
Wake Up and Smell the Coffee:
Evaluation Methodology for the 21st Century

Stephen M Blackburnα, Kathryn S McKinleyβ, Robin Garnerα, Chris Hoffmannγ, Asjad M Khanγ,
Rotem Bentzurδ, Amer Diwanε, Daniel Feinbergδ, Daniel Framptonα, Samuel Z Guyerζ, Martin Hirzelη,

Antony Hoskingθ, Maria Jumpβ, Han Leeι, J Eliot B Mossγ, Aashish Phansalkarβ, Darko Stefanovícδ,
Thomas VanDrunenκ, Daniel von Dincklageε, Ben Wiedermannβ

αAustralian National University,βUniversity of Texas at Austin,γUniversity of Massachusetts at Amherst,
δUniversity of New Mexico,εUniversity of Colorado,ζTufts University,ηIBM, θPurdue University,ιIntel, κWheaton College

Abstract
Evaluation methodology underpins all innovation in experimental
computer science. It requires relevantworkloads, appropriateex-
perimental design, and rigorousanalysis. Unfortunately, method-
ology is not keeping pace with the changes in our field. The rise of
managed languages such as Java, C#, and Ruby in the past decade
and the imminent rise of commodity multicore architectures for the
next decade pose new methodological challenges that are not yet
widely understood. This paper explores the consequences of our
collective inattention to methodology on innovation, makes recom-
mendations for addressing this problem in one domain, and pro-
vides guidelines for other domains. We describe benchmark suite
design, experimental design, and analysis for evaluating Java ap-
plications. For example, we introduce new criteria for measuring
and selecting diverse applications for a benchmark suite. We show
that the complexity and nondeterminism of the Java runtime system
make experimental design a first-order consideration, and we rec-
ommend mechanisms for addressing complexity and nondetermin-
ism. Drawing on these results, we suggest how to adapt method-
ology more broadly. To continue to deliver innovations, our field
needs to significantly increase participation in and funding for de-
veloping sound methodological foundations.

1. Introduction
Methodology is the foundation for judging innovation in experi-
mental computer science. It therefore directs andmisdirectsour
research. Flawed methodology can make good ideas look bad or
bad ideas look good. Like any infrastructure, such as bridges and
power lines, methodology is often mundane and thus vulnerable to
neglect. While systemic misdirection of research is not as dramatic
as a bridge collapse [11] or complete power failure [10], the scien-
tific and economic cost may be considerable. Sound methodology
includes using appropriateworkloads, principledexperimental de-
sign, and rigorousanalysis. Unfortunately, many of us struggle to
adapt to the rapidly changing computer science landscape. We use
archaic benchmarks, out-dated experimental designs, and/or inade-
quate data analysis. This paper explores the methodological gap, its
consequences, and some solutions. We use the commercial uptake
of managed languagesover the past decade as the driving example.

Many developers today choose managed languages, which pro-
vide: (1) memory and type safety, (2) automatic memory manage-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

ment, (3) dynamic code execution, and (4) well-defined boundaries
between type-safe and unsafe code (e.g., JNI and Pinvoke). Many
such languages are also object-oriented. Managed languages in-
clude Java, C#, Python, and Ruby. C and C++ are not managed
languages; they are compiled-ahead-of-time, not garbage collected,
and unsafe. Unfortunately, managed languages add at least three
new degrees of freedom to experimental evaluation: (1) aspace-
time tradeoffdue to garbage collection, in which heap size is a con-
trol variable; (2)nondeterminismdue to adaptive optimization and
sampling technologies; and (3) systemwarm-updue to dynamic
class loading and just-in-time (JIT) compilation.

Although programming language researchers have embraced
managed languages, many have not evolved their evaluation method-
ologies to address these additional degrees of freedom. As we shall
show, weak methodology leads to incorrect findings. Equally prob-
lematic, most architecture and operating systems researchers do
not use appropriate workloads. Most ignore managed languages
entirely, despite their commercial prominence. They continue to
use C and C++ benchmarks, perhaps because of the significant
cost and challenges of developing expertise in new infrastructure.
Regardless of the reasons, the current state of methodology for
managed languages often provides bad results or no results.

