (87) 

where θ ∈ ℜ, d ∈ N, and σ > 0.  

Summary 

SVM is a linear learning system that finds the maximal margin decision 
boundary to separate positive and negative examples. Learning is formu-
lated as a quadratic optimization problem. Non-linear decision boundaries 
are found via a transformation of the original data to a much higher dimen-
sional feature space. However, this transformation is never explicitly done. 
Instead, kernel functions are used to compute dot products required in 
learning without the need to even know the transformation function.  

Due to the separation of the learning algorithm and kernel functions, 
kernels can be studied independently from the learning algorithm. One can 
design and experiment with different kernel functions without touching the 
underlying learning algorithm.  

SVM also has some limitations:  

1. It works only in the real-valued space. For a categorical attribute, we 
need to convert its categorical values to numeric values. One way to do 
that is to create an extra binary attribute for each categorical value, and 
set the attribute value to 1 if the categorical value appears, and 0 other-
wise.  

2. It allows only two classes, i.e., binary classification. For multiple class 
classification problems, several strategies can be applied, e.g., one-
against-rest, and error-correcting output coding [125]. 

3. The hyperplane produced by SVM is hard to understand by users. It is 
difficult to picture where the hyperplane is in a high dimensional space. 
The matter is made worse by kernels. Thus, SVM is commonly used in 
applications that do not required human understanding.  



3.9 K-Nearest Neighbor Learning      105 

3.9 K-Nearest Neighbor Learning 

All the previous learning methods learn some kinds of models from the 
data, e.g., decision trees, a set of rules, and posteriori probabilities. These 
learning methods are called eager learning methods as they learn models 
of the data before testing. In contrast, k-nearest neighbor (kNN) is a lazy 
learning method in the sense that no model is learned from the training 
data. Learning only occurs when a test example needs to be classified. The 
idea of kNN is extremely simple and yet quite effective in many applica-
tions, e.g., text classification. 

It works as follows: Again let D be the training data set. Nothing will be 
done on the training examples. When a test instance d is presented, the al-
gorithm compares d with every training example in D to compute the simi-
larity or distance between them. The k most similar (closest) examples in 
D are then selected. This set of examples is called the k nearest neighbors 
of d. d then takes the most frequent class among the k nearest neighbors. 
Note that k = 1 is usually not sufficient for determining the class of d due 
to noises and outliers in the data. A set of nearest neighbors is needed to 
accurately decide the class. The general kNN algorithm is given in Fig. 20. 
Algorithm kNN(D, d, k) 
1 Compute the distance between d and every example in D; 
2 Choose the k examples in D that are nearest to d, denote the set by P (⊆ D); 
3 Assign d the class that is the most frequent class in P (or the majority class);  

Fig. 20. The k-nearest neighbor algorithm 

The key component of a kNN algorithm is the distance/similarity func-
tion, which is chosen based on applications and the nature of the data. For 
relational data, the Euclidean distance is commonly used. For text docu-
ments, cosine similarity is a popular choice. We will introduce these dis-
tance functions and many others in the next Chapter.  

The number of nearest neighbors k is usually determined by using a 
validation set, or through cross validation on the training data. That is, a 
range of k values are tried, and the k value that gives the best accuracy on 
the validation set (or cross validation) is selected. Fig. 21 illustrates the 
importance of choosing the right k.  

Example 20: In Fig. 21, we have two classes of data, positive (filled 
squares) and negative (empty circles). If 1-nearest neighbor is used, the 
test data point ⊕ will be classified as negative, and if 2-nearest neighbor 
are used, the class cannot be decided. If 3-nearest neighbors are used, the 
class is positive as 2 positive examples are in the 3-nearest neighbors.  
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Fig. 21. An illustration of k-nearest neighbor classification.  

Despite its simplicity, researchers have showed that the classification 
accuracy of kNN can be quite strong and in many cases as accurate as 
those elaborated methods. For instance, In [505], Yang and Liu showed 
that kNN performs equally well as SVM for some text classification tasks. 
kNN classification can produce arbitrarily shaped decision boundary, 
which makes it very flexible.  

kNN is, however, slow at the classification time. Due to the fact that 
there is no model building, each test instance is compared with every train-
ing example at the classification time, which can be quite time consuming 
especially when the training set D and the test set are large. Another disad-
vantage is that kNN does not produce an understandable model. It is thus 
not applicable if an understandable model is required in the application.  

Bibliographic Notes 

Supervised learning has been studied extensively by the machine learning 
community. The book by Mitchell [344] covers most learning techniques 
and is easy to read. Duda, Hart and Stork’s pattern classification book is 
also a great reference [142]. Additionally, most data mining books have 
one or two chapters on supervised learning, e.g., those by Han and Kamber 
[199], Hand et al. [202], Tan et al. [454], and Witten and Frank [487]. 

For decision tree induction, Quinlan’s book [406] has all the details and 
the code of his decision tree system C4.5, which is what the algorithm de-
scribed in this chapter is based on. Readers are referred to the book for ad-
ditional information on handling of missing values, tree pruning and rule 
generation. The rule generation algorithm of C4.5, which includes pruning, 
is very slow for large data sets. C5.0, which is the commercial version of 
C4.5, is much more efficient. However, its algorithm is not published. 
Other well known decision tree systems include CART by Breiman et al. 
[58] and CHAD by Kass [243], which use different splitting criteria in tree 

1-nearst neighbor 
2-nearst neighbor 
3-nearst neighbor 



Bibliographic Notes      107 

building. CART uses the Gini index and CHAD uses the χ2 test. 
Rule induction algorithms generate rules directly from the data. Well 

known systems include AQ by Michalski et al. [340], CN2 by Clark and 
Niblett [92], FOIL by Quinlan [405], FOCL by Pazzani et al. [393], I-REP 
by Furnkranz and Widmer [171], and RIPPER by Cohen [94]. 

Using association rules to build classifiers was proposed by Liu et al. in 
[305], which also reported the CBA system. CBA selects a small subset of 
class association rules as the classifier. Other classifier building techniques 
include generating only a subset of accurate rules proposed by Cong et al 
[100, 101], Wang et al [476], and Yin and Han [509], combining multiple 
rules by Li et al. [292], combining rules with probabilities by Meretakis 
and Wüthrich [338], and several others by Antonie and Zaiane [21], Dong 
et al [136], Li et al [284, 258], and Zaki and Aggarwal [518].  

The naïve Bayesian classification model described in Section 3.6 is 
based on the papers by Domingos and Pazzani [135], Kohavi et al. [255] 
and Langley et al [267]. The naïve Bayesian classification for text dis-
cussed in Section 3.7 is based on the multinomial model given by 
McCallum and Nigam [326]. This model was also used earlier by Lewis 
and Gale [282], Li and Yamanishi [283], and Nigam et al. [369]. Another 
formulation of naïve Baye is based on the multi-variate Bernoulli model, 
which was used in Lewis [281], and Robertson and Sparck-Jones [415]. 
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Chapter 4:  Unsupervised Learning 

Supervised learning discovers patterns in the data that relate data attributes 
to a class attribute. These patterns are then utilized to predict the values of 
the class attribute of future data instances. These classes indicate some 
real-world predictive or classification tasks such as determining whether a 
news article belongs to the category of sports or politics, or whether a pa-
tient has a particular disease. However, in some other applications, the data 
have no class attribute. The user wants to explore the data to find some in-
trinsic structures in them. Clustering is one technique for finding such 
structures, which organizes data instances into similarity groups, called 
clusters such that the data instances in the same cluster are similar to each 
other and data instances in different clusters are very different from each 
other. Clustering is often called unsupervised learning, because unlike 
supervised learning, no class values denoting an a priori partition or 
grouping of the data are given. Note that according to this definition, we 
can also say that association rule mining is an unsupervised learning task. 
However, due to historical reasons, clustering is closely associated and 
even synonymous with unsupervised learning while association rule min-
ing is not. We follow this convention, and describe some main clustering 
techniques in this chapter.  

Clustering has been shown to be one of the most commonly used data 
analysis techniques. It also has a long history, and has been used in almost 
every field, e.g., medicine, psychology, botany, sociology, biology, arche-
ology, marketing, insurance, libraries, etc. In recent years, due to the rapid 
increase of online documents and the expansion of the Web, text document 
clustering too has become a very important task.  

