
1 Applications of Intelligent Agents
N. R. Jennings and M. Wooldridge
Queen Mary & Westfield College
University of London

1.1 Introduction

Intelligent agents are a new paradigm for developing software applications. More
than this, agent-based computing has been hailed as ‘the next significant break-
through in software development’ (Sargent, 1992), and ‘the new revolution in
software’ (Ovum, 1994). Currently, agents are the focus of intense interest on the
part of many sub-fields of computer science and artificial intelligence. Agents are
being used in an increasingly wide variety of applications, ranging from com-
paratively small systems such as email filters to large, open, complex, mission
critical systems such as air traffic control. At first sight, it may appear that such
extremely different types of system can have little in common. And yet this is not
the case: in both, the key abstraction used is that of an agent. Our aim in this article
is to help the reader to understand why agent technology is seen as a funda-
mentally important new tool for building such a wide array of systems. More
precisely, our aims are five-fold:

• to introduce the reader to the concept of an agent and agent-based systems,
• to help the reader to recognize the domain characteristics that indicate the

appropriateness of an agent-based solution,
• to introduce the main application areas in which agent technology has been

successfully deployed to date,
• to identify the main obstacles that lie in the way of the agent system developer,

and finally
• to provide a guide to the remainder of this book.

We begin, in this section, by introducing some basic concepts (such as, perhaps
most importantly, the notion of an agent). In Section 1.2, we give some general
guidelines on the types of domain for which agent technology is appropriate. In
Section 1.3, we survey the key application domains for intelligent agents. In
Section 1.4, we discuss some issues in agent system development, and finally, in
Section 1.5, we outline the structure of this book.

Before we can discuss the development of agent-based systems in detail, we
have to describe what we mean by such terms as ‘agent’ and ‘agent-based system’.
Unfortunately, we immediately run into difficulties, as some key concepts in agent-
based computing lack universally accepted definitions. In particular, there is no real
agreement even on the core question of exactly what an agent is (see Franklin and
Graesser (1996) for a discussion). However, we believe that most researchers

4 Jennings and Wooldridge

would find themselves in broad agreement with the following definitions
(Wooldridge and Jennings, 1995).

First, an agent is a computer system situated in some environment, and that is
capable of autonomous action in this environment in order to meet its design
objectives. Autonomy is a difficult concept to pin down precisely, but we mean it
simply in the sense that the system should be able to act without the direct
intervention of humans (or other agents), and should have control over its own
actions and internal state. It may be helpful to draw an analogy between the notion
of autonomy with respect to agents and encapsulation with respect to object-
oriented systems. An object encapsulates some state, and has some control over this
state in that it can only be accessed or modified via the methods that the object
provides. Agents encapsulate state in just the same way. However, we also think of
agents as encapsulating behavior, in addition to state. An object does not
encapsulate behavior: it has no control over the execution of methods – if an object
x invokes a method m on an object y, then y has no control over whether m is
executed or not – it just is. In this sense, object y is not autonomous, as it has no
control over its own actions. In contrast, we think of an agent as having exactly this
kind of control over what actions it performs. Because of this distinction, we do not
think of agents as invoking methods (actions) on agents – rather, we tend to think of
them requesting actions to be performed. The decision about whether to act upon
the request lies with the recipient.

Of course, autonomous computer systems are not a new development. There are
many examples of such systems in existence. Examples include:

• any process control system, which must monitor a real-world environment and
perform actions to modify it as conditions change (typically in real time) – such
systems range from the very simple (for example, thermostats) to the extremely
complex (for example, nuclear reactor control systems),

• software daemons, which monitor a software environment and perform actions
to modify the environment as conditions change – a simple example is the
UNIX xbiff program, which monitors a user’s incoming email and obtains
their attention by displaying an icon when new, incoming email is detected.