To combat this neglect, computer scientists must be vigilant in
their methodology. This paper describes how we addressed some of
these problems for Java and makes recommendations for other do-
mains. We discuss how benchmark designers can createforward-
looking and diverse workloadsand how researchers should use
them. We then present a set ofexperimental design guidelinesthat
accommodate complex and nondeterministic workloads. We show
that managed languages make it much harder to produce meaning-
ful results, and suggest how to identify and explore control vari-
ables. Finally, we discuss the importance ofrigorous analysis[8]
for complex nondeterministic systems that are not amenable to triv-
ial empirical methods.

We address neglect in one domain, at one point in time, but
the broader problem is widespread and growing. For example, re-
searchers and industry are pouring resources into and exploring
new approaches for embedded systems, multicore architectures,
and concurrent programming models. However, without conse-
quent investments in methodology, how can we confidently eval-
uate these approaches? The community must take responsibility
for methodology. For example, many Java evaluations still use
SPECjvm98, which is badly out of date. Out-of-date benchmarks
are problematic because they pose last year’s problems and can lead
to different conclusions [17]. To ensure a solid foundation for fu-
ture innovation, the community must make continuous and substan-
tial investments. Establishing community standards and sustaining
these investments requires open software infrastructures containing
the consequent artifacts.

For our part, we developed a new benchmark suite and new
methodologies. We estimate that we have spent 10 000 person-

hours to date developing the DaCapo suite and associated infras-
tructure, none of it directly funded. Such a major undertaking
would be impossible without a large number of contributing in-
stitutions and individuals. Just as NSF and DARPA have invested
in networking infrastructure to foster the past and future genera-
tions of the Internet, our community needs foundational investment
in methodological infrastructure to build next-generation applica-
tions, software systems, and architectures. Without this investment,
what will be the cost to researchers, industry, and society in lost
opportunities?

2. Workload Design and Use
The DaCapo research group embarked on building a Java bench-
mark suite in 2003 after we highlighted the dearth of realistic Java
benchmarks to an NSF review panel. The panel suggested we solve
our own problem, but our grant was for dynamic optimizations.
NSF did not provide additional funds for benchmark development,
but we forged ahead regardless. The standard workloads at the time,
SPECjvm98 and SPECjbb2000 [14, 15], were out of date. For ex-
ample, SPECjvm98 and SPECjbb2000 make meager use of Java
language features, and SPECjvm98 has a tiny code and memory
footprint (SPEC measurements are in a technical report [3]). We
therefore set out to create a suite suitable for research, a goal that
adds new requirements beyond SPEC’s goal of product compar-
isons. Our goals were:

Relevant and diverse workload:A diverse, widely used
set of nontrivial applications that provide a compelling
platform for innovation.

Suitable for research: A controlled, tractable workload
amenable to analysis and experiments.

We selected the following benchmarks for the initial release of the
DaCapo suite, based on criteria described below.

antlr A parser generator and translator generator
bloat A Java bytecode-level optimization and analysis tool
chart A graph-plotting toolkit and PDF renderer
eclipse An integrated development environment (IDE)
fop An output-device–independent print formatter
hsqldb An SQL relational database engine written in Java
jython A Python interpreter written in Java
luindex A text-indexing tool
lusearch A text-search tool
pmd A source code analyzer for Java
xalan An XSLT transformer for XML documents

2.1 Relevance and Diversity

No workload is definitive, but a narrow scope makes it possible to
attain some coverage. We limited the DaCapo suite to nontrivial,
actively maintained real-world Java applications. We solicited and
collected candidate applications. Because source code supports re-
search, we considered only open-source applications. We first pack-
aged candidates into a prototype DaCapo harness and tuned them
with inputs that producedtractableexecution times suitable for ex-
perimentation, that is, around a minute on 2006 commodity hard-
ware. Section 2.2 describes how the DaCapo packaging provides
tractability and standardization.

We then quantitatively and qualitatively evaluated each candi-
date. Table 1 lists the static and dynamic metrics we used to ensure
that the benchmarks were relevant and diverse. Our original pa-
per [4] presents the DaCapo metric data and our companion tech-
nical report [3] adds SPECjvm98 and SPECjbb200. We compared
against SPEC as a reference point, and compared candidates with
each other to ensure diversity.

