
Logical Inference and
Reasoning Agents

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence 2

Resolution Rule of Inference
i Resolution provides a complete rule of inference for first order

predicate calculus
4 if used in conjunction with a refutation proof procedure (proof by contradiction)
4 requires that formulas be written in clausal form

i Refutation procedure
4 to prove that KB α, show that KB ∧ ¬α is unsatisfiable
4 i.e., assume the contrary of α, and arrive at a contradiction
4 KB and ¬α, must be in CNF (conjunction of clauses)
4 each step in the refutation procedure involves applying resolution to two clauses, in

order to get a new clause

4 inference continues until the empty clause is derived (a contradiction)

C1 C2

C

Foundations of Artificial Intelligence 3

Resolution Rule of Inference
i Basic Propositional Version:

i Full First-Order Version:

provided that pj and ¬qk are unifiable via a substitution σ

i Example:

with substitution σ = {x/bob}

α β β γ
α γ

∨ ¬ ∨
∨

, or equivalently
¬ ⇒ ⇒

¬ ⇒
α β β γ

α γ
,

¬ ∨rich x unhappy x() () rich bob()

unhappy bob()

Foundations of Artificial Intelligence 4

Conjunctive Normal Form - Revisited
i Literal = possibly negated atomic sentence
4 e.g., ¬rich(x), or unhappy(bob), etc.

i Clause = disjunction of literals
4 e.g., ¬rich(x) ∨ unhappy(x)

i The KB is a conjunction of clauses

i Any first-order logic KB can be converted into CNF:
4 1. Replace P ⇒ Q with ¬P ∨ Q
4 2. Move inward the negation symbol, e.g., ¬∀x P becomes ∃x ¬P
4 3. Standardize variables apart, e.g., ∀x P ∨ ∃x Q becomes ∀x P ∨ ∃y Q
4 4. Move quantifiers left in order, e.g., ∀x P ∨ ∃y Q becomes ∀x∃y (P ∨ Q)
4 5. Eliminate ∃ by Skolemization (see later slide)
4 6. Drop universal quantifiers (we’ll assume they are implicit)
4 7. Distribute ∧ over ∨ , e.g., (P ∧ Q) ∨ R becomes (P ∨ Q) ∧ (P ∨ R)
4 8. Split conjunctions (into a set of clauses) and rename variables

Foundations of Artificial Intelligence 5

Conversion to CNF - Example 1
() ()A B C D G∧ ⇒ ∨ ∧¬iOriginal sentence

i Eliminate ⇒:

iMove in negation:

i Distribute ∧ over ∨:

i Split conjunction

(()) ()¬ ∧ ∨ ∨ ∧ ¬A B C D G

¬ ∨¬ ∨ ∨ ∧ ¬A B C D G()

() ()¬ ∨¬ ∨ ∨ ∧ ¬ ∨¬ ∨ ∨¬A B C D A B C G

()¬ ∨¬ ∨ ∨A B C D
()¬ ∨¬ ∨ ∨¬A B C G

()A B C D∧ ⇒ ∨
()A B G C∧ ∧ ⇒

or equivalently

This is a set of two clauses

Foundations of Artificial Intelligence 6

Skolemization
i The rules for Skolemization is essentially the same as those we

described for quantifier inference rules

4 if ∃ does not occur within the scope of a ∀, then drop ∃, and replace all
occurrence of the existentially quantified variable with a new constant symbol
(called the Skolem constant)

4 e.g., ∃x P(x) becomes P(â), where â is a new constant symbol

4 if ∃ is within the scope of any ∀, then drop ∃, and replace the associated
variable with a Skolem function (a new function symbol), whose arguments are
the universally quantified variables

4 e.g., ∀x∀y∃z P(x, y, z) becomes ∀x∀y P(x, y, sk(x, y))
4 e.g., ∀x person(x) ⇒ ∃y heart(y) ∧ has(x,y)

becomes ∀x person(x) ⇒ heart(sk(x)) ∧ has(x, sk(x))