It may seem strange that we choose to call such systems agents. But these are
not intelligent agents. An intelligent agent is a computer system that is capable of
flexible autonomous action in order to meet its design objectives. By flexible, we
mean that the system must be:

• responsive: agents should perceive their environment (which may be the phy-
sical world, a user, a collection of agents, the Internet, etc.) and respond in a
timely fashion to changes that occur in it,

• proactive: agents should not simply act in response to their environment, they
should be able to exhibit opportunistic, goal-directed behavior and take the
initiative where appropriate, and

Applications of Intelligent Agents 5

• social: agents should be able to interact, when they deem appropriate, with
other artificial agents and humans in order to complete their own problem
solving and to help others with their activities.

Hereafter, when we use the term ‘agent’, it should be understood that we are
using it as an abbreviation for ‘intelligent agent’. Other researchers emphasize
different aspects of agency (including, for example, mobility or adaptability).
Naturally, some agents may have additional characteristics, and for certain types of
applications, some attributes will be more important than others. However, we
believe that it is the presence of all four attributes in a single software entity that
provides the power of the agent paradigm and which distinguishes agent systems
from related software paradigms – such as object-oriented systems, distributed sys-
ems, and expert systems (see Wooldridge (1997) for a more detailed discussion).

By an agent-based system, we mean one in which the key abstraction used is
that of an agent. In principle, an agent-based system might be conceptualized in
terms of agents, but implemented without any software structures corresponding to
agents at all. We can again draw a parallel with object-oriented software, where it is
entirely possible to design a system in terms of objects, but to implement it without
the use of an object-oriented software environment. But this would at best be
unusual, and at worst, counterproductive. A similar situation exists with agent
technology; we therefore expect an agent-based system to be both designed and
implemented in terms of agents. A number of software tools exist that allow a user
to implement software systems as agents, and as societies of cooperating agents.

Note that an agent-based system may contain any non-zero number of agents.
The multi-agent case – where a system is designed and implemented as several
interacting agents, is both more general and significantly more complex than the
single-agent case. However, there are a number of situations where the single-agent
case is appropriate. A good example, as we shall see later in this chapter, is the
class of systems known as expert assistants, wherein an agent acts as an expert
assistant to a user attempting to use a computer to carry out some task.

1.2 Agent Application Domain Characteristics

Now that we have a better understanding of what the terms ‘agent’ and ‘agent-
based system’ mean, the obvious question to ask is: what do agents have to offer?
For any new technology to be considered as useful in the computer marketplace, it
must offer one of two things:

• the ability to solve problems that have hitherto been beyond the scope of
automation – either because no existing technology could be used to solve the
problem, or because it was considered too expensive (difficult, time-consuming,
risky) to develop solutions using existing technology; or

• the ability to solve problems that can already be solved in a significantly better
(cheaper, more natural, easier, more efficient, or faster) way.

6 Jennings and Wooldridge

1.2.1 Solving New Types of Problem

Certain types of software system are inherently more difficult to correctly design
and implement than others. The simplest general class of software systems are
functional. Such systems work by taking some input, computing a function of it,
and giving this result as output. Compilers are obvious examples of functional
systems. In contrast, reactive systems, which maintain an ongoing interaction with
some environment, are inherently much more difficult to design and correctly
implement. Process control systems, computer operating systems, and computer
network management systems are all well-known examples of reactive systems. In
all of these examples, a computer system is required that can operate independ-
ently, typically over long periods of time. It has long been recognized that reactive
systems are among the most complex types of system to design and implement
(Pnueli, 1986), and a good deal of effort has been devoted to developing software
tools, programming languages, and methodologies for managing this complexity –
with some limited success. However, for certain types of reactive system, even
specialized software engineering techniques and tools fail – new techniques are
required. We can broadly subdivide these systems into three classes:

• open systems,
• complex systems, and
• ubiquitous computing systems.