We used new and standard metrics. Our standard metrics in-
cluded the static CK metrics, which measure code complexity of
object-oriented programs [6]; dynamic heap composition graphs,
which measure time-varying lifetime properties of the heap [16];
and architectural characteristics such as branch misprediction rates
and instruction mix. We introduced new metrics to capture domain-
specific characteristics of Java such as allocation rate, ratio of allo-
cated to live memory, and heap mutation rate. These new metrics
included summaries and time series of allocated and live object size
demographics, summaries and time series of pointer distances, and
summaries and time series of mutation distances. Pointer distance
and mutation distance time-series metrics summarize the lengths
of the edges that form the application’s object graph. We designed
these metrics and their means of collection to be abstract, so that
the measurements are VM-neutral [4].

Figure 1 qualitatively illustrates the temporal complexity of
heap composition and pointer distance metrics for two benchmarks,
209 db andeclipse. With respect to our metrics,eclipsefrom Da-

Capo is qualitatively richer than209 db from SPECjvm98. Our
original paper explains how to read these graphs and includes
dozens of graphs, representing mountains of data [4]. Furthermore,
it shows that the DaCapo benchmarks substantially improve over
SPECjvm98 on all measured metrics. To confirm the diversity of
the suite, we applied principal component analysis (PCA) [7] to
the summary metrics. PCA is a multivariate statistical technique
for reducing a largeN-dimensional space into a lower-dimensional
uncorrelated space. If the benchmarks are uncorrelated in lower-
dimensional space, then they are also uncorrelated in the higher-
dimensional space. The analysis shows that the DaCapo bench-
marks are diverse, nontrivial real-world applications with signifi-
cant memory load, code complexity, and code size.

Because the applications come from active projects, they in-
clude unresolved performance anomalies, both typical and un-
usual programming idioms, and bugs. Although not our intention,
their rich use of Java features uncovered bugs in some commercial
JVMs. The suite notably omits Java application servers, embedded
Java applications, and numerically intensive applications. Only a
few benchmarks are explicitly concurrent. To remain relevant, we
plan to update the DaCapo Benchmarks every two years to their lat-
est version, add new applications, and delete applications that have
become less relevant. This relatively tight schedule should reduce
the extent to which vendors may tune their products to the bench-
marks (which is standard practice, notably for SPECjbb2000 [1]).

As far as we know, we are the first to use quantitative metrics
and PCA analysis to ensure that our suite is diverse and nontrivial.
The designers of future suites should choose additional aggregate
and time-varying metrics that directly address the domain of inter-
est. For example, metrics for concurrent or embedded applications
might include a measure of the fraction of time spent executing
purely sequential code, maximum and time-varying degree of par-
allelism, and a measure of sharing between threads.

2.2 Suitable for Research

We decided that making the benchmarks tractable, standardized,
and suitable for research was a high priority. While not technically
deep, good packaging is extremely time consuming and affects us-
ability. Researchers need tractable workloads because they often
run thousands of executions for a single experiment. Consider com-
paring four garbage collectors over 16 heap sizes–that is 64 combi-
nations we need to measure. Teasing apart the performance differ-
ences with multiple hardware performance monitors may add eight
or more differently instrumented runs per combination. Using five
trials to ensure statistical significance requires a grand total of 2560
test runs. If a single benchmark test run takes as long as 20 minutes
(the time limit is 30 minutes on SPECjbb [15]), we would need over

Metric Description
Code Metrics

CK metrics [6] Object-oriented programming metrics measuring source code complexity
Code size Numbers of classes loaded, methods declared, total bytecodes compiled

Code footprint Instruction cache and I-TLB misses
Optimization Number of methods compiled, number optimized, percentage hot

Heap Metrics
Allocation Total bytes/objects allocated, average object size

Heap footprint Maximum live bytes/objects, nursery survival rate
Fan-out/fan-in Mean incoming and outgoing pointers per object

Pointer distance Mean distance in bytes of each pointer encountered in a snapshot traversal of an age-ordered heap
Mutation distance Mean distance in bytes of each pointer dynamically created/mutated by the application in an age-ordered heap

Architecture Metrics
Instruction mix Mix of branches, ALU, and memory instructions

Branches Branch mispredictions per instruction for PMM predictor
Register dependence Register dependence distances

Table 1. Quantitative selection metrics

a month on one machine for just one benchmark comparison–and
surely we should test the four garbage collectors on many bench-
marks, not just one.

Moreover, time-limited workloads do not hold work constant,
so they are analytically inconvenient for reproducibility and con-
trolling load on the JIT compiler and the garbage collector. Cycle-
accurate simulation, which slows execution down by orders of mag-
nitude, further amplifies the need for tractability. We therefore pro-
vide work-limited benchmarks with three input sizes; small, de-
fault, and large. For some of the benchmarks, large and default are
the same. The largest ones typically executed in around a minute
on circa 2006 commodity high-performance architectures.