4.1 Basic Concepts  

Clustering is the process of organizing data instances into groups whose 
members are similar in some way. A cluster is therefore a collection of 
data instances which are “similar” to each other and are “dissimilar” to 
data instances in other clusters. In the clustering literature, a data instance 



110      Chapter 4:  Unsupervised Learning 

is also called an object as the instance may represent an object in the real-
world. It is also called a data point as it can be seen as a point in an r-
dimension space, where r is the number of attributes in the data.  

Fig. 1 shows a 2-dimensional data set. We can clearly see three groups 
of data points. Each group is a cluster. The task of clustering is to find the 
three clusters hidden in the data. Although it is easy for a human user to 
visually detect clusters in a 2-dimensional or even 3-demensional space, it 
becomes very hard, if not impossible, to detect clusters through human 
eyes as the number of dimensions increases. Additionally, in many appli-
cations, clusters are not as clear-cut or well separated as the three clusters 
in Fig. 1. Automatic techniques are thus needed for clustering. 

 
Fig. 1. Three natural groups or clusters of data points 

After seeing the example in Fig. 1, you may ask the question: What is 
clustering for? To answer it, let us see some application examples from 
different domains.   

Example 1: A company wants to conduct a marketing campaign to pro-
mote its products. The most effective strategy is to design a set of person-
alized marketing materials for each individual customer according to 
his/her profile and financial situation. However, this is too expensive for a 
large number of customers. On the other extreme, the company designs 
only one set of marketing materials to be used for all customers. This one-
size-fits-all approach, however, may not be effective. The most cost-
effective approach is to segment the customers into a small number of 
groups according to their similarities and design some targeted marketing 
materials for each group. This segmentation task is commonly done using 
clustering algorithms, which partitions customers into similarity groups. 
In marketing research, clustering is often called segmentation.  ▀ 

Example 2: A company wants to produce and sell T-shirts. Similar to the 
case above, on one extreme, for each customer it can measure his/her sizes 
and has a T-shirt tailor-made for him/her. Obviously, this T-shirt is going 
to be expensive. On the other extreme, only one size of T-shirts is made. 
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Since this size may not fit most people, the company will not be able to 
sell many such T-shirts. Again, the most cost effective way is to group 
people based on their sizes and make a different generalized size of T-
shirts for each group. This is why we see small, medium and large size T-
shirts in shopping malls, and seldom see T-Shirts with only a single size. 
The method used to group people according to their sizes is clustering. The 
process is usually as follows: The T-shirt manufacturer first samples a 
large number of people and measure their sizes to produce a measurement 
database. It then clusters the data, which partitions the data into some 
similarity subsets, i.e., clusters. For each cluster, it computes the averages 
of the sizes and then uses the averages to mass-produce T-shirts for all 
people of similar sizes.  ▀ 

Example 3: Everyday, news agencies around the world generate a large 
number of news articles. If a Web site wants to collect these news articles 
to provide an integrated news service, it has to organize the collected arti-
cles according to some topic hierarchy. The question is: What should the 
topics be, and how should they be organized? One possibility is to employ 
a group of human editors to do the job. However, the manual organization 
is costly and very time consuming, which makes it unsuitable for news and 
other time sensitive information. Throwing all the news articles to the 
readers with no organization is clearly not an option. Although classifica-
tion is able to classify news articles according to predefined topics, it is not 
applicable here because classification needs training data, which have to be 
manually labeled with topic classes. Since news topics change constantly 
and rapidly, the training data need to change constantly as well, which is 
infeasible via manual labeling. Clustering is clearly a solution for this 
problem because it automatically groups a stream of news articles based on 
their content similarities. Hierarchical clustering algorithms can also or-
ganize documents hierarchically, i.e., each topic may contain sub-topics 
and so on. Topic hierarchies are particularly useful for texts. ▀ 

Example 4: A general question facing researchers in many areas of inquiry 
is how to organize observed objects into taxonomic structures. For exam-
ple, biologists have to organize different species of animals before a mean-
ingful description of the differences between animals is possible. Accord-
ing to the system employed in biology, man belongs to the primates, the 
mammals, the amniotes, etc. In this organization, the higher the level of 
aggregation, the less similar are the members in the respective cluster. Man 
has more in common with all other primates (e.g., apes) than it does with 
the more "distant" members of the mammals (e.g., dogs). This hierarchi-
cal organization can be generated by a hierarchical clustering algorithm 
using features of the objects.  ▀ 
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The above four examples indicate two types of clustering, partitional 
and hierarchical. Indeed, these are the two most important types of clus-
tering approaches. We will study some specific algorithms of these two 
types of clustering.  

Our discussion and examples above also indicate that clustering needs a 
similarity function to measure how similar two data points (or objects) are, 
or alternatively a distance function to measure the distance between two 
data points. We will use distance functions in this chapter. The goal of 
clustering is thus to discover the intrinsic grouping of the input data 
through the use of a clustering algorithm and a distance function.  

4.2 K-means Clustering  

The k-means algorithm is the best known partitional algorithm. It is also 
perhaps the most widely used among all clustering algorithms due to its 
simplicity and efficiency. Given a set of data points and the required num-
ber k of clusters (k is specified by the user), this algorithm iteratively parti-
tions the data into k clusters based on a distance function.  

4.2.1 K-means Algorithm 

Let the set of data points (or instances) D be  

{x1, x2, …, xn},  

where xi = (xi1, xi2, …, xir) is a vector in a real-valued space X ⊆ ℜ 
r, and r 

is the number of attributes in the data (or the number of dimensions of the 
data space). The k-means algorithm partitions the given data into k clus-
ters. Each cluster has a cluster center, which is often called the cluster 
centroid. The centroid, usually used to represent a cluster, is simply the 
mean of all the data points in the cluster, which gives the name to the algo-
rithm, i.e., since there are k clusters and thus k means. Fig. 2 gives the k-
means clustering algorithm.  

At the beginning, the algorithm randomly selects k data points as the 
seed centroids. It then computes the distance between each seed centroid 
and every other data point, and each data point is assigned to the centroid 
that is closest to it. A centroid and its data points therefore represent a clus-
ter. Once all the data points in the data are assigned, the centroid for each 
cluster is re-computed using the data points in the current cluster. This 
process repeats until a stopping criterion is met. The stopping (or conver-
gence) criterion can be anyone of the following: 
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1. no (or minimum) re-assignments of data points to different clusters,  
2. no (or minimum) change of centroids, or  
3. minimum decrease in the sum of squared error (SSE),  
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where k is the number of required clusters, Cj is the jth cluster, mj is the 
centroid of cluster Cj (the mean vector of all the data points in Cj), and 
dist(x, mj) is the distance between data point x and centroid mj. 

The k-means algorithm can be used for any application data set where the 
mean can be defined and computed. In the Euclidean space, the mean of a 
cluster is computed with:  
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Example 5: Figure 3(A) shows a set of data points in a 2-dimensional 
space. We want to find 2 clusters from the data, i.e., k = 2. First, two data 
points (each marked with a cross) are randomly selected to be the initial 
centroids (or seeds) shown in Fig. 3(A). The algorithm then goes to the 
first iteration (the repeat-loop). 

Iteration 1: Each data point is assigned to its closest centroid to form 2 
clusters. The resulting clusters are given in Fig. 3(B). Then the cen-

Algorithm k-means(k, D) 
1 Choose k data points as the initial centroids (cluster centers)   
2 repeat 
3 for each data point x ∈ D do 
4 compute the distance from x to each centroid; 
5 assign x to the closest centroid // a centroid represents a cluster 
6 endfor 
7 re-compute the centroid using the current cluster memberships 
8 until the stopping criterion is met 

Fig. 2. The k-means algorithm 
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troids are re-computed based on the data points in the current clusters 
(Fig. 3(C). This leads to iteration 2.  

Iteration 2: Again, each data point is assigned to its closest new centroid to 
form 2 new clusters shown in Fig. 3(D). The centroids are then re-
computed. The new centroids are shown in Fig. 3(E).  

