
CSC 380/480 – Foundations of Artificial Intelligence
Winter 2007

Assignment 1 – Solution to Selected Problems

1. News Filtering Agent:

Summary:

There is not a single correct answer to this problem. Specific answers depend partly on the assumptions
we make about the agent.

a. PEAS description:

Assumed that agent is not responsible for any sort of troubleshooting or searching for alternate sources in
the event there is a disruption in connection or news content. Assumed news site could be searched by
following links as well as a form based search. Assumed news story content/links live until a known
expiration time.

PEAS – Performance, Environment, Actuators, Sensors

Performance Measure:

• Maximize the number of matching unread stories returned
• Maximize number of matches per story returned
• Minimize impact to site, and other users of site
• Minimize time from when a new story is posted to when it gets returned

Environment:
• Internet connection
• Browsable shared internet news site updated as news happens
• Terminal to display results
• Static user profile of key words
• Database of news stories found and viewed by user, stories removed from database that are past

the expiration date
Actuators:

• Ability to follow HTML links (Crawling; Issuing HTTP commands)
• Ability to issue queries in search page
• Ability to display found stories (HTML generation)
• Ability to add new stories to the database

Sensors
• Parse HTML pages for keywords
• Recognize pages returned as being either viewed or not viewed by user

b. Environment:

Partially observable – Agent is not able to observe when news stories are going to be posted. The
agent’s only option is to poll at intervals for changes.

 1

Primarily Deterministic – Since the actions within a particular search are determined by the agents
actions, although the appearance of news stories is stochastic since it alters the environment in ways
not able to be determined through actions by the agent.

Sequential – At each episode the agent searches the environment and finds stories matching the user
profile. Not episodic since the choices made in earlier steps, the number of downloaded pages and
past user history may all affect the future actions taken by the agent.

Dynamic – Environment is dynamic for the agent since new stories can be posted while the agent is
deliberating

Discrete – From the agent’s perspective the environment is discrete since there are a limited number
of types of situations/pages the agent would have to recognize and react to.

Single agent environment – Our agent is operating individually in the environment, the changing of
the news site is treated as part of the environment rather than as another agent.

c. Agent Architecture:

A reflex agent with internal state will work; goal-based agent is better, since the agent can guide its
actions based on how each action gets it closer to a goal node. In the case of a reflex agent, the agent
blindly searches through the site and each page accessed is compared to the profile. A goal-based
agent would use some additional criteria (e.g., heuristics) to decide if access to a page may be more
likely to lead to an "interesting" page. For example, the agent may decide not to follow the branch in
the site leading to the "Investor Relations" section of the site, since that is not likely to lead to news
stories. Finally, if we want the ability to rank among the selected pages and filter out the ones that are
less relevant, then a utility-based agent would be appropriate.

d. Changes if the profile is obtained dynamically by observing past user behavior:

The most important factor to consider here is that in this case, each of the actions taken by the user
and the agent, may result in changing the profile. One implication of this is that the agent no longer
has a static goal. Percepts would now have to include various user browsing actions (e.g., time of
access to a page, frequency of visit, scrolling actions, etc.). Actions would have to include the ability
to measure different metrics related to user actions, e.g., time spent on a page. The part of the
environment relating to user profile will cause this to become a dynamic environment. Furthermore,
the problem may become an exploration problem, if the agent needs to modify the criteria by which it
determines that a user has found a page interesting during execution. The dynamic profile
requirement may change the agent design to allow for adding a learning component to the agent
which would focus on refining expiration date of stories, i.e. at what point is the user no longer
interested in a story because it is “old” news regardless of how long it may remain on the news site.
Also add learning component to see what combinations of words are most viewed to refine profile of
user’s interest and weighting of terms when ranking stories.

 2

2. Missionaries and Cannibals Problem: Three Missionaries and three cannibals are on the left bank of
a river. There is a boat on their side of the river that can be used to carry one or two people. The goal is to
use this boat to cross the river in such a way that cannibals never outnumber missionaries on either bank
of the river.

Solution:

We can represent each state in the problem as a triple MCS, where M is the number of missionaries on
the left bank, C is the number of cannibals on the left bank, and S is the side the side the boat is on (L or
R). We will also disallow moves that bring us back right to the state we start from. These are essentially
useless moves. For example, from the state 33L we can go to the state 32R (i.e., a cannibal goes to the
right bank alone). But, in this case, the only possible next move is for the cannibal to come right back.
Given this representation of the problem, the state-space graph is as follows:

There are two possibilities from the start node (and M and a C can go, or two C's can go). Also, there are
2 possibilities from the second-to-last node (everyone is across but one cannibal, so either a missionary or
a cannibal can go back for him). All other nodes have a branching factor of 1.