1.2.1.1 Open Systems

An open system is one in which the structure of the system itself is capable of
dynamically changing. The characteristics of such a system are that its components
are not known in advance, can change over time, and may be highly heterogeneous
(in that they are implemented by different people, at different times, using different
software tools and techniques). Computing applications are increasingly demanded
by users to operate in such domains. Perhaps the best-known example of a highly
open software environment is the Internet – a loosely coupled computer network of
ever expanding size and complexity. The design and construction of software tools
to exploit the enormous potential of the Internet and its related technology is one of
the most important challenges facing computer scientists in the 1990s, and for this
reason, it is worth using it as a case study. The Internet can be viewed as a large,
distributed information resource, with nodes on the network designed and
implemented by different organizations and individuals with widely varying
agendas. Any computer system that must operate on the Internet must be capable of
dealing with these different organizations and agendas, without constant guidance
from users (but within well-defined bounds). Such functionality is almost certain to
require techniques based on negotiation or cooperation, which lie very firmly in the
domain of multi-agent systems (Bond and Gasser, 1988).

Applications of Intelligent Agents 7

1.2.1.2 Complex Systems

The most powerful tools for handling complexity in software development are
modularity and abstraction. Agents represent a powerful tool for making systems
modular. If a problem domain is particularly complex, large, or unpredictable, then
it may be that the only way it can reasonably be addressed is to develop a number
of (nearly) modular components that are specialized (in terms of their repre-
sentation and problem solving paradigm) at solving a particular aspect of it. In such
cases, when interdependent problems arise, the agents in the systems must
cooperate with one another to ensure that interdependencies are properly managed.
In such domains, an agent-based approach means that the overall problem can be
partitioned into a number of smaller and simpler components, which are easier to
develop and maintain, and which are specialized at solving the constituent sub-
problems. This decomposition allows each agent to employ the most appropriate
paradigm for solving its particular problem, rather than being forced to adopt a
common uniform approach that represents a compromise for the entire system, but
which is not optimal for any of its subparts. The notion of an autonomous agent
also provides a useful abstraction in just the same way that procedures, abstract
data types, and, most recently, objects provide abstractions. They allow a software
developer to conceptualize a complex software system as a society of cooperating
autonomous problem solvers. For many applications, this high-level view is simply
more appropriate than the alternatives.

1.2.1.3 Ubiquity

Despite the many innovations in human-computer interface design over the past
two decades, and the wide availability of powerful window-based user interfaces,
computer-naïve users still find most software difficult to use. One reason for this is
that the user of a software product typically has to describe each and every step that
needs to be performed to solve a problem, down to the smallest level of detail. If
the power of current software applications is ever to be fully utilized by such users,
then a fundamental rethink is needed about the nature of the interaction between
computer and user. It must become an equal partnership – the machine should not
just act as a dumb receptor of task descriptions, but should cooperate with the user
to achieve their goal. As Negroponte wrote, ‘the future of computing will be 100%
driven by delegating to, rather than manipulating computers’ (Negroponte, 1995).
To deliver such functionality, software applications must be:

• autonomous: given a vague and imprecise specification, it must determine how
the problem is best solved and then solve it, without constant guidance from the
user,

• proactive: it should not wait to be told what to do next, rather it should make
suggestions to the user,

8 Jennings and Wooldridge

• responsive: it should take account of changing user needs and changes in the
task environment, and

• adaptive: it should come to know user’s preferences and tailor interactions to
reflect these.

In other words, it needs to behave as an intelligent agent. These considerations
give rise to the idea of an agent acting as an ‘expert assistant’ with respect to some
application, knowledgeable about both the application itself and the user, and
capable of acting with the user in order to achieve the user’s goals. We discuss
some prototypical expert assistants in Section 1.3.

1.2.2 Improving the Efficiency of Software Development

Agent technology gives us the tools with which to build applications that we were
previously unable to build. But it can also provide a better means of concept-
ualizing and/or implementing a given application. Here, three important domain
characteristics are often cited as a rationale for adopting agent technology (cf. Bond
and Gasser, 1988):

• data, control, expertise, or resources are inherently distributed,
• the system is naturally regarded as a society of autonomous cooperating com-

ponents, or
• the system contains legacy components, which must be made to interact with

other, possibly new software components.