We make simplicity our priority for packaging; we ship the suite
as a single self-contained Java jar file. The file contains all bench-
marks, a harness, input data, and checksums for correctness. The
harness checksums the output of each iteration and compares it to
a stored value. If the values do not match, the benchmark fails.
We provide extensive configuration options for specifying the num-
ber of iterations, the ability to run to convergence with customized
convergence criteria, and callback hooks before and after every it-
eration. For example, the user-defined callbacks can turn hardware
performance counters on and off, or switch a simulator in and out
of detailed simulation mode. We use these features extensively and
are heartened to see others using them [12].

For standardization and analytical clarity, our benchmarks re-
quire only a single host and we avoid components that require user-
configuration. By contrast, SPEC jAppServer, which models real-
world application servers, requires multiple hosts and depends on
third-party–configurable components such as a database. Here we
traded some relevance for control and analytical clarity.

We provide a separate ‘source’ jar to build the entire suite
from scratch. For licensing reasons, the ‘source’ jar automatically
downloads the Java code from the licensor. With assistance from
our users [5], our packaging now facilitates static whole program
analysis, which is not required for standard Java implementations.
Since the entire suite and harness are open-source, we happily
accept contributions from our users.

2.3 The Researcher

Appropriate workload selection is a task for the community, con-
sortia, the workload designer, and the researcher. Researchers make
a workload selection, either implicitly or explicitly, when they con-
duct an experiment. This selection is often automatic: “Let’s use
the same thing we used last time!” Since researchers invest heavily
in their evaluation methodology and infrastructure, this path offers
the least resistance. Instead, we need to identify the workloads and

methodologies that best serve the research evaluation. If there is
no satisfactory answer, it is time to form or join a consortium and
create new suitable workloads and supporting infrastructure.

Do Not Cherry-Pick! A well-designed benchmark suite reflects
a range of behaviors and should be used as a whole. Perez et al.
demonstrate with alarming clarity that cherry-picking changes the
results of performance evaluation [13]. They simulate 12 previ-
ously published cache architecture optimizations in an apples-to-
apples evaluation on a suite of 26 SPECcpu benchmarks. There is
one clear winner with all 26 benchmarks. There is a choice of 2
different winners with a suitable subset of 23 benchmarks, 6 win-
ners with subsets of 18, and 11 winners with 7. When methodology
allows researchers a choice among 11 winners from 12 candidates,
the risk of incorrect conclusions, by either mischief or error, is too
high. Section 3.1 shows that Java is equally vulnerable to subset-
ting.

Run every benchmark. If it is impossible to report results for
every benchmark because of space or time constraints, bugs, or rel-
evance, explain why. For example, if you are proposing an opti-
mization for multi-threaded Java workloads, you may wish to ex-
clude benchmarks that do not exhibit concurrency. In this case, we
recommend reporting all the results but highlighting the most per-
tinent. Otherwise readers are left guessing as to the impact of the
“optimization” on the omitted workloads—with key data omitted,
readers and reviewers shouldnot give researchers the benefit of the
doubt.

3. Experimental Design
Sound experimental design requires a meaningful baseline and
comparisons that control key parameters. Most researchers choose
and justify a baseline well, but identifying which parameters to
control and how to control them is challenging.

3.1 Gaming Your Results

The complexity and degrees of freedom inherent in these sys-
tems make it easy to produce misleading results through errors,
omissions, or mischief. Figure 2 presents four results from a de-
tailed comparison of two garbage collectors. The JVM, architec-
ture, and other evaluation details appear in the original paper [4].
More garbage collector implementation details are in Blackburn et
al. [2]. Each graph shows normalized time (lower is better) across
a range of heap sizes that expose the space-time tradeoff for imple-
mentations of two canonical garbage collector designs, SemiSpace
and MarkSweep.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5
- 1 0 0

- 7 5

- 5 0

- 2 5

0

2 5

5 0

7 5

100
D

is
ta

nc
es

 (
%

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5

Time (millions of pointer mutations)

0

1

2

3

4

5

6

7

8

H
e

a
p

 V
o

lu
m

e
 (

M
B

)

(a) SPECjvm98209 db

0 2 5 5 0 7 5 100 125 150 175 200 225 250 275 300 325 350
- 9 0

- 8 0

- 7 0

- 6 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0

3 0

4 0

D
is

ta
nc

es
 (

%
)

0 2 5 5 0 7 5 100 125 150 175 200 225 250 275 300 325 350

Time (millions of pointer mutations)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

H
e

a
p

 V
o

lu
m

e
 (

M
B

)

(b) DaCapoeclipse

Figure 1. Two time-varying selection metrics. Pointer distance (top) and heap composition (bottom) as a function of time.