Iteration 3: The same operations are performed as in the first two itera-
tions. Since there is no re-assignment of data points to different clusters 
in this iteration, the algorithm ends.  

The final clusters are those given in Fig. 3(G). The set of data points in 
each cluster and its centroid are output to the user.  

 
Fig. 3. The working of the k-means algorithm through an example ▀ 

+
+

+ +

+ +

(A). Random selection of k seeds (or centroids) 

+
+

+ +

+ +

Iteration 2:  (D). Cluster assignment (E). Re-compute centroids 

+ +

Iteration 3:  (F). Cluster assignment (G). Re-compute centroids 

Iteration 1:  (B). Cluster assignment (C). Re-compute centroids 
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One problem with the k-means algorithm is that some clusters may be-
come empty during the clustering process since no data point is assigned to 
them. Such clusters are called empty clusters. To deal with an empty clus-
ter, we can choose a data point as the replacement centroid, e.g., a data 
point that is furthest from the centroid of a large cluster. If the sum of the 
square error (SSE) is used as the stopping criterion, the cluster with the 
largest SSE value may be used to find another centroid. 

4.2.2 Disk Version of the K-means Algorithm 

The k-means algorithm may be implemented in such a way that it does not 
need to load the entire data set into the main memory, which is useful for 
large data sets. Notice that the centroids for the k clusters can be computed 
incrementally in each iteration because the summation in Equation (2) can 
be calculated separately first. During the clustering process, the number of 
data points in each cluster can be counted incrementally as well. This gives 
us a disk based implementation of the algorithm (Fig. 4), which produces 
exactly the same clusters as that in Fig. 2, but with the data on disk. In 
each for-loop, the algorithm simply scans the data once.  

The whole clustering process thus scans the data t times, where t is the 
number of iterations before convergence, which is usually not very large 
(< 50). In applications, it is quite common to set a limit on the number of 
iterations because later iterations typically result in only minor changes to 
the clusters. Thus, this algorithm may be used to cluster large data sets 
which cannot be loaded into the main memory. Although there are several 
special algorithms that scale-up clustering algorithms to large data sets, 
they all require sophisticated techniques.  

Algorithm disk-k-means(k, D) 
1 Choose k data points as the initial centriods mj, j = 1, …, k;  
2 repeat 
3 initialize sj = 0, j = 1, …, k; // 0 is a vector with all 0’s 
4 initialize nj = 0, j = 1, …, k; // nj is the number points in cluster j 
5 for each data point x ∈ D do 
6 );,(minarg j

j
distj mx=  

7 assign x to the cluster j; 
8 sj = sj + x; 
9 nj = nj + 1; 
10 endfor 
11 mji = sj/nj, ji = 1, …, k; 
12 until the stopping criterion is met 

Fig. 4. A simple disk version of the k-means algorithm 
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Let us give some explanations to this algorithm. Line 1 does exactly the 
same thing as the algorithm in Fig. 2. Line 3 initializes sj which is used to 
incrementally compute the sum in Equation (2) (line 8). Line 4 initializes 
nj which records the number of data points assigned to cluster j (line 9). 
Lines 6 and 7 perform exactly the same tasks as lines 4 and 5 in the origi-
nal algorithm in Fig. 2. Line 11 re-computes the centroids, which are used 
in the next iteration. Any of the three stopping criteria may be used here. If 
the sum of square error is applied, we can modify the algorithm slightly to 
compute the sum of square error incrementally.  

4.2.3 Strengths and Weaknesses  

The main strengths of the k-means algorithm are its simplicity and effi-
ciency. It is easy to understand and easy to implement. Its time complexity 
is O(tkn), where n is the number of data points, k is the number of clusters, 
and t is the number of iterations. Since both k and t are normally much 
smaller than n. The k-means algorithm is considered a linear algorithm in 
the number of data points.  

The weaknesses and ways to address them are as follows:  

1. The algorithm is only applicable to data sets where the notion of the 
mean is defined. Thus, it is difficult to apply to categorical data sets. 
There is, however, a variation of the k-means algorithm called k-modes, 
which clusters categorical data. The algorithm uses the mode instead of 
the mean as the centroid. Assuming that the data instances are described 
by r categorical attributes, the mode of a cluster Cj is a tuple mj = (mj1, 
mj2, …, mjr ) where mji is the most frequent value of the ith attribute of 
the data instances in cluster Cj. The similarity (distance) between a data 
instance and a mode is the number of values that they match (do not 
match).  

2. The user needs to specify the number of clusters k in advance. In prac-
tice, several k values are tried and the one that gives the most desirable 
result is selected. We will discuss the evaluation of clusters later.  

3. The algorithm is sensitive to outliers. Outliers are data points that are 
very far away from other data points. Outliers could be errors in the data 
recording or some special data points with very different values. For ex-
ample, in an employee data set, the salary of the Chief-Executive-
Officer (CEO) of the company may be considered as an outlier because 
its value could be many times larger than everyone else. Since the k-
means algorithm uses the mean as the centroid of each cluster, outliers 
may result in undesirable clusters as the following example shows. 
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Example 6: In Fig. 5(A), due to an outlier data point, the resulting two 
clusters do not reflect the natural groupings in the data. The ideal clus-
ters are shown in Fig. 5(B). The outlier should be identified and reported 
to the user.   

 
Fig. 5. Clustering with and without the effect of outliers ▀ 

There are several methods for dealing with outliers. One simple 
method is to remove some data points in the clustering process that are 
much further away from the centroids than other data points. To be safe, 
we may want to monitor these possible outliers over a few iterations and 
then decide whether to remove them. It is possible that a very small 
cluster of data points may be outliers. Usually, a threshold value is used 
to make the decision.  

Another method is to perform random sampling. Since in sampling 
we only choose a small subset of the data points, the chance of selecting 
an outlier is very small. We can use the sample to do a pre-clustering 
and then assign the rest of the data points to these clusters, which may 
be done in any of the three ways. 
• Assign each remaining data point to the centroid closest to it. This is 

the simplest method.   
• Use the clusters produced from the sample to perform supervised 

learning (classification). Each cluster is regarded as a class. The clus-
tered sample is thus treated as the training data for learning. The re-
sulting classifier is then applied to classify the remaining data points 
into appropriate classes or clusters.  

++
outlier 

++

outlier 

(A): Undesirable clusters 

(B): Ideal clusters 
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• Use the clusters produced from the sample as seeds to perform semi-
supervised learning. Semi-supervised learning is a new learning 
model that learns from a small set of labeled examples (with classes) 
and a large set of unlabeled examples (without classes). In our case, 
the clustered sample data are used as the labeled set and the remain-
ing data points are used as the unlabeled set. The results of the learn-
ing naturally cluster all the remaining data points.  We will study this 
technique in the next Chapter.  

4. The algorithm is sensitive to initial seeds, which are the initially se-
lected centroids. Different initial seeds may result in different clusters. 
Thus, if the sum of square error is used as the stopping criterion, the al-
gorithm only achieves local optimal. The global optimal is computa-
tionally infeasible for large data sets.  

Example 7: Fig. 6 shows the clustering process of a 2-dimensional data 
set. The goal is to find two clusters. The randomly selected initial seeds 
are marked with crosses in Fig. 6(A). Fig. 6(B) gives the clustering re-
sult of the first iteration. Fig. 6(C) gives the result of the second itera-
tion. Since there is no re-assignment of data points, the algorithm stops.  

 
Fig. 6. Poor initial seeds (centroids) 

If the initial seeds are different, we may obtain entirely different clus-
ters as Fig. 7 shows. Fig. 7 uses the same data as Fig. 6, but different 
initial seeds (Fig. 7(A)). After two iterations, the algorithm ends, and the 
final clusters are given in Fig. 7(C). These two clusters are more reason-

+
+

(A). Random selection of seeds (centroids)

 (B). Iteration 1 (C). Iteration 2 

+

+

+
+
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able than the two clusters in Fig. 6(C), which indicates that the choice of 
the initial seeds in Fig. 6(A) is poor.  