1.2.2.1 Distribution of Data, Control, Expertise, or Resources

When the domain involves a number of distinct problem solving entities (or data
sources) that are physically or logically distributed (in terms of their data, control,
expertise, or resources), and which need to interact with one another in order to
solve problems, then agents can often provide an effective solution. For example, in
a distributed health care setting, general practitioners, hospital specialists, nurses,
and home care organizations have to work together to provide the appropriate care
to a sick patient (Huang et al., 1995). In this domain, there is:

• distribution of data: the general practitioner has data about the patient, which is
very different from that of the hospital nurse – even though it concerns the same
person,

• distribution of control: each individual is responsible for performing a different
set of tasks,

• distribution of expertise: the specialist’s knowledge is very different from that
of either the general practitioner or the nurse, and

• distribution of resources: a specialist is responsible for the beds required by
their patients, a general practitioner for paying hospital bills, etc.

Applications of Intelligent Agents 9

In cases like this, agents provide a natural way of modeling the problem: real-
world entities and their interactions can be directly mapped into autonomous
problem solving agents with their own resources and expertise, and which are able
to interact with others in order to get tasks done. Also, in the case of distributed
data sources, (as in sensor networks (Lesser and Corkill, 1983) and seismic
monitoring (Mason, 1995)), the use of agents means that significant amounts of
processing can be carried out at the data source, with only high-level information
exchanged. This alleviates the need to send large amounts of raw data to a distant
central processor, thus making more efficient use of communications bandwidth.

1.2.2.2 Natural Metaphor

The notion of an autonomous agent is often the most appropriate metaphor for
presenting a given software functionality. For example:

• a program that filters email can be presented to its user via the metaphor of a
personal digital assistant (Maes, 1994), and

• meeting scheduling software can naturally be presented as an empowered,
autonomous, social agent that can interact with other similar agents on the
user’s behalf.

In such applications, the fact that these functions are implemented through a
series of local agents also means that they can be personalized to reflect the
preferences of their user. Finally, in computer games (Wavish and Graham, 1995)
and virtual reality systems (Bates, 1994), characters can naturally be represented as
agents.

1.2.2.3 Legacy Systems

Large organizations have many software applications (especially information sys-
tems) that perform critical organizational functions. To keep pace with changing
business needs, these systems must be periodically updated. However, modifying
such legacy systems is in general very difficult: the system’s structure and internal
operation will become corrupted with the passage of time, designs and docu-
mentation are lost, and individuals with an understanding of the software move on.
Completely rewriting such software tends to be prohibitively expensive, and is
often simply impossible. Therefore, in the long term, the only way to keep such
legacy systems useful is to incorporate them into a wider cooperating community,
in which they can be exploited by other pieces of software. This can be done, for
example, by building an ‘agent wrapper’ around the software to enable it to inter-
operate with other systems (Genesereth and Ketchpel, 1994; Jennings et al., 1993).
The process of transforming a software application such as a database into an agent
is sometimes referred to as agentification (Shoham, 1993).

10 Jennings and Wooldridge

1.2.3 The Limitations of Agent Solutions

Although agent technology has an important role to play in the development of
leading-edge computing applications, it should not be oversold. Most applications
that currently use agents could be built using non-agent techniques. Thus the mere
fact that a particular problem domain has distributed data sources or involves
legacy systems does not necessarily imply that an agent-based solution is the most
appropriate one – or even that it is feasible. As with all system designs, the ultimate
choice is dictated by many factors. This section has identified the types of situation
in which an agent-based solution should be considered, as opposed to those in
which it should be deployed. Moreover, it should be noted that the very nature of
the agent paradigm leads to a number of problems, common to all agent- based
applications:

• No overall system controller. An agent-based solution may not be appropriate
for domains in which global constraints have to be maintained, in domains
where a real-time response must be guaranteed, or in domains in which dead-
locks or livelocks must be avoided.

• No global perspective. An agent’s actions are, by definition, determined by that
agent’s local state. However, since in almost any realistic agent system,
complete global knowledge is not a possibility, this may mean that agents make
globally sub-optimal decisions. The issue of reconciling decision making based
on local knowledge with the desire to achieve globally optimal performance is a
basic issue in multi-agent systems research (Bond and Gasser, 1988).