Subsetting Figure 2 badly misleads us in at least three ways:
(1) Figure 2(c) shows that by selecting a single heap size rather
than plotting a continuum, the results can produce diametrically
opposite conclusions. At 2.1×, MarkSweep performs much better
than SemiSpace, while at 6.0×, SemiSpace performs better. Fig-
ures 2(a) and 2(d) exhibit this same dichotomy, but have different
crossover points. Unfortunately, some researchers are still evaluat-
ing the performance of garbage-collected languageswithout vary-
ing heap size. (2) Figures 2(a) and 2(b) confirm the need to use
an entire benchmark suite. Although209 db and hsqldbare es-
tablished in-memory database benchmarks, SemiSpace performs
better for 209 db in large heaps, while MarkSweep is always bet-
ter for hsqldb. (3) Figures 2(c) and 2(d) show that the architecture
significantly impacts conclusions at these heap size ranges. Mark-
Sweep is better at more heap sizes for AMD hardware as shown
in Figure 2(c). However, Figure 2(d) shows SemiSpace is better
at more heap sizes for PowerPC (PPC) hardware. This example of
garbage collection evaluation illustrates a small subset of the pit-
falls in evaluating the performance of managed languages.

3.2 Control in a Changing World

Understanding what to control and how to control it in an experi-
mental system is clearly important. For a classic comparison of For-
tran, C, or C++ systems, there are at least two degrees of freedom
to control: (a) thehost platform(hardware and operating system),
and (b) thelanguage runtime(compiler and associated libraries).
Over the years, researchers have evolved solid methodologies for
evaluating compiler, library, and architectural enhancements that
target these languages. Consider a compiler optimization for im-
proving cache locality. Accepted practice is to compile with and
without the optimization and report how often the compiler applied
the optimization. To eliminate interference from other processes,
one runs the versions stand-alone on one or more architectures and
measures miss rates with either performance counters or a simula-
tor. This methodology evolved, but is now extremely familiar. Once
researchers invest in a methodology, the challenge is to notice when
the world has changed and to figure outhowto adapt.

Modern managed runtimes such as Java add at least three more
degrees of freedom: (c) theheap size, (d) thenondeterminism, and
(e)warm-upof the runtime system.

Heap Size Managed languages use garbage collection to detect
unreachable objects, rather than relying on the programmer to ex-
plicitly delete objects. Garbage collection is fundamentally a space-
time tradeoff between the efficacy of space reclamation and time
spent reclaiming objects; heap size is the key control variable. The
smaller the heap size, the more often the garbage collector will be
invoked and the more work it will perform.

Nondeterminism Deterministic profiling metrics are expensive.
High-performance JVMs therefore use approximate execution fre-
quencies computed by low-overhead dynamic sampling to select
which methods the JIT compiler will optimize and how. For exam-
ple, a method may happen to be sampledN times in one invocation
andN+3 in another; if the optimizer uses a hot-method threshold
of N + 1, it will make different choices. Due to this nondetermin-
ism, code quality usually does not reach thesamesteady state on a
deterministic workload across independent JVM invocations.

Warm-Up A single invocation of the JVM will often execute the
same application repeatedly. The first iteration of the application
usually includes the largest amount of dynamic compilation. Later
iterations usually have both less compilation and better application
code quality. Eventually, code quality may reach a steady state.
Code quality thus “warms-up.” Steady state is the most frequent
use-case. For example, application servers run their code many,
many times in the same JVM invocation and thus care most about
steady-state performance. Controlling for code warm-up is an im-
portant aspect of experimental design for high-performance run-
times.

3.3 A Case Study

We consider performance evaluation of a new garbage collector as
an example of experimental design. We describe the context and
then show how to control the factors described above to produce a
sound experimental design.