Foundations of Artificial Intelligence 7

Conversion to CNF - Example 2
∀ ∀ ⇒ ¬ ∀ ⇒x y p x y y q x y r x y[((,)) (((,) (,)))]Convert:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

∀ ¬ ∀ ∨¬ ∀ ¬ ∨x y p x y y q x y r x y[((,)) (((,) (,)))]

∀ ∃ ¬ ∨ ∃ ∧ ¬x y p x y y q x y r x y[((,)) (((,) (,)))]

∀ ∃ ¬ ∨ ∃ ∧ ¬x y p x y z q x z r x z[((,)) (((,) (,)))]

∀ ∃ ∃ ¬ ∨ ∧¬x y z p x y q x z r x z[(,) ((,) (,))]

1 2 2[(, ()) ((, ()) (, ()))]x p x sk x q x sk x r x sk x∀ ¬ ∨ ∧¬

1 2 2(, ()) ((, ()) (, ()))p x sk x q x sk x r x sk x¬ ∨ ∧¬

1 2 1 2[(, ()) (, ())] [(, ()) (, ())]p x sk x q x sk x p x sk x r x sk x¬ ∨ ∧ ¬ ∨¬

1 2 1 2{ (, ()) (, ()), (, ()) (, ()) }p x sk x q x sk x p w sk w r w sk w¬ ∨ ¬ ∨¬

Foundations of Artificial Intelligence 8

Refutation Procedure - Example 1
1. A B C¬ ∨¬ ∨
2. ¬ ∨D B
3. ¬ ∨E A
4. E
5. D

prove KB CGiven KB =

¬C A B C¬ ∨¬ ∨

¬ ∨¬A B ¬ ∨E A

¬ ∨¬E B E

¬B ¬ ∨D B

¬D D

(clause 1)

(clause 3)

(clause 4)

(clause 2)

(clause 5)

Foundations of Artificial Intelligence 9

Refutation Procedure - Example 2
1. (,)father john mary
2. (,)mother sue john
3. (,)father bob john
4. [((,) (,)) (,)]∀ ∀ ∨ ⇒x y father x y mother x y parent x y
5. [((,) (,)) (,)]∀ ∀ ∃ ∧ ⇒x y z parent x z parent z y grand x y

KB =

Converting 4 to CNF:

4. ((,) (,)) ((,) (,))¬ ∨ ∧ ¬ ∨father x y parent x y mother x y parent x y

Converting 5 to CNF:

5. [((,) (,)) (,)]∀ ∀ ¬∃ ∧ ∨x y z parent x z parent z y grand x y

≡ ∀ ∀ ∀ ¬ ∧ ∨x y z parent x z parent z y grand x y[((,) (,)) (,)]

≡ ¬ ∨ ¬ ∨parent x z parent z y grand x y(,) (,) (,)

Foundations of Artificial Intelligence 10

Refutation Procedure - Example 2 (cont.)
1. (,)father john mary
2. (,)mother sue john
3. (,)father bob john
4. (,) (,)¬ ∨father x y parent x y

6. (,) (,) (,)¬ ∨¬ ∨parent x z parent z y grand x y
5. (,) (,)¬ ∨mother x y parent x y

Here is the
final KB in
clausal form:

Here is the
final KB in
clausal form:

KB =

A digression: what if we wanted to add a clause saying that there is someone
who is neither the father nor the mother of john:

∃ ¬ ∧¬x father x john mother x john[(,) (,)]
In clausal form:

{ (,), (,) }¬ ¬father a john mother a john

Next we want to prove each of the following using resolution refutation:
(sue is a grandparent of mary)grand sue mary(,)
(there is someone who is john’s parent)∃x parent x john(,)

Foundations of Artificial Intelligence 11

Refutation Procedure - Example 2 (cont.)
To prove, we must first negate the goal and transform into clausal form:

¬∃x parent x john(,) ∀ ¬x parent x john(,) ¬parent x john(,)

The refutation (proof by contradiction):