 
Fig. 7. Good initial seed (centroids)  ▀ 

To select good initial seeds, researchers have proposed several methods. 
One simple method is to first compute the mean m (the centroid) of the 
entire data set (any random data point can be used as well). Then the 
first seed data point x1 is selected that is furthest from the mean m. The 
second data point x2 is selected that is furthest from x1. Each subsequent 
data point xi is selected such that the sum of distances from xi to those 
already selected data points is the largest. However, if the data has out-
liers, the method will not work well. To deal with outliers, again, we can 
randomly select a small sample of the data and perform the same opera-
tion on the sample. As we discussed above, since the number of outliers 
is small, the chance that they show up in the sample is very small. Using 
sampling also reduces the computation time because computing the 
mean and selecting each initial seed needs one scan of the data.  

Another method is to sample the data and use the sample to perform 
hierarchical clustering, which we will discuss in Section 4.4. The cen-
troids of the resulting k clusters are used as the initial seeds.  

Yet another approach is to manually select seeds. This may not be a 
difficult task for text clustering applications because it is easy for human 
users to read some documents and pick some good seeds. These seeds 
may help improve the clustering result significantly and also enable the 
system to produce clusters that meet the user’s needs.   

(A). Random selection of k seeds (centroids) 

 (B). Iteration 1 (C). Iteration 2 

+
+

+
+
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5. The k-means algorithm is not suitable for discovering clusters that are 
not hyper-ellipsoids (or hyper-spheres).  

Example 8: Fig. 8(A) shows a 2-dimensional data set. There are two ir-
regular shaped clusters. However, the two clusters are not hyper-
ellipsoids, which means that the k-means algorithm will not be able to 
find them. Instead, it may find the two clusters shown in Fig. 8(B).  

The question is: are the two clusters in Fig. 8(B) necessarily bad? The 
answer is “no”, and that it depends on the application. It is not true that 
a clustering algorithm that is able to find arbitrarily shaped clusters is 
always better. We will discuss this issue in Section 4.3.2. 

 
Fig. 8. Natural (but irregular) clusters and k-means clusters ▀ 

Despite these weaknesses, k-means is still the most popular algorithm in 
practice due to its simplicity, efficiency and the fact that other clustering 
algorithms have their own lists of weaknesses. There is no clear evidence 
showing that any other clustering algorithm performs better than the k-
means algorithm in general, although they may be more suitable for some 
specific types of data or applications. Note that comparing different clus-
tering algorithms is a very difficult task because unlike supervised learn-
ing, nobody knows what the correct clusters are, especially in high dimen-
sional spaces. There are several cluster evaluation methods but they all 
have drawbacks. We will discuss the evaluation issue in Section 4.9.  

4.3 Representation of Clusters  

Once a set of clusters is found, the next task is to find a way to represent 
the clusters. In some applications, outputting the set of data points that 
makes up the cluster to the user is sufficient. However, in other applica-
tions that involve decision making, the resulting clusters need to be repre-

   (A): Two natural clusters (B): k-means clusters 

+ 

+ 
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sented in a compact and understandable way, which also facilitates the 
evaluation of the resulting clusters.   

4.3.1 Common Ways to Represent Clusters 

There are three main ways to represent clusters: 

1. Use the centroid of each cluster to represent the cluster. This is the most 
popular way. The centroid tells where the center of the cluster is. One 
may also compute the radius and standard deviation of the cluster to de-
termine its spread in each dimension. The centroid representation alone 
works well if the clusters are of the hyper-spherical shape. If clusters are 
elongated or are of other shapes, centroids may not be suitable.  

2. Use classification models to represent clusters. In this method, we treat 
each cluster as a class. That is, all the data points in a cluster are re-
garded to have the same class label, e.g., the cluster ID. We then run a 
supervised learning algorithm on the data to find a classification model. 
For example, we may use the decision tree learning to distinguish the 
clusters. The resulting tree or set of rules provide an understandable rep-
resentation of the clusters.  

Fig. 9 shows a partitioning produced by a decision tree algorithm. 
The original clustering produced three clusters. Data points in cluster 1 
are represented by 1’s, data points in cluster 2 are represented by 2’s, 
and data points in cluster 3 are represented by 3’s. We can see that the 
three clusters are separated and each can be represented with a rule. 

x ≤ 2 → cluster 1 
x > 2, y > 1.5 → cluster 2 
x > 2, y ≤ 1.5 → cluster 3 

 
Fig. 9. Description of clusters using rules 

We make two remarks about this representation method: 

• The partitioning in Fig. 9 is an ideal case as each cluster is repre-
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sented by a single rectangle (or rule). However, in most applications, 
the situation may not be so ideal. A cluster may be split into a few 
hyper-rectangles or rules. However, there is usually a dominant or 
large rule which covers most of the data points in the cluster.  

• One can use the set of rules to evaluate the clusters to see whether 
they conform to some existing domain knowledge or intuition.  

3. Use frequent values in each cluster to represent it. This method is 
mainly for clustering of categorical data (e.g., in the k-modes cluster-
ing). It is also the key method used in text clustering, where a small set 
of frequent words in each cluster is selected to represent the cluster.  

4.3.2 Clusters of Arbitrary Shapes 

Hyper-elliptical and hyper-spherical clusters are usually easy to represent, 
using their centroid together with spreads (e.g., standard deviations), a 
rule, or a combination of both. However, other arbitrary shape clusters, 
like the natural clusters show in Fig 8(A), are hard to represent especially 
in high dimensional spaces.  

A common criticism about an algorithm like k-means is that it is not 
able to find arbitrarily shaped clusters. However, this criticism may not be 
as bad as it sounds because whether one type of clustering is desirable or 
not depends on its application. Let us use the natural clusters in Fig. 8(A) 
to discuss this issue together with an artificial application.  

Example 9: Assume that the data shown in Fig. 8(A) is the measurement 
data of people’s physical sizes. We want to group people based on their 
sizes into only two groups in order to mass-produce T-shirts of only 2 sizes 
(say large and small). Even if the measurement data indicate two natural 
clusters as in Fig. 8(A), it is difficult to use the clusters because we need 
centroids of the clusters to design T-shirts. The clusters in Fig. 8(B) are in 
fact better because they provide us the centroids that are representative of 
the surrounding data points. If we use the centroids of the two natural clus-
ters as shown in Fig. 10 to make T-shirts, it is clearly inappropriate be-
cause they are too near to each other in this case. In general, it does not 
make good sense to define the concept of center or centroid for an irregu-
larly shaped cluster. ▀ 

Note that clusters of arbitrary shapes can be found by neighborhood 
search algorithms such as some hierarchical clustering methods, and den-
sity-based clustering methods [150]. Due to the difficulty of representing 
an arbitrarily shaped cluster, an algorithm that finds such clusters may only 
output a list of data points in each cluster, which are not easy to use. Such 
kinds of clusters are more useful in spatial and image processing applica-
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tions, but less useful in others. This partially explains why the k-means al-
gorithm is so popular while most methods that find arbitrarily shaped 
(natural) clusters are not.  

 
Fig. 10. Two natural clusters and their centroids (two classes) 

4.4 Hierarchical Clustering  

Hierarchical clustering is another major clustering approach. It has a num-
ber of desirable properties which make it popular. It clusters by producing 
a nested sequence of clusters like a tree (also called a dendrogram). Sin-
gleton clusters (individual data points) are at the bottom of the tree and one 
root cluster is at the top, which covers all data points. Each internal cluster 
node contains child cluster nodes. Sibling clusters partition the data points 
covered by their common parent. Fig. 11 shows an example.  

 
Fig. 11. Hierarchical clustering 

At the bottom of the tree, there are 5 clusters (5 data points). At the next 
level, cluster 6 contains data points 1 and 2, and cluster 7 contains data 
points 4 and 5. As we move up the tree, we have fewer and fewer clusters. 
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Since the whole clustering tree is stored, the user can choose to view clus-
ters at any level of the tree.  

There are two types of hierarchical clustering methods: 

Agglomerative (bottom up) clustering: It builds the dendrogram (tree) 
from the bottom level, and merges the most similar (or nearest) pair of 
clusters at each level to go one level up. The process continues until all 
the data points are merged into a single cluster (i.e., the root cluster).  

