
CS 380/480 – Foundations of Artificial Intelligence 
Winter 2007 

Assignment 2 – Solutions to Selected Problems 
 
 
1.   Search trees for the state-space graph given below: 
 

 
 
Solution: 
 
We only show the search trees corresponding to Breadth-First Search and Uniform Cost Search. It should 
be noted that for this problem we are no assuming repeated state checking. Thus, expanding a node may 
generate nodes that were previously visited in the search. 
 
Tree for Breadth-First Search:   
 

 
 
Note that the problem statement assumes the goal test occurs as soon as the nodes are generated (not 
when the nodes are selected from the queue for expansion). So, no additional nodes are generated once G 
is generated as a child of F. Also, the tree structure will depend on which nodes are expanded first. For 
example, at level 1, if F were expanded before A, then G would have been generated (and the search 
terminated) before expanding A. 
 
You should note, however, that, in the standard BFS algorithm, the goal test occurs once a node is 
selected for expansion not when it is generated due to expanding its parent. So, the above formulation, is 
a non-standard formulation of the problem. 
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Tree for Uniform-Cost Search:   
 

 
 
In the above tree, each edge is labeled with the actual cost of the move. The numbers in black boxes 
represent the g(n) value for each node n. Recall that g(n) is the total cost of the path to node n from the 
root of the tree.  The (red) numbers in parentheses show the order of expansion. Specifically, nodes are 
expanded as follows: S  A  S  A  C  F  S  D  H  A  A  C  F  F  G. In 
cases of ties in g(n) values, the node whose letter is smaller alphabetically is chosen for expansion (e.g., A 
was chosen before C after expanding node S at level 2). For the sake of clearer presentation, for some 
nodes whose children will not eventually be expanded, the subtrees haven been omitted (these are the two 
triangles in the figure under two instance of F). Note that according to the problem specifications, in 
contrast to the BFS, DFS, and IDS searches for parts (a) through (c), in this case we only perform a goal 
test when a node is selected for expansion (not immediately when it is generated during the search). This 
is, in fact, the standard search procedure discussed in class. 
 
2.   Heuristic Search 
 
In this problem we use the same state-space graph as the previous problem. In addition, we are given a 
heuristic evaluation function h, defined according to the following table. 
 

State S A C D F G H 

h 10 5 4 3 4 0 2 
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Also, note that in this problem we assume there is repeated-state checking, and, as in the case of Uniform-
Cost search in problem 1, we only perform a goal test when a node is selected for expansion. 
Solution: 
 
First, we note that the heuristic function h given above is indeed an admissible heuristic. This is because 
h never over-estimates the actual cost of the optimal path to the goal node G. In other words, for each 
node n (where n is once of S, A, C, D, F, G, or H), h(n) is less than or equal to the cost of the path from n 
to the goal node. 
 
Tree for Greedy Best-First Search:   
 

 
 
In the above tree the numbers in boxes next to each node represent the heuristic value, h, of the node. The 
costs for each move are also shown as labels on the edges; however these are not taken into account in 
Greedy Best-First search. In this example, the greedy search goes directly to the goal node without 
expanding extraneous nodes. However it does not succeed in finding the optimal (lowest cost) solution 
for the problem (which is S A C G). 
 
Tree for A* Search:   
 

 
 
In the above tree, the boxes next to each node depict the evaluation function f(n) = g(n) + h(n). For 
example, the g(n) for node C in the left branch is 2 + 4 = 6 and h(n) for C is 4. This results in the f value 
of 10 for C. Here the tie between G on the left branch and F in the right branch was broken in favor of F. 
Note that despite the expansion of some extraneous nodes, A* does find the optimal solution to the 
problem. This, in fact, is guaranteed by A* so long as we use an admissible heuristic. 
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6.   Problem 7.8 on Page 237 of Russell and Norvig: 
  
Solution: 
 
(a) Smoke => Smoke 

 
This is a valid sentence. This can be verified using truth tables, but it is easier to observe that the 
sentence is equivalent to ¬Smoke \/ Smoke which is true always true. 
 

(b) Smoke => Fire 
 

This is just implication with two propositional variables, so we can refer to the truth table for 
"=>". It is satisfiable since the implication is true when Smoke is false or when Fire is true. 
 

(c) (Smoke => Fire) => (¬Smoke => ¬Fire) 
 

Again we can use truth tables, but let's try simplification using equivalence rules: 
 

(Smoke => Fire) => (¬Smoke => ¬Fire) 
  (¬Smoke \/ Fire) => (Smoke \/ ¬Fire) [elimination the inside implications] 
 ¬ (¬Smoke \/ Fire) \/ (Smoke \/ ¬Fire)  [elimination the remaining implication] 
 (Smoke /\ Fire) \/ (Smoke \/ ¬Fire)  [moving negation inside - DeMorgan's laws] 
 (Smoke \/ Smoke \/ ¬Fire) /\ (Fire \/ Smoke \/ ¬Fire) [distributivity] 
 (Smoke \/ ¬Fire) /\ True   [simplification - see also part (d)] 
 (Smoke \/ ¬Fire)    [note: P /\ True is equivalent to P] 
 (Fire => Smoke)    [converting back to implication] 

 
So, we have reduced the formula to Fire => Smoke which is satisfiable using similar reasoning as 
in part (b). 
 

(d) (Smoke \/ Fire \/ ¬Fire) 
 

This is just equivalent to True, since it contains Fire \/ ¬Fire which is valid (always true). 
Disjunction of a true statement with anything is still true. So the above formula is valid. 

 
(e) ((Smoke /\ Heat) => Fire) <=> ((Smoke => Fire) \/ (Heat => Fire)) 
 

This is valid. You can show this validity by constructing truth tables for the two sides of logical 
equivalence <=> and verifying this equivalence (by showing that for any assignment of truth 
values to the variables Smoke, Heat, and Fire, the two formulas are either both true or both false. 
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6. Suppose we have a knowledge base KB containing the following 4 sentences: 
 

  KB1:   (A ∨ ¬C) ⇒ B 
  KB2:   ¬C ∨ D 
  KB3:   D ⇒ A 
  KB4:   C 
 

Using the above knowledge base and inference rules for propositional logic, give a derivation (proof) 
for the sentence A ∧ B.  

 
Solution: 
   1. C   KB4 
   2. D   Step 1, KB2, using Resolution rule 
   3. A   Step 2,  KB3, using Modus Ponens  
   4. A ∨ ¬C Step 3, using OR-Introduction (introducing ¬C) 
   5. B   Step 4, KB1, using Modus Ponens 
   6. A ∧ B  Step 1, Step 5, using AND-Introduction 
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