¬parent x john(,) ¬ ∨father x y parent x y(,) (,)

¬father x john(,) father bob john(,)

y = john

x = bob

(clause 4)

(clause 3)

Note that the proof is constructive: we end up with an answer x = bob

Foundations of Artificial Intelligence 12

Refutation Procedure - Example 2 (cont.)
Now, let’s prove that sue is the grandparent of mary:

(clause 6)¬grand sue mary(,) ¬ ∨¬ ∨parent x z parent z y grand x y(,) (,) (,)

¬ ∨¬parent sue z parent z mary(,) (,) ¬ ∨father x y parent x y(,) (,)1 1 1 1

¬ ∨¬parent sue x father x mary(,) (,)1 1 father john mary(,)

¬parent sue john(,) ¬ ∨mother x y parent x y(,) (,)2 2 2 2

¬mother sue john(,) mother sue john(,)

x = sue
y = mary

(clause 4)
z = x1
y1 = mary

(clause 1)

x1 = john

(clause 5)
x2 = sue
y2 = john

(clause 2)

Foundations of Artificial Intelligence 13

Substitutions and Unification
i A substitution is a set of bindings of the form v = t, where v is a

variable and t is a term
4 If P is an expression and σ is a substitution, then application of σ to P,

denoted by (P)σ, is the result of simultaneously replacing each variable x in P
with a term t, where x = t is in σ

4 E.g., P = likes(sue, z), and σ = {w = john, z = mother_of(john)}
then (P)σ = likes(sue, mother_of(john))

4 E.g., P = likes(father_of(w), z), and σ = {w = john, z = mother_of(x)}
then (P)σ = likes(father_of(john), mother_of(x))

4 E.g., P = likes(father_of(z), z), and σ = {z = mother_of(john)}
then (P)σ = likes(father_of(mother_of(john)), mother_of(john))

4 E.g., P = likes(w, z), and σ = {w = john, z = mother_of(w)}
then (P)σ = likes(john, mother_of(john))

Foundations of Artificial Intelligence 14

Substitutions and Unification
i Let P and Q be two expressions, and σ a substitution. Then σ is a

unifier of P and Q, if (P)σ = (Q)σ
4 In the above definition, “=” means syntactic equality only

4 E.g., P = likes(john, z), and Q = likes(w, mother_of(john))
then σ = {w = john, z = mother_of(john)} is a unifier of P and Q

4 E.g., E1 = p(x, f(y)), and E2 = p(g(z), w)
then σ1 = { x = g(a), y = b, z = a, w = f(b) }

σ2 = { x = g(a), z = a, w = f(y) }
σ3 = { x = g(z), w = f(y) }

are all unifiers for the two expressions. What’s the difference?

4 In the above example, σ2 is more general than σ1, since by applying some other
substitution (in this case {y = b}) to elements of σ2, we can obtain σ1. We say
that σ1 is an instance of σ2. Note that σ3 is in fact the most general unifier
(mgu) of E1 and E2: all instances of σ3 are unifiers, and any substitution that is
more general than σ3 is not a unifier of E1 and E2 (e.g., σ4 = { x = v, w = f(y) }
is more general than σ3, but is not a unifier.

Foundations of Artificial Intelligence 15

Substitutions and Unification
i Expressions may not be unifiable

4 E.g., E1 = p(x, y), and E2 = q(x, y)
E1 = p(a, y), and E2 = p(f(x), y)
E1 = p(x, f(y)), and E2 = p(g(z), g(w))
E1 = p(x, f(x)), and E2 = p(y, y) (why are these not unifiable?)