Divisive (top down) clustering: It starts with all data points in one cluster, 
the root. It then splits the root into a set of child clusters. Each child 
cluster is recursively divided further until only singleton clusters of in-
dividual data points remain, i.e., each cluster with only a single point.    

Agglomerative methods are much more popular than divisive methods. We 
will focus on agglomerative hierarchical clustering. The general agglom-
erative algorithm is given in Fig. 12.  

Algorithm Agglomerative(D) 
1 Make each data point in the data set D a cluster,  
2 Compute all pair-wise distances of x1, x2, …, xn ∈ D; 
2 repeat 
3 find two clusters that are nearest to each other; 
4 merge the two clusters form a new cluster c;  
5 compute the distance from c to all other clusters;  
12 until there is only one cluster left 

Fig. 12. The agglomerative hierarchical clustering algorithm 

Example 10: Fig. 13 illustrates the working of the algorithm. The data 
points are in a 2-dimensional space. Fig. 13(A) shows the sequence of 
nested clusters, and Fig. 13(B) gives the dendrogram.  

 
Fig. 13. The working of the agglomerative hierarchical clustering algorithm ▀ 
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Note that centroids are not used in this case because unlike the k-means 
algorithm, hierarchical clustering may use several methods to determine 
the distance between two clusters. We introduce these methods next.  

4.4.1 Single-Link Method 

In single-link (or single linkage) hierarchical clustering, the distance be-
tween two clusters is the distance between two closest data points in the 
two clusters (one data point from each cluster). In other words, the single 
link clustering merges the two clusters in each step whose two nearest data 
points (or members) have the smallest distance, i.e., the two clusters with 
the smallest minimum pair-wise distance. The single-link method is suit-
able for finding non-elliptical shape clusters. However, it can be sensitive 
to noise in the data, which may cause a chain effect and produce straggly 
clusters. Fig. 14 illustrates this situation. The noisy data points (repre-
sented with filled circles) in the middle connect two natural clusters and 
split one of them.  

 
Fig. 14. Chain effect of the single link method 

With suitable data structures, single-link hierarchical clustering can be 
done in O(n2) time, where n is the number of data points. This is much 
slower than the k-means method, which performs clustering in linear time.  

4.4.2  Complete-Link Method 

In complete-link (or complete linkage) clustering, the distance between 
two clusters is the maximum of all pair-wise distances between the data 
points in the two clusters. In other words, the complete link clustering 
merges the two clusters in each step whose two furthest data points have 
the smallest distance, i.e., the two clusters with the smallest maximum 
pair-wise distance. Fig. 15 shows the clusters produced by complete-link 
clustering using the same data as in Fig. 14.    



126      Chapter 4:  Unsupervised Learning 

 
Fig. 15. Clustering using the complete link method 

Although the complete-link method does not have the problem of chain 
effect, it can be sensitive to outliers. Despite this limitation, it has been ob-
served that the complete-link method usually produces better clusters than 
the single-link method. The worse case time complexity of the complete-
link clustering is O(n2log n), where n is the number of data points.  

4.4.3  Average-Link Method 

This is a compromise between the sensitivity of complete-link clustering to 
outliers and the tendency of single-link clustering to form long chains that 
do not correspond to the intuitive notion of clusters as compact, spherical 
objects. In this method, the distance between two clusters is the average 
distance of all pair-wise distances between the data points in two clusters. 
The time complexity of this method is also O(n2log n).  

Apart from the above three popular methods, there are several others. 
The following two methods are also commonly used: 

Centroid method: In this method, the distance between two clusters is the 
distance between their centroids.  

Ward's method: In this method, the distance between two clusters is de-
fined as the increase in the sum of squared error (distances) that results 
when two clusters are merged. Thus, the clusters to be merged in the next 
step are the ones that will increase the sum the least. Recall the sum of 
squared error (SSE) is one of the measures used in the k-means clustering. 

4.4.4. Strengths and Weaknesses  

Hierarchical clustering has several advantages compared to the k-means 
and other partitioning clustering methods. It is able to take any forms of 
distance or similarity functions. Unlike the k-means algorithm which only 
gives k clusters at the end, the nested sequence of clusters enables the user 
to explore clusters at any level of detail (or granularity). Hierarchical clus-
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tering can also find clusters of arbitrary shapes, e.g., using the single-link 
method. Furthermore, the resulting hierarchy can be very useful in its own 
right. For example, in text document clustering, the cluster hierarchy may 
represent a topic hierarchy in the documents. Some studies showed that 
agglomerative hierarchical clustering often produces better clusters than 
the k-means method, but it is considerably slower.  

Hierarchical clustering also has several weaknesses. As we discussed 
with the individual methods, the single-link method may suffer from the 
chain effect, and the complete-link method is sensitive to outliers. The 
main shortcomings of all the hierarchical clustering methods are their 
computation complexities and space requirements, which are at least quad-
ratic. Compared to the k-means algorithm, this is very slow and not practi-
cal for large data sets. One can use sampling to deal with the efficiency 
problem. A small sample is taken to do clustering and then the rest of the 
data points are assigned to each cluster either by distance comparison or by 
supervised learning (see Section 4.3.1). Some scale-up methods may also 
be applied to large data sets. The main idea of the scale-up methods is to 
find many small clusters first using an efficient algorithm, and then use the 
centroids of these small clusters to represent the small clusters to perform 
the final hierarchical clustering (see the BIRCH method in [535]).  

4.5 Distance Functions 

Distance or similarity functions play central roles in all clustering algo-
rithms. Numerous distance functions have been reported in the literature 
and used in applications. Different distance functions are used for different 
types of attributes (also called variables).  

4.5.1  Numeric Attributes 

The most commonly used distance functions for numeric attributes are the 
Euclidean distance and Manhattan (city block) distance. Both distance 
measures are special cases of a more general distance function called the 
Minkowski distance. We use dist(xi, xj) to denote the distance between 
two data points of r dimensions. The Minkowski distance is: 
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where h is a positive integer.  
If h = 2, it is the Euclidean distance,  
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If h = 1, it is the Manhattan distance,  
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Other common distance functions include: 

Weighted Euclidean distance: A weight is associated with each attribute 
to express its importance in relation to other attributes. 
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Squared Euclidean distance: We square the standard Euclidean distance 
in order to place progressively greater weight on data points that are fur-
ther apart. The distance is thus  
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Chebychev distance: This distance measure may be appropriate in cases 
when one wants to define two data points as "different" if they are differ-
ent on any one of the attributes. The Chebychev distance is defined as:  
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4.5.2 Binary and Nominal Attributes 

The above distance measures are only appropriate for numeric attributes. 
For binary and nominal attributes (also called unordered categorical at-
tributes), we need different functions. Let us discuss binary attributes first.  

A binary attribute has two states or values, usually represented by 1 
and 0. The two states have no logical numerical ordering. For example, 
Gender has two values, “male” and “female”, which have no ordering rela-
tions but are just different. Existing distance functions for binary attributes 
are based on the proportion of value matches in two data points. A match 
means that, for a particular attribute, both data points have the same value. 
It is convenient to use a confusion matrix to introduce these measures. 
Given the ith and jth data points, xi and xj, we can construct the following 
confusion matrix:    
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(10) 

a:  the number of attributes with the value of 1 for both data points. 
b:  the number of attributes for which xif = 1 and xjf = 0, where xif (xjf) is 

the value of the fth attribute of the data point xi (xj). 
c:  the number of attributes for which xif = 0 and xjf = 1. 
d:  the number of attributes with the value of 0 for both data points. 