Two key context-specific factors for garbage collection evalua-
tion are: (a) thespace-time tradeoffas discussed above, and (b) the

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 2 3 4 5 6

No
rm

al
ize

d
Ti

m
e

Heap size relative to minimum heap size

SemiSpace
MarkSweep

(a) 209 db, Pentium-M

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 2 3 4 5 6

No
rm

al
ize

d
Ti

m
e

Heap size relative to minimum heap size

SemiSpace
MarkSweep

(b) hsqldb, Pentium-M

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 2 3 4 5 6

No
rm

al
ize

d
Ti

m
e

Heap size relative to minimum heap size

SemiSpace
MarkSweep

(c) pseudojbb, AMD

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 2 3 4 5 6

No
rm

al
ize

d
Ti

m
e

Heap size relative to minimum heap size

SemiSpace
MarkSweep

(d) pseudojbb, PPC

Figure 2. Gaming your results. Four ways to compare two garbage collectors.

relationship between the collector andmutator(the term for the ap-
plication itself in the garbage-collection literature). For simplicity,
we consider astop-the-worldgarbage collector, in which the col-
lector and the mutator never overlap in execution. This separation
eases measurement of the mutator and collector. Some collector-
specific code mixes with the mutator: object allocation andwrite
barriers, which identify pointers that cross between independently
collected regions. This code impacts both the mutator and the JIT
compiler. Furthermore, the collector greatly affects mutator local-
ity, due to the allocation policy and any movement of objects at
collection time.

Meaningful Baseline Comparing against the state of the art is
ideal, but practical only when researchers make their implementa-
tions publicly available. Researchers can then implement their ap-
proaches using the same tools or control for infrastructure differ-
ences to make apples-to-apples comparisons. Garbage-collection
evaluations often use generational MarkSweep collectors as a base-
line because these collectors are widely used in high-performance
VMs and perform well.

Host Platform Garbage collectors exhibit architecture-dependent
performance properties that are best revealed with an evaluation
across multiple architectures, as shown in Figures 2(c) and 2(d).
These properties include locality, the cost of write barriers, and the
cost of synchronization instructions.

Language Runtime The language runtime, libraries, and JIT
compiler directly affect memory load, and so should be controlled.
Implementing various collectors in a common toolkit factors out
common shared mechanisms and focuses the comparison on the
algorithmic differences between the collectors.

Heap Size Garbage collection evaluations should compare per-
formance across a range of benchmark-specific relative heap sizes,
starting at the smallest heap in which any of the measured collec-
tors can run, as shown by Figure 2. Each evaluated system must
experience the same memory load which requires forcing collec-
tions between iterations to normalize the heap, and controlling the
JIT compiler.

Nondeterminism Nondeterministic JIT optimization plans lead
to nondeterministic mutator performance. JIT optimization of
collector-specific code, optimizations that elide allocations, and
the fraction of time spent in collection may affect mutator behavior
in ways that cannot be predicted or repeated. For example in Jikes
RVM, a Java-in-Java VM widely used by researchers, JIT com-
piler activity directly generates garbage collection load because the
compiler allocates and executes in the same heap as the application.
These effects make nondeterminism even more acute.

Warm-Up For multi-iteration experiments, as the system warms
up, mutator speeds increase and JIT compiler activity decreases,
the fraction of time spent in collection typically grows. Steady-

state execution therefore accentuates the impact of the garbage col-
lector as compared to start-up. Furthermore, the relative impact of
collector-specific code will change as the code is more aggressively
optimized. Evaluations must therefore control for code quality and
warm-up.

3.4 Controlling Nondeterminism

Of the three new degrees of freedom outlined in Section 3.2, we
find dealing with nondeterminism to be the most methodologically
challenging. Over time, we have adopted and recommend three dif-
ferent strategies: (a) use deterministicreplayof optimization plans,
which requires JVM support, (b) take multiple measurements in a
single JVM invocation, after reaching steady state and turning off
the JIT compiler, and (c) generate sufficient data points and apply
suitable statistical analysis [8]. Depending on the experiment, the
researcher will want to perform one, two, or all of these experi-
ments. The first two reduce nondeterminism for analysis purposes
by controlling its sources. Statistical analysis of results from (a)
and (b) will reveal whether differences from the remaining nonde-
terminism are significant. The choice of (c) accommodates larger
factors of nondeterminism (see Section 4) and may be more real-
istic, but requires significantly more data points, at the expense of
other experiments.