4 How about p(x) and p(f(x))?
h the “occur check” problem: when unifying two expressions, need to check to make

sure that a variable of one expression, does not occur in the other expression.

i Another Example (find the mgu of E1 and E2)
E1 = p(f(x, g(x, y), h(z, y)) E2 = p(z, h(f(u, v), f(a, b))

4 how about σ1 = { z = f(x, g(x,y)), z = f(u, v), y = f(a, b) }
not good: don’t know which binding for z to apply

4 how about σ2 = { z = f(x, g(x,y)), u = x, v = g(x, y), y = f(a, b) }
not good: is not a unifier

4 mgu(E1, E2) = { z = f(x, g(x, f(a,b))), u = x, v = g(x, f(a,b)), y = f(a, b) }

Foundations of Artificial Intelligence 16

Forward and Backward Chaining

iGeneralized Modus Ponens

4GMP is complete for Horn knowledge bases
4Recall: a Horn knowledge base is one in which all sentences are of the form

hp1 /\ p2 /\ …/\ pn => q OR
hp1 /\ p2 /\ …/\ pn

4 In other words, all sentence are in the form of an implication rule with zero
or one predicate on the right-hand-side (sentences with zero predicates on
the rhs are sometimes referred to as “facts”).

4 For such knowledge bases, we can apply GMP in a forward or a backward
direction.

where θ is a substitution
that unifies pi and qi for
all i, i.e., (pi)θ = (qi)θ.

Foundations of Artificial Intelligence 17

Forward and Backward Chaining
iForward Chaining
4Start with KB, infer new consequences using inference rule(s), add new

consequences to KB, continue this process (possibly until a goal is
reached)

4 In a knowledge-based agent this amounts to repeated application of the
TELL operation

4May generate many irrelevant conclusions, so not usually suitable for
solving for a specific goal

4Useful for building a knowledge base incrementally as new facts come in
4Usually, the forward chaining procedure is triggered when a new fact is

added to the knowledge base
hIn this case, FC will try to generate all consequences of the new fact (based

on existing facts) and adds those which are note already in the KB.

Foundations of Artificial Intelligence 18

Forward and Backward Chaining
iBackward Chaining
4 Start with goal to be proved, apply modus ponens in a backward manner to

obtain premises, then try to solve for premises until known facts (already in
KB) are reached

4 This is useful for solving for a particular goal
4 In a knowledge-based agent this amounts to applications of the ASK operation
4 The proofs can be viewed as an “AND/OR” tree
hRoot is the goal to be proved
hFor each node, its children are the subgoals that must be proved in order to

prove the goal at the current node
hIf the goal is conjunctive (i.e., the premise of rule is a conjunction), then

each conjunct is represented as a child and the node is marked as an “AND
node” – in this case, both subgoals have to be proved
hIf the goal can be proved using alternative facts in KB, each alternate

subgoal is represented as a child and the node is marked as an “OR node” –
in this case, only one of the subgoals need to be proved

Foundations of Artificial Intelligence 19

Proof Tree for Backward Chaining
1. A B C∧ ⇒
2. D E B∧ ⇒
3. F A⇒

5. E
6. D

4. E A⇒
prove KB CKB =

B is an AND node:
both branches must
succeed in order for
B to succeed.C

A B

fail;
backtrack

A is an OR node:
it’s sufficient for
one branch to
succeed in order
for A to succeed.

A is an OR node:
it’s sufficient for
one branch to
succeed in order
for A to succeed.

F E
success

D E

B is an AND node:
both branches must
succeed in order for
B to succeed.

successsuccess

What if clause 4 was G => A instead?What if clause 4 was G => A instead?

Foundations of Artificial Intelligence 20

Proof Tree for Backward Chaining
1. (,)father john mary 2. (,)mother sue john
3. (,)father bob john 4. (,) (,)father x y parent x y⇒

6. (,) (,) (,)parent x z parent z y grand x y∧ ⇒
5. (,) (,)mother x y parent x y⇒

KB =

grand x mary(,)

parent z mary(,)

father z mary(,)1 mother z mary(,)2

parent x z(,)

father x john(,)1 mother x john(,)2

z = z1 x = x1 x = x2
z = z2

z = john

fail

x1 = bob x2 = suez1 = john

Foundations of Artificial Intelligence 21

Backward Chaining: Blocks World

on(E, z)

4.
5.

on(D, w) on(D, v)

4.
5.