• Trust and delegation. For individuals to be comfortable with the idea of
delegating tasks to agents, they must first trust them. Both individuals and
organizations will thus need to become more accustomed and confident with the
notion of autonomous software components, if they are to become widely used.
Users have to gain confidence in the agents that work on their behalf, and this
process can take time. During this period, the agent must strike a balance
between continually seeking guidance (and needlessly distracting the user) and
never seeking guidance (and exceeding its authority). Put crudely, an agent
must know its limitations.

1.3 Agent Application Domains

Agents are the next major computing paradigm and will be pervasive in
every market by the year 2000. (Janca, 1995)

There are several orthogonal dimensions along which agent applications could be
classified. They can be classified by the type of the agent, by the technology used to
implement the agent, or by the application domain itself. We choose to use the
domain type, since this view fits best with the objectives and structure of the rest of
this chapter (see Nwana (1996) for an alternative typology). Our aim in producing
this classification scheme is simply to give a feel for the breadth and variety of

Applications of Intelligent Agents 11

agent applications. More comprehensive descriptions of specific agent systems can
be found in (AA97; Chaib-draa, 1995; Nwana, 1996; PAAM 1996; van Parunak,
1996).

1.3.1 Industrial Applications

Industrial applications of agent technology were among the first to be developed: as
early as 1987, Parunak reports experience with applying the contract net task
allocation protocol in a manufacturing environment (see below). Today, agents are
being applied in a wide range of industrial applications.

1.3.1.1 Process Control

Process control is a natural application for intelligent agents and multi-agent
systems, since process controllers are themselves autonomous reactive systems. It is
not surprising, therefore, that a number of agent-based process control appli-cations
should have been developed. The best known of these is ARCHON, a soft-ware
platform for building multi-agent systems, and an associated methodology for
building applications with this platform (Jennings, 1995). ARCHON has been
applied in several process control applications, including electricity transportation
management (the application is in use in northern Spain), and particle accelerator
control. ARCHON also has the distinction of being one of the earliest field-tested
multi-agent systems in the world. Agents in ARCHON are fairly heavyweight
computational systems, with four main components: a high-level communication
module (HLCM), which manages inter-agent communication; a planning and
coordination module (PCM), which is essentially responsible for deciding what the
agent will do; an agent information management module (AIM), which is
responsible for maintaining the agent’s model of the world, and finally, an
underlying intelligent system (IS), which represents the agent’s domain expertise.
The HLCM, PCM, and AIM together constitute a kind of ‘agent wrapper’, which
can be used to encapsulate an existing intelligent system (or indeed any pre-existing
software application) and turn it into an agent.

1.3.1.2 Manufacturing

Parunak (1987) describes the YAMS (Yet Another Manufacturing System), which
applies the well-known Contract Net protocol (Smith, 1980) to manufacturing
control. The basic problem can be described as follows. A manufacturing enterprise
is modeled as a hierarchy of workcells. There will, for example, be workcells for
milling, lathing, grinding, painting, and so on. These workcells will be further
grouped into flexible manufacturing systems (FMS), each of which will provide a
functionality such as assembly, paint spraying, buffering of products, and so on. A
collection of such FMSs is grouped into a factory. A single company or
organization may have many different factories, though these factories may

12 Jennings and Wooldridge

duplicate functionality and capabilities. The goal of YAMS is to efficiently manage
the production process at these plants. This process is defined by some constantly
changing parameters, such as the products to be manufactured, available resources,
time constraints, and so on. In order to achieve this enormously complex task,
YAMS adopts a multi-agent approach, where each factory and factory component
is represented as an agent. Each agent has a collection of plans, representing its
capabilities. The contract net protocol allows tasks (i.e., production orders) to be
delegated to individual factories, and from individual factories down to FMSs, and
then to individual workcells. The contract net is based on the idea of negotiation,
and hence YAMS views the problem of deciding how best to process a company’s
product manufacturing