Replay Compilation Replay compilation collects profile data and
a compilation plan from one or more training runs, forms an opti-
mization plan, and then replays it in subsequent, independent tim-
ing invocations [9]. This methodology deterministically applies the
JIT compiler, but requires modifications to the JVM. It isolates the
JIT compiler activity, since replay eagerly compiles to the plan’s
final optimization level instead of lazily relying on dynamic re-
compilation triggers. Researchers can measure the first iteration for
deterministic characterization of start-up behavior. Replay also re-
moves most profiling overheads associated with the adaptive opti-
mization system, which is turned off. As far as we are aware, pro-
duction JVMs do not support replay compilation.

Multi-Iteration Determinism An alternative approach that does
not depend on runtime support is to run multiple measurement it-
erations of a benchmark in a single invocation,after the runtime
has reached steady state. Unlike replay, this approach does not sup-
port deterministic measurement of warm-up. We use this approach
when gathering data from multiple hardware performance counters,
which requires multiple distinct measurements of the same system.
We first performN−1 unmeasured iterations of a benchmark while
the JIT compiler warms up the code. We then turn the JIT compiler
off and execute theNth iteration unmeasured to drain any JIT work
queues. We measure the nextK iterations. On each iteration, we
gather different performance counters of interest. Since the code
quality has reached steady state, it should be a representative mix of
optimized and unoptimized code. Since the JIT compiler is turned
off, the variation between the subsequent iterations should be low.
The variation can be measured and verified.

3.5 Experimental Design in Other Settings

In each experimental setting, the relative influence of the degrees
of freedom, and how to control them, will vary. For example, when
evaluating anew compiler optimization, researchers should hold
the garbage collection activity constant to keep it from obscuring
the effect of the optimization. Comparing on multiple architectures
is best, but is limited by the compiler back-end. When evaluating
a new architecture, vary the garbage collection load and JIT com-
piler activity, since both have distinctive execution profiles. Since
architecture evaluation often involves very expensive simulation,
eliminating nondeterminism is particularly important.

4. Analysis
Researchers use data analysis to identify and articulate the signifi-
cance of experimental results. This task is more challenging when
systems and their evaluation become more complex, and the sheer
volume of results grows. The primary data analysis task is one of
aggregation: (a) across repeated experiments to defeat experimental
noise, and (b) across diverse experiments to draw conclusions.

Aggregating data across repeated experiments is a standard
technique for increasing confidence in a noisy environment [8].
In the limit, this approach is in tension withtractability, because
researchers have only finite resources. Reducing sources of non-
determinism with sound experimental design improves tractability.
Since noise cannot be eliminated altogether, multiple trials are in-
evitably necessary. Researchers must aggregate data from multiple
trials and provide evidence such as confidence intervals to reveal
whether the findings are significant. Georges et al. [8] use a survey
to show that current practice lacks statistical rigor and explain the
appropriate tests for comparing alternatives.

Section 2.3 exhorts researchers not to cherry-pick benchmarks.
Still, researchers need to convey results from diverse experi-
ments succinctly, which necessitates aggregation. We encourage
researchers (a) to include complete results, and (b) to use appro-
priate summaries. For example, using the geometric mean damp-
ens the skewing effect of one excellent result. Although industrial
benchmarks will often produce a single aggregate score over a
suite, this methodology is brittle because the result depends en-
tirely on vagaries of the suite composition [18]. For example, while
it is tempting to cite your best result—“we outperform X by up
to 1000%”—stating an aggregate together with the best and worst
results is more honest and insightful.

5. Conclusion
Methodology plays a strategic role in experimental computer sci-
ence research and development by creating a common ground for
evaluating ideas and products. Sound methodology relies onrel-
evant workloads, the use ofprincipled experimental design, and
rigorous analysis. Evaluation methodology can therefore have a
significant impact on a research field, potentially accelerating, re-
tarding, or misdirecting energy and innovation. However, we work
within a fast-changing environment and our methodologies must
adapt to remain sound and relevant. Prompted by concerns among
ourselves and others about the state of the art, we spent thousands
of hours at eight institutions examining and addressing the prob-
lems of evaluating Java applications. The lack of direct funding,
the perception that methodology is mundane, and the magnitude of
the effort surely explain why these efforts are uncommon.