To give the distance functions, we further divide binary attribute into 
symmetric and asymmetric attributes. For different types of attributes, dif-
ferent distance functions need to be used [244]: 

Symmetric attributes: A binary attribute is symmetric if both of its states 
(0 and 1) have equal importance, and carry the same weights, e.g., male 
and female of the attribute Gender. The most commonly used distance 
function for symmetric attributes is the Simple Matching Coefficient, 
which is the proportion of mismatches (Equation (11)) of their values. We 
assume that every attribute in the data set is a symmetric attribute. 
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We can also weight some components in Equation (11) according to appli-
cation needs. For example, we may want mismatches to carry twice the 
weight of matches, or vice versa.  
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Example 11: Given the following two data points, where each attribute is 
a symmetric binary attribute. 

x1 1 1 1 0 1 0 0 
x2 0 1 1 0 0 1 0 

     Data point xj 
 1 0  

1 a b a+b 
0 c d c+d 
 a+c b+d a+b+c+d 

Data point xi 
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The distance computed based on the simple matching coefficient is 
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▀ 
Asymmetric attributes: A binary attribute is asymmetric if one of the 
states is more important or valuable than the other. By convention, we use 
state 1 to represent the more important state, which is typically the rare or 
infrequent state. The most commonly used distance measure for asymmet-
ric attributes is the Jaccard coefficient:  
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Similarly, we can vary the Jaccard distance by giving more weight to a or 
more weight to (b+c) to express different emphases,  
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For general nominal attributes with more than two states or values, the 
commonly used distance measure is also based on the simple matching 
method. Given two data points xi and xj, let the number of attributes be r, 
and the number of values that match in xi and xj be q:  
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As that for binary attributes, we can give higher weights to different com-
ponents in Equation (18) according to different application characteristics.  

4.5.3 Text Documents 

Although a text document consists of a sequence of sentences and each 
sentence consists of a sequence of words, a document is usually considered 
a “bag” of words in document clustering. The sequence and the position 
information of words are ignored. Thus a document is represented by a 
vector just like a normal data point. However, we use similarity to com-
pare two documents rather than distance. The most commonly used simi-
larity function is the cosine similarity. We will study this similarity meas-
ure in Section 6.2 when we discuss information retrieval and Web search.  
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4.6 Data Standardization 

One of the most important steps in data pre-processing for clustering is to 
standardize the data. For example, using the Euclidean distance, standardi-
zation of attributes is highly recommended so that all attributes can have 
equal impact on the distance computation. This is to avoid obtaining clus-
ters that are dominated by attributes with the largest amounts of variation.  

Example 12: In a 2-dimensional data set, the value range of one attribute 
is from 0 to 1, while the value range of the other attribute is from 0 to 
1000. Consider the following pair of data points xi: (0.1, 20) and xj: (0.9, 
720). The distance between the two points is 

,700.000457)20720()1.09.0(),( 22 =−+−=jidist xx  (19) 

which is almost completely dominated by (720-20) = 700. To deal with the 
problem, we standardize the attributes, i.e., to force the attributes to have a 
common value range. If both attributes are forced to have a scale within 
the range 0 - 1, the values 20 and 720 become 0.02 and 0.72. The distance 
on the first dimension becomes 0.8 and the distance on the second dimen-
sion 0.7, which are more equitable. Then, dist(xi, xj) becomes 1.063.  ▀ 

This example shows that standardizing attributes is important. In fact, 
different types of attributes require different treatments. We list these 
treatments below:  

Interval-scaled attributes: These are numeric/continuous attributes. Their 
values are real numbers following a linear scale. Examples of such attrib-
utes are age, height, weight, cost, etc. For example, the difference in Age 
between 10 and 20 is the same as that between 40 and 50. The key idea is 
that intervals keep the same importance through out the scale.  

There are two main approaches to standardize interval scaled attributes, 
range and z-score. The range method divides each value by the range of 
valid values of the attribute so that the transformed value ranges between 0 
and 1. Given the value xif of the fth attribute of the ith data point, the new 
value range(xif) is, 
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where min(f) and max(f) are the minimum value and maximum value of at-
tribute f respectively. max(f) - min(f) is the value range of valid values of 
attribute f.  
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z-score transforms the attribute values so that they have a mean of zero 
and a mean absolute deviation of 1. The mean absolute deviation of at-
tribute f, denoted by sf, is computed as follows:  
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where n is the number data points/instances in the data set, xif is the value 
of attribute f in the ith data point, and mf is the mean/average of attribute f, 
which is computed with: 
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Given the value xif of attribute f from data point i, its z-score (the new 
value after transformation) is z(xif),  
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Ratio-scaled attributes: These are also numeric attributes taking real val-
ues. However, unlike interval-scaled attributes, their scales are not linear. 
For example, the total amount of microorganisms that evolve in a time t is 
approximately given by  

 AeBt, 

where A and B are some positive constants. This formula is usually re-
ferred to as exponential growth. If we have such attributes in a data set for 
clustering, we have one of the following two options: 

1. Treat it as an interval-scaled attribute. This is often not recommended 
due to scale distortion.  

2. Perform logarithmic transformation to each value, xif, i.e., 

)log( ifx  (24) 

After the transformation, the attribute can be treated as an interval-
scaled attribute. 

Nominal (unordered categorical) attributes: As we discussed in Section 
4.5.2, the value of such an attribute can take anyone of a set of states (also 
called categories). The states have no logical or numerical ordering. For 
example, the attribute fruit may have the possible values, Apple, Orange, 
and Pear, which has no ordering. A binary attribute is a special case of a 
nominal attribute with only two states or values.  
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Although nominal attributes are not standardized as numeric attributes, 
it is sometime useful to convert a nominal attribute to a set of binary at-
tributes. Let the number of values of a nominal attribute be v. We can then 
create v binary attributes to represent them, i.e., one binary attribute for 
each value. If a data instance for the nominal attribute takes a particular 
value, the value of its corresponding binary attribute is set to 1, otherwise 
it is set to 0. The resulting binary attributes can be used as numeric attrib-
utes. We will discuss this again in Section 4.7.  

Example 13: For the nominal attribute fruit, we create three binary attrib-
utes called, Apple, Orange, and Pear in the new data. If a particular data 
instance in the original data has Apple as the value for fruit, then in the 
transformed data, we set the value of the attribute Apple to 1, and the val-
ues of attributes Orange and Pear to 0.  ▀ 

Ordinal (ordered categorical) attributes: An ordinal attribute is like a 
nominal attribute, but its values have a numerical ordering. For example, 
the Age attribute may have the values, Young, Middle-Age and Old. The 
common approach to distance computation is to treat ordinal attributes as 
interval-scaled attributes and use the same methods as for interval-scaled 
attributes to standardize values of ordinal attributes.  

4.7 Handling of Mixed Attributes 

So far, we assumed that a data set contains only one type of attributes. 
However, in practice, a data set may contain mixed attributes. That is, it 
may contain any subset of the 6 types of attributes, interval-scaled, sym-
metric binary, asymmetric binary, ratio-scaled, ordinal and nominal 
attributes. Clustering a data set involving mixed attributes is a challenging 
problem.  

One way to deal with such a data set is to choose a dominant attribute 
type and then convert the attributes of other types to this type. For exam-
ple, if most attributes in a data set are interval-scaled, we can convert ordi-
nal attributes and ratio-scaled attributes to interval-scaled attributes as dis-
cussed above. It is also appropriate to treat symmetric binary attributes as 
interval-scaled attributes. However, it does not make much sense to con-
vert a nominal attribute with more than two values or an asymmetric bi-
nary attribute to an interval-scaled attribute, but it is still frequently done in 
practice by assigning some numbers to them according to some hidden or-
dering. For instance, in the example of Apple, Orange, and Pear, one may 
order them according to their prices, and thus make the attribute fruit an 
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ordinal attribute or even an interval-scaled attribute. In the previous sec-
tion, we also see that a nominal attribute can be converted to a set of 
(symmetric) binary attributes, which in turn can be regarded as interval-
scaled attributes.  

Another method of handling mixed attributes is to compute the distance 
of each attribute of the two data points separately and then combine all the 
individual distances to produce an overall distance. We describe one such 
method, which is due to Gower [186] and is also described in [199, 244]. 
We describe the combination formula first (Equation (25)) and then pre-
sent the methods to compute individual distances.  
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This distance value is between 0 and 1. r is the number of attributes in the 
data set. The indicator f

ijδ is 1 if both values xif and xjf for attribute f are 
non-missing, and it is set to 0 otherwise. It is also set to 0 if attribute f is 
asymmetric and the match is 0-0. Equation (25) cannot be computed if all 

f
ijδ ’s are 0. In such a case, some default value may be used or one of the 

data points is removed.  
f

ijd is the distance contributed by attribute f, and it is in the 0-1 range. If f 
is a binary or nominal attribute,  
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If all the attributes are nominal, Equation (25) reduces to Equation (18). 
The same is true for symmetric binary attributes, in which we recover the 
simple matching coefficient (Equation 11). When the attributes are all 
asymmetric, we obtain the Jaccard coefficient (Equation (15)).  