2.

3.

on(B, w)
fail

A
C B

E
D

1. on(A,C)
2. on(D,B)
3. on(E,D)
4. on(x,y) => above(x,y)
5. on(x,z) /\ above(z,y) => above(x,y)

1. on(A,C)
2. on(D,B)
3. on(E,D)
4. on(x,y) => above(x,y)
5. on(x,z) /\ above(z,y) => above(x,y)

Query: ∃w above(E,w)?

above(E, w)

above(z, w)on(E, w)

3.

above(v, w)
w = D z = D

2.

above(s, w)on(B, s)
w = B v = B fail

Foundations of Artificial Intelligence 22

Example: Using Resolution in Blocks World

A
C B

E
D 1. on(A,C) 4. ¬on(x,y) \/ above(x,y)

2. on(D,B) 5. ¬on(x,z) \/ ¬above(z,y) \/ above(x,y)
3. on(E,D)

1. on(A,C) 4. ¬on(x,y) \/ above(x,y)
2. on(D,B) 5. ¬on(x,z) \/ ¬above(z,y) \/ above(x,y)
3. on(E,D)

¬above(E, w) ¬on(x1, z1) \/ ¬above(z1, y1) \/ above(x1, y1)

¬on(E, z1) \/ ¬above(z1,w)

x1=E
y1 =w

on(E, D)

¬on(x2, y2) \/ above(x2, y2)

x2=D
y2 =w

¬above(D, w)

z1=D

¬on(D, w) on(D, B)

This gives one of the
answers to the query
∃w above(E,w),
namely, w = B. How
could we get the other
answer (i.e., w = D)?

This gives one of the
answers to the query
∃w above(E,w),
namely, w = B. How
could we get the other
answer (i.e., w = D)?

w=B

Foundations of Artificial Intelligence 23

A Knowledge-Based Agent for
Blocks World

i Scenario: our agent is a robot that needs to be able to move
blocks on top of other blocks (if they are “clear”) or onto the
floor.

i Full axiomatization of the problem requires two types of
axioms:
4 A set of axioms (facts) describing the current state of the world (this includes

“definitions” of predicates such as on, above, clear, etc)
4 A set of axioms that describe the effect of our actions
hin this case, there is one action: “move(x, y)”
hneed axioms that tell us what happens to blocks when they are moved
hImportant: in the real implementation of the agent a predicate such as

“move(x, y)” is associated with a specific action of the robot which is
triggered when the subgoal involving the “move” predicate succeeds.

Foundations of Artificial Intelligence 24

Agent for Blocks World

A
C B

E
D

onFloor(C) clear(A)
onFloor(B) clear(E)
on(A,C)
on(D,B) on(x,y) => above(x,y)
on(E,D) on(x,z) /\ above(z,y) => above(x,y)

onFloor(C) clear(A)
onFloor(B) clear(E)
on(A,C)
on(D,B) on(x,y) => above(x,y)
on(E,D) on(x,z) /\ above(z,y) => above(x,y)

Current state of the
world and other
things we know.

Need this to tell us what it means for a block to
be “clear.” It also tells us how to clear a block.~on(y,x) => clear(x)~on(y,x) => clear(x)

clear(x) /\ clear(y) /\ move(x,y) => on(x,y)
clear(x) /\ move(x,Floor) => onFloor(x)
on(x,y) /\ clear(x) /\ move(x,Floor) => clear(y)
. . .

clear(x) /\ clear(y) /\ move(x,y) => on(x,y)
clear(x) /\ move(x,Floor) => onFloor(x)
on(x,y) /\ clear(x) /\ move(x,Floor) => clear(y)
. . .

How actions affect
our world

on(E,A)

How do we
get E to be
on top of A?

move(E,A)clear(A)clear(E)

x = E
y = A

success success

Note that “move” predicate
is assumed to always
succeed, and is associated
with some real operation.