We address neglect of evaluation methodology concretely, in
one domain at one point in time, and draw broader lessons for
experimental computer science. The development and maintenance
of the DaCapo benchmark suite and associated methodology have
brought some much-needed improvement to our evaluations and
to our particular field. However, experimental computer science

cannot expect the upkeep of its methodological foundations to fall
to ad hoc volunteer efforts. We encourage stakeholders such as
industry and granting agencies to be forward-looking and make a
systemic commitment to stem methodological neglect. Invest in the
foundations of our innovation.

Acknowledgments
We thank Andrew Appel, Randy Chow, Frans Kaashoek, and Bill
Pugh, who encouraged this project at our three year NSF ITR re-
view. We thank Mark Wegman, who initiated the public availabil-
ity of Jikes RVM, and the developers of Jikes RVM. We gratefully
acknowledge Fahad Gilani, who wrote the original version of the
measurement infrastructure for his ANU Masters thesis; Xiang-
long Huang and Narendran Sachindran, who helped develop the re-
play methodology; and Jungwoo Ha and Magnus Gustafsson, who
helped developed the multi-iteration replay methodology. We thank
Tom Horn for his proof reading, and Guy Steele for his careful read-
ing and suggestions.

References
[1] A. Adamson, D. Dagastine, and S. Sarne. SPECjbb2005 – A year in the life of

a benchmark. In2007 SPEC Benchmark Workshop. SPEC, Jan. 2007.

[2] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities: The
performance impact of garbage collection. InProceedings of the ACM
Conference on Measurement & Modeling Computer Systems, pages 25–36,
NY, NY, June 2004.

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo
Benchmarks: Java benchmarking development and analysis (extended version).
Technical Report TR-CS-06-01, Dept. of Computer Science, Australian
National University, 2006. http://www.dacapobench.org.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis. InACM
Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 169–190, Oct. 2006.

[5] E. Bodden, L. Hendren, and O. Lhoták. A staged static program analysis
to improve the performance of runtime monitoring. In21st European
Conference on Object-Oriented Programming, July 30th–August 3rd 2007,
Berlin, Germany, number 4609 in Lecture Notes in Computer Science, pages
525–549. Springer Verlag, 2007.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite for object-oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, June 1994.

[7] G. H. Dunteman.Principal Components Analysis. Sage Publications, 1989.

[8] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java
performance evaluation. InACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 57–76, Montreal, Quebec,
Canada, 2007.

[9] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang, and
P. Cheng. The garbage collection advantage: Improving mutator locality. In
ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 69–80, Vancouver, BC, 2004.

[10] B. Leyland. Auckland central business district supply failure.Power
Engineering Journal, 12(3):109–114, June 1998.

[11] National Transportation Safety Board. NTSB urges bridge owners to perform
load capacity calculations before modifications; I-35W investigation continues.
SB-08-02.http://www.ntsb.gov/Pressrel/2008/080115.html ,
Jan. 2008.

[12] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and C. Zilles. Hardware
atomicity for reliable software speculation. InACM/IEEE International
Symposium on Computer Architecture, pages 174–185, New York, NY, USA,
2007. ACM.

[13] D. G. Perez, G. Mouchard, and O. Temam. MicroLib: A case for the quantitative
comparison of micro-architecture mechanisms. InInternational Symposium on
Microarchitecture, pages 43–54, Portland, OR, Dec. 2004.

[14] Standard Performance Evaluation Corporation.SPECjvm98 Documentation,
release 1.03 edition, March 1999.

[15] Standard Performance Evaluation Corporation.SPECjbb2000 (Java Business
Benchmark) Documentation, release 1.01 edition, 2001.

[16] D. Stefanovíc. Properties of Age-Based Automatic Memory Reclamation
Algorithms. PhD thesis, Department of Computer Science, University of
Massachusetts, Amherst, Massachusetts, Dec. 1998.

[17] J. J. Yi, H. Vandierendonck, L. Eeckhout, and D. J. Lilja. The exigency
of benchmark and compiler drift: Designing tomorrow’s processors with

yesterday’s tools. InInternational Conference on Supercomputing, pages
75–86, Cairns, Queensland, Australia, July 2006.

[18] R. M. Yoo, H.-H. S. Lee, H. Lee, and K. Chow. Hierarchical means: Single
number benchmarking with workload cluster analysis. InIISWC 2007. IEEE
10th International Symposium on Workload Characterization, pages 204–213.
IEEE, 2007.