If attribute k is interval-scaled, we use  
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where Rf is the value range of attribute f, which is  
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Ordinal attributes and ratio-scaled attributes are handled in the same way 
after conversion.  
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If all the attributes are interval-scaled, Equation (25) becomes the Man-
hattan distance assuming that all attribute values are standardized by divid-
ing their values with the ranges of their corresponding attributes.  

4.8 Which Clustering Algorithm to Use? 

Clustering research and application has a long history. Over the years, a 
vast collection of clustering algorithms has been designed. This chapter 
only introduced several main algorithms. Many other algorithms are varia-
tions and extensions of these algorithms.  

Given an application data set, choosing the “best” clustering algorithm 
to cluster the data is a challenge. Every clustering algorithm has limitations 
and works well with only certain data distributions. However, it is very 
hard, if not impossible, to know what distribution the application data fol-
lows. Worse still, the application data set may not fully follow any “ideal” 
structure or distribution required by the algorithms. Apart from choosing a 
suitable clustering algorithm from a large collection of algorithms, decid-
ing how to standardize the data, to choose a suitable distance function and 
to select other parameter values (e.g., k in the k-means algorithm) are com-
plex as well. Due to these complexities, the common practice is to run sev-
eral algorithms using different distance functions and parameter settings, 
and then carefully analyze and compare the results.  

The interpretation of the results must be based on insight into the mean-
ing of the original data together with knowledge of the algorithms used. 
Thus, it is crucial that the user of a clustering algorithm fully understands 
the algorithm and its limitations. He/she also needs to know the data well 
and has the domain expertise to interpret the clustering results. In many 
cases, generating cluster descriptions using a supervised learning method 
(e.g., decision tree induction) can be particularly helpful to the analysis 
and comparison. 

4.9 Cluster Evaluation 

After a set of clusters is found, we need to assess the goodness of the clus-
ters. Unlike classification, where it is easy to measure accuracy using la-
beled test data, for clustering nobody knows what the correct clusters are 
given a data set. Thus, the quality of a clustering is much harder to evalu-
ate. We introduce a few commonly used evaluation methods below.  
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User inspection: A panel of experts is asked to inspect the resulting clus-
ters and to score them. Since this process is subjective, we take the average 
of the scores from all the experts as the final score of the clustering. This 
manual inspection is obviously a labor intensive and time consuming task. 
It is subjective as well. However, in most applications, some level of man-
ual inspection is necessary because no other existing evaluation methods 
are able to guarantee the quality of the final clusters. It should be noted 
that direct user inspection may be easy for certain types of data, but not for 
others. For example, user inspection is not hard for text documents because 
one can read them easily. However, for a relational table with only num-
bers, staring at the data instances in each cluster makes no sense. The user 
can only meaningfully study the centroids of the clusters. Alternatively, 
the clusters can be represented as rules or a decision tree through super-
vised learning before giving to the user for inspection (see Section 4.3.1).  

Ground truth: In this method, classification data sets are used to evaluate 
clustering algorithms. Recall that a classification data set has several 
classes, and each data instance/point is labeled with one class. Using such 
a data set for cluster evaluation, we make the assumption that each class 
corresponds to a cluster. For example, if a data set has 3 classes, we as-
sume that it has three clusters, and we request the clustering algorithm to 
also produce three clusters. After clustering, we compare the cluster mem-
berships with the class memberships to determine how good the clustering 
is. A variety of measures can be used to assess the clustering quality, e.g., 
entropy, purity, precision, recall, and F-score.  

To facilitate evaluation, a confusion matrix can be constructed from the 
resulting clusters. From the matrix, various measurements are computed. 
Let the classes in the data set D be C = (c1, c2, …, ck). The clustering 
method produces k clusters, which partition D into k disjoint subsets, D1, 
D2, …, Dk.  

Entropy: For each cluster, we can measure its entropy as follows:  
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where Pri(cj) is the proportion of class cj data points in cluster i or Di. The 
total entropy of the whole clustering (which considers all clusters) is 
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Purity: This again measures the extent that a cluster contains only one 
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class of data. The purity of each cluster is computed with 
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The total purity of the whole clustering (considering all clusters) is  
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Precision, recall, and F-score can be computed as well for each cluster 
based on the class that is the most frequent in the cluster. Note that these 
measures are based on a single class (see Section 3.3.2).  

Example 14: Assume we have a text collection D of 900 documents from 
three topics (or three classes), Science, Sports, and Politics. Each class has 
300 documents, and each document is labeled with one of the topics 
(classes). We use this collection to perform clustering to find three clus-
ters. Class/topic labels are not used in clustering. After clustering, we want 
to measure the effectiveness of the clustering algorithm.  

First, a confusion matrix (Fig. 16) is constructed based on the clustering 
results. From Fig. 16, we see that cluster 1 has 250 Science documents, 20 
Sports documents, and 10 Politics documents. The entries of the other rows 
have similar meanings. The last two columns list the entropy and purity 
values of each cluster and also the total entropy and purity of the whole 
clustering (last row). We observe that cluster 1, which contains mainly 
Science documents, is a much better (or purer) cluster than the other two. 
This fact is also reflected by both their entropy and purity values.  

Cluster Science Sports Politics  Entropy Purity 
1 250 20 10  0.589 0.893 
2 20 180 80  1.198 0.643 
3 30 100 210  1.257 0.617 

Total 300 300 300  1.031 0.711 

Fig. 16. The confusion matrix with entropy and purity values 

Obviously, we can use the total entropy or the total purity to compare 
different clustering results from the same algorithm with different parame-
ter settings or from different algorithms.  

Precision and recall may be computed similarly for each cluster. For ex-
ample, the precision of Science documents in cluster 1 is 0.89. The recall 
of Science documents in cluster 1 is 0.83. F-score for Science documents 
in cluster 1 is thus 0.86.  ▀ 
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A final remark about this evaluation method is that it is commonly used 
to compare different clustering algorithms based on some labeled data sets. 
However, a real-life data set for clustering has no class labels. Thus al-
though an algorithm may perform very well on some labeled data sets 
(which may not even be in the same domain as the data that the user is 
working on), there is no guarantee that it will perform well on the actual 
application data at hand. The fact that it performs well on some label data 
sets does give us some confidence on the quality of the algorithm. This 
evaluation method is said to be based on external data or information.  

There are methods that evaluate clusters based on the internal informa-
tion in the clusters (without using external data with class labels). These 
methods measure intra-cluster cohesion (compactness) and inter-cluster 
separation (isolation). Cohesion measures how near the data points in a 
cluster are to the cluster centroid. Sum of squared error (SSE) is a com-
monly used measure. Separation means that different cluster centroids 
should be far away from one another. We need to note that good values for 
these measurements do not always mean good clusters, and that in most 
applications, expert judgments are still the key. Clustering evaluation re-
mains to be a very difficult problem. 

Indirect evaluation: In some applications, clustering is not the primary 
task. Instead, it is used to help perform another more important task. Then, 
we can use the performance on the primary task to determine which clus-
tering method is the best for the task. For instance, in a Web usage mining 
application, the primary task is to provide recommendations on book pur-
chasing to online shoppers. If shoppers can be clustered according to their 
profiles and their past purchasing history, we may be able to provide better 
recommendations. A few clustering methods can be tried, and their cluster-
ing results are then evaluated based on how well they help with the rec-
ommendation task. Of course, here we assume that the recommendation 
results can be reliably evaluated. 

4.10 Discovering Holes and Data Regions 

In this section, we wander a little to discuss something related but quite 
different from the preceding algorithms. We show that unsupervised learn-
ing tasks may be performed by using supervised learning techniques [311].  