Foundations of Artificial Intelligence 25

Agent for Blocks World

A
C B

E
Don(D,A)

How do we
get D to be
on top of A?

move(D,A)clear(A)clear(D)

x1=D
y1=A

success
x2=w, y2=A

on(w,D) clear(w) So, to get D to be on A, we
first move(E,Floor) and
then move(D,A).

So, to get D to be on A, we
first move(E,Floor) and
then move(D,A).

move(w,Floor)
w=E

success success

w=E

Foundations of Artificial Intelligence 26

Efficient Control of Reasoning
i We have seen that during proofs (using resolution or Modus Ponens,

etc.), there are different choices we can make at each step

i Consider: house(h, p) ∧ rich(p) ⇒ big(h)
4 if we want to find h for which big(h) is true, we can do it in two ways

h1. find a rich person p, and hope that h will turn-out to be p’s house
h2. first show h is a house owned by p, then try to show that p is rich

4 usually 2nd approach is more likely to yield a solution; first approach is often
too random, but this is not always the case

4 Prolog always takes the left-most subgoal to resolve with a clause in KB
4 we can always order conjuncts on the left: “ordered resolution”

i Limitations (of controlling the search)
4 control info. is static (2nd subgoal is deferred and we can’t change this during

the search)
4 control information is provided by user (in form of axioms, ordering, etc.); we

want the computer to do this

Foundations of Artificial Intelligence 27

Types of Control Strategies
i Fundamental question is when to make the control decision: 3

possibilities
4 1. when the knowledge base is constructed (compile-time or static control)
4 2. during the search (run-time or dynamic control)
4 3. when the query appears (hybrid approach)

i Trade-offs
4 static is more efficient, but less flexible (less intelligent), since we don’t need

to figure it out as the interpreter is running
4 dynamic is more flexible, but less efficient and harder to implement
4 hybrid approach may work well if we make the right choice on which part

should be static and which part dynamic

Foundations of Artificial Intelligence 28

Using Statistical Properties of the KB
i In hybrid approach, ordering of subgoals may depend on

statistical properties of the KB
i Example:

4 now suppose:
h john has a small family and loves some of them
hmary has a large family, but only loves her cat

4 which ordering to use for queries: family-oriented(john) and
family-oriented(mary)?

i For john
4 begin by enumerating relatives and then check to see if he loves any

of them
i For mary

4 better to notice that she only loves her cat, and then check to see that
they are not related

related x y loves x y family oriented x(,) (,) ()∧ ⇒ −

Foundations of Artificial Intelligence 29

Controlling Search at Run-Time
i Method 1: Forward Checking

4 basic idea: if during the search we commit to a choice that “we know” will lead to dead
end, then we backtrack and make another choice

4 but, how can we “know” this without solving the problem completely?
4 answer: look ahead for a while to make sure that there are potential solutions for other

subgoals based on choices made so far

i Example: crossword puzzle
4 when filling-in a word, check ahead to make sure that there are still solutions for any

crossing word

i Example:

4 i.e., “people are unhappy if they live with their mothers-in-law;” now suppose we want
to find someone who is sad

4 look-ahead here could be checking info. about all marriages, if this information is
explicitly state in the KB

4 so, first find a mother and a child; then find out where the mother lives; but what if the
child isn’t married: no reason to continue; should go back and find another binding for c

mother m c lives at m h married c s lives at s h sad s(,) (,) (,) (,) ()∧ − ∧ ∧ − ⇒

Foundations of Artificial Intelligence 30

Controlling Search at Run-Time
i Method 2: Cheapest-First Heuristic

4 good idea to first solve terms for which there are only a few solutions; this choice would
simultaneously reduce the size of subsequent search space (harder predicates in the
conjuncts are solved before they become impossible, so there is less need for backtracking)

i Example: want to find a carpenter whose father is a senator!!!