Despite its simplicity, this problem has some interesting features. First, this is a completely symmetric
search space, so forward and backward searches can be done in an identical way to solve the problem.
However, the problem "seems" much simpler working in the forward direction (starting from the intial
state and working towards the goal state). Why is this? No one knows!

There is also a great deal of room for meta-level reasoning. Suppose that we had given names to each of
the missionaries and cannibals. The apparent branching factor is now much higher. For example, Jimmy
the cannibal going across is now not the same move as, say, Billy the cannibal going across. A person
working on this problem will quickly realize that the names of the individuals is completely irrelevant to
solving the problem, and will collapse the search space to the original one (meta-level reasoning). A
computer, on the other hand, faced with the problem in which the individuals are named, may fail to
recognize that the search space can be simplified.

 3

3. Towers-of-Hanoi problem:

A

(a) A state can be represented by a quadruplet (a,b,c,d), where each element represents a peg (a for
A, b for B, …) and is the list of ring indices (integers) on that peg from top to bottom. The initial
state is ((R1,R2,…,Rn),nil,nil,nil), where ‘nil’ denotes the empty list. The goal state is (nil,nil,nil,
(R1,R2,…,Rn)). Given any state (a,b,c,d), its successors are obtained as follows: For any pair (x,
y) of distinct pegs such that x ≠ nil and, either y = nil, or the first element of x is smaller than the
first element of y, then remove the first element of x and insert it at the front of y.

(b) Each ring can be on any one of the 4 pegs, so there are 4n states in total (i.e., 256 when n=4).
(c) There are at most 6 successors, each corresponding to an unordered pair of distinct pegs. Indeed,

for any unordered pair (x, y) of distinct pegs, the motion of a ring can happen only in one
direction, from x to y, or from y to x, and there are exactly 6 unordered pairs. Any state where no
two pegs hold 0 ring has 6 successors.

B C D

R1
R2
R3
R4

 4

4. The Water-Jug problem:

Solution:

We represent the state-space for this problem as

{[,] | , , , , , , , }x y x and y= =0 1 2 3 4 0 1 2 3

Where x represents the gallons of water in the 4-gallon jug, and y represents the water in the 3-gallon jug.

The operators for the problem can, for example, be specified as the following list of contingency rules:

1. Fill 4-gallon jug: ([x, y] | x < 4) [4, y]
2. Fill 3-gallon jug: ([x, y] | y < 3) [x, 3]
3. Empty 4-gallon jug: ([x, y] | x > 0) [0, y]
4. Empty 3-gallon jug: ([x, y] | y > 0) [x, 0]
5. From 3-gallon jug to 4 gallon jug, until full: ([x, y] | x+y ≥ 4 and y > 0) [4, y-(4-x)]
6. From 4-gallon jug to 3 gallon jug, until full: ([x, y] | x+y ≥ 3 and x > 0) [x-(3-y)], 3]
7. All of 3-gallon jug into 4-gallon jug: ([x, y] | x+y ≤ 4 and y > 0) [x+y, 0]
8. All of 4-gallon jug into 3-gallon jug: ([x, y] | x+y ≤ 3 and x > 0) [0, x+y]

A portion of the state-space graph is shown In Figure below. The labels on the edges (i.e., operators
applied) are omitted since they are clear from context. The part of the graph that is not shown include
states [1,1], [1,2], [2,1], [2,2], [3,1], and [3,2]. These states only have "out" edges going to states shown
below, but no "in" edges coming from any of the other states (so they can never be reached, unless they
are start states).

 5

Given the above rules, we can now solve the problem with the initial state [0, 0] and the goal state [2, 0].
For example, one possible solution is given below:

[0, 0] apply rule 2 [0, 3]
 apply rule 7 [3, 0]
 apply rule 2 [3, 3]
 apply rule 5 [4, 2]
 apply rule 3 [0, 2]
 apply rule 7 [2, 0]

The portion of the complete search tree (ignoring repeated nodes) leading to two goal nodes is shown in
Figure below. The right subtree rooted by the initial node gives the optimal path to a goal node. It is not
easy to come up with a good (or in fact admissible) heuristic for this problem. For example, you might
note that the simple heuristic of taking the sum of distances of each of the two components from the goal
node, is not admissible and in general fails to find the optimal path. Since there are a small number of
possible states and small branching factor, a good strategy might be to do breadth-first search.

Search tree for the specified instance of the Water Jug problem. There are two possible
solutions (paths leading to a goal node. The path highlighted represent the optimal
solution to the problem (assuming that the cost associated with any of the moves is the
same for all of the operation (i.e., we have unit costs).
6