In clustering, data points are grouped into clusters according to their dis-
tances (or similarities). However, clusters only represent one aspect of the 
hidden knowledge in data. Another aspect that we have not studied is the 
holes. If we treat data instances as points in an r-dimensional space, a hole 
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is simply a region in the space that contains no or few data points. The ex-
istence of holes is due to the following two reasons:  

1. insufficient data in certain areas, and/or  
2. certain attribute-value combinations are not possible or seldom occur. 

Although clusters are important, holes in the space can be quite useful 
as well. For example, in a disease database we may find that certain symp-
toms and/or test values do not occur together, or when a certain medicine 
is used, some test values never go beyond certain ranges. Discovery of 
such information can be of great importance in medical domains because it 
could mean the discovery of a cure to a disease or some biological laws. 

The technique discussed in this section aims to divide the data space 
into two types of regions, data regions (also called dense regions) and 
empty regions (also called sparse regions). A data region is an area in the 
space that contains a concentration of data points and can be regarded as a 
cluster. An empty region is a hole. A supervised learning technique similar 
to decision tree induction is used to separate the two types of regions. 
The algorithm (called CLTree) works for numeric attributes, but can be 
easily extended to discrete or categorical attributes.  

Decision tree learning is a popular technique for classifying data of vari-
ous classes. For a decision tree algorithm to work, we need at least two 
classes of data. A clustering data set, however, has no class label for each 
data point. Thus, the technique is not directly applicable. However, the 
problem can be dealt with by a simple idea.   

We can regard each data instance/point in the data set to have a class la-
bel Y. We assume that the data space is uniformly distributed with another 
type of points, called non-existing points, which we will label N. With the 
N points added to the original data space, our problem of partitioning the 
data space into data regions and empty regions becomes a supervised clas-
sification problem. The decision tree algorithm can be applied to solve the 
problem. However, for the technique to work several issues need to be ad-
dressed. Let us use an example to illustrate the idea.  

Example 15: Fig. 17(A) gives a 2-dimensional space with 24 data (Y) 
points. Two data regions (clusters) exist in the space. We then add some 
uniformly distributed N points (represented by “o”) to the data space (Fig. 
17(B)). With the augmented data set, we can run a decision tree algorithm 
to obtain the partitioning of the space in Fig. 17(B). Data regions and 
empty regions are separated. Each region is a rectangle, which can be ex-
pressed as a rule.   
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Fig. 17. Separating data and empty regions using a decision tree ▀ 

The reason that this technique works is that if there are clusters (or 
dense data regions) in the data, the data points cannot be uniformly distrib-
uted in the entire space. By adding some uniformly distributed N points, 
we can isolate data regions because within each data region there are sig-
nificantly more Y points than N points. The decision tree technique is well 
known for this partitioning task.  

An interesting question is: can the task be performed without physically 
adding the N points to the original data? The answer is yes. Physically add-
ing N points increases the size of the data and thus the running time. A 
more important issue is that it is unlikely that we can have points truly uni-
formly distributed in a high dimensional space as we would need an expo-
nential number of them. Fortunately, we do not need to physically add any 
N points. We can compute them when needed. The CLTree method is able 
to produce the partitioning in Fig. 17(C) with no N point added. This 
method has some interesting characteristics:  
• It provides descriptions or representations of the resulting data regions 

and empty regions in terms of hyper-rectangles, which are expressed as 
rules as we show in Section 3.2 of Chapter 3. Many applications require 
such descriptions that can be interpreted by users.  

• It detects outliers, which are data points in an empty region, automati-
cally. The algorithm can separate outliers from clusters because it natu-

(A): The original data space 

 (B). Partitioning with added  (C). Partitioning without adding  
N points N points. 
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rally identifies empty and data regions.   
• It may not use all attributes in the data just as in a normal decision tree 

for supervised learning. Thus, it can automatically determine what at-
tributes are important, which means that it performs sub-space cluster-
ing, i.e., a cluster is only represented by a subset of the attributes, or a 
cluster only appear in a subspace (see Bibliographic notes on other re-
lated work in the area). 

This method also has limitations. The main limitation is that data re-
gions of irregular shapes are hard to handle since decision tree learning 
only generates hyper-rectangles (formed by axis-parallel hyper-planes), 
which are rules. Hence, an irregularly shaped data or empty region may be 
split into several hyper-rectangles. Post-processing is needed to join them 
if desired (see [311] for additional details).  

Bibliographic Notes 

Clustering or unsupervised learning has a long history and a very large 
body of work. This chapter described only some widely used core algo-
rithms. Most other algorithms are variations or extensions of these meth-
ods. For a comprehensive coverage of clustering, please refer to several 
books dedicated to clustering, e.g., those by Everitt [153], Hartigan [203], 
Jain and Dubes [229], Kaufman and Rousseeuw [244], Mirkin [342]. Most 
data mining texts also have excellent coverage of clustering techniques, 
e.g., Han and Kamber [199] and Tan et al. [454], which have influenced 
the writing of this chapter. Below, we review some more recent develop-
ments and further readings.  

A density-based clustering algorithm based on local data densities was 
proposed by Ester et al [150] and Xu et al. [499] to find clusters of arbi-
trary shapes. Hinneburg and Keim [218], Sheikholeslami et al [434] and 
Wang et al. [478] proposed several grid-based clustering methods which 
first partition the space into small grids. A popular Neural Networks clus-
tering algorithm is the Self-Organizing Maps (SOMs) by Kohonen [257]. 
Fuzzy clustering (e.g., fuzzy c-means) was studied by Bezdek [46] and 
Dunn [144]. Cheeseman et al. [83] and Moore [354] studied clustering us-
ing mixture models. The method assumes that clusters are a mixture of 
Gaussians and uses the EM algorithm [115] to learn a mixture density. We 
will see in Chapter 4 that EM based partial-supervised learning algorithms 
are basically clustering methods with some given initial seeds.  

Most of clustering algorithms work on numeric data. Categorical data 
and/or transaction data clustering were investigated by Barbará et al. [34], 
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Ganti et al. [175], Gibson et al. [178], Guha et al. [193], Wang et al [477], 
etc. A related area is the conceptual clustering in Artificial Intelligence, 
which were studied by Fisher [162], Mishra et al. [343] and many others.  

Many clustering algorithms, e.g., hierarchical clustering algorithms, 
have high time complexities and are thus not suitable for large datasets. 
Scaling up such algorithms becomes an important issue for large 
applications. Several researchers have designed techniques to scale up 
clustering algorithms, e.g., Bradley et al. [57], Guha et al [192], Ng and 
Han [362], and Zhang et al. [535].  

In recent years, there were quite a few new developments in clustering. 
The first one is subspace clustering. Traditional clustering algorithms use 
the whole space to find clusters, but natural clusters may only exist in 
some sub-spaces. That is, some clusters may only use certain subsets of at-
tributes. This problem was investigated by Agrawal et al. [8], Aggarwal et 
al. [4], Aggarwal and Yu [5], Cheng et al. [84], Liu et al. [311], Zaki et al 
[521], etc.  

The second new research is semi-supervised clustering, which means 
that the user can provide some initial information to guide the clustering 
process. For example, the user can select some initial seeds [36] and/or 
specify some constraints, e.g., must-link (two points must be in the same 
cluster) and cannot-link (two points cannot be in the same cluster) [469]. 

The third is the spectral clustering, which emerges from several fields, 
e.g., in VLSI [16] and computer vision [431, 436, 482]. It clusters data 
points by computing eigenvectors of the similarity matrix. Recently, it was 
also studied in machine learning and data mining [128, 363, 525].  

Yet another new research is co-clustering, which simultaneously clus-
ters both rows and columns. This approach was studied by Cheng and 
Church [87], Dhillon [121], Dhillon et al. [122], and Hartigan [204].  

Regarding document and Web page clustering, most implementations 
are still based on k-means and hierarchical clustering methods, or their 
variations but using text specific similarity or distance functions. Steinbach 
et al. [451], and Zhao and Karypis [540, 539] experimented with k-means 
and agglomerative hierarchical clustering methods and also proposed some 
improvements. Many researchers also worked on clustering of search en-
gine results (or snippets) to organize search results into different topics, 
e.g., Hearst and Pedersen [212], Kummamuru et al. [262], Leouski and 
Croft [277], Zamir and Etzioni [522, 523], and Zeng et al. [524].  
 