4 suppose we have the following statistics about the knowledge base

Conjunct No. of Solutions
carpenter(x) 105

senator(y) 100
father(y, x) 108

father(y, constant) 1 (a specific person has only one father)
father(constant, x) 2.3 (people on average have 2.3 children)

4 in the above ordering, we have 105 choices for carpenters, but once we choose one, then
there is one choice for a father, and he is either a senator or not (search space: 105)

4 but, it is easier to enumerate senators first, then consider the term father(constant, x);
once x has been bound to another constant, it is either a carpenter or it is not (search space:
100 * 2.3 = 230)

carpenter x father y x senator y() (,) ()∧ ∧

Foundations of Artificial Intelligence 31

Declarative Control of Search
i How about giving the system declarative information about the problem

itself (i.e., include meta-information in the KB)?
4 We can add control rules which would be treated as other (base-level) rules
4 Problem: we now have to solve the control problem itself
4 When would this be a good idea

i An Example
4 Planning a trip: when to head to the airport?
4 We know that flights are scheduled, and we can’t control them (this is base-level info.)
4 So, control rule: “when planning a trip, plan the flight first”
4 Note that we used base-level info. to develop a meta-level control rule

i Problem:
4 After storing the control rule we have lost the information about its justification
4 Suppose we find out that flights are every 30 minutes, but we can only get a ride to airport

between 10 and 11 AM; this suggests that we should first plan out trip to airport
4 But, since the control rule was stored directly in KB, we can’t change the control behavior

during the execution

i Principle: if control rules are to be stored, they should be independent of
base-level information

Foundations of Artificial Intelligence 32

Meta- vs. Base-Level Reasoning Tradeoff

i The Basic Rule (Computational Principle)
4 the time spent at meta-level must be recovered at the base-level by finding a

quicker (more optimal) path to the solution
4 but, how do we know this without first solving the problem?

hmust somehow determine the “expected” time that will be recovered
4 open problem:

hwe know very little about how this “expected” time should be quantified

i Two Extremes:
4 1. ignore meta-level entirely: take action without worrying about their suitability

(shoot from the hip approach), e.g., BFS, DFS
4 2. work compulsively at meta-level: refuse to take any action before proving it is

the right thing to do
4 Problem with these is that you can always find cases where either is a bad protocol

he.g., we could miss easy exam heuristic in case 1: do problems with most points first

Foundations of Artificial Intelligence 33

Meta-Reasoning (Cont.)
i The Interleaving Approach
4 only specific proposal has been to interleave the two approaches, i.e., merge two

computational principles
h1. never introspect; 2. introspect compulsively

4 shown to give results generally within a factor of two of optimal solution
4 this is the “schizophrenic” AI system approach

h there are adherents to this idea in psychology: “everyone has two opposite
personalities that keep each other in check

i The Human Model
4 human problem solvers don’t do this

kind of interleaving
4 usually start by expecting problem to

be easy enough to solve directly; as
time passes, spend more time on
strategies to solve the problem

	Logical Inference andReasoning Agents
	Resolution Rule of Inference
	Resolution Rule of Inference
	Conjunctive Normal Form - Revisited
	Conversion to CNF - Example 1
	Skolemization
	Conversion to CNF - Example 2
	Refutation Procedure - Example 1
	Refutation Procedure - Example 2
	Refutation Procedure - Example 2 (cont.)
	Refutation Procedure - Example 2 (cont.)
	Refutation Procedure - Example 2 (cont.)
	Substitutions and Unification
	Substitutions and Unification
	Substitutions and Unification
	Forward and Backward Chaining
	Forward and Backward Chaining
	Forward and Backward Chaining
	Proof Tree for Backward Chaining
	Proof Tree for Backward Chaining
	Backward Chaining: Blocks World
	Example: Using Resolution in Blocks World
	A Knowledge-Based Agent for Blocks World
	Agent for Blocks World
	Agent for Blocks World
	Efficient Control of Reasoning
	Types of Control Strategies
	Using Statistical Properties of the KB
	Controlling Search at Run-Time
	Controlling Search at Run-Time
	Declarative Control of Search
	Meta- vs. Base-Level Reasoning Tradeoff
	Meta-Reasoning (Cont.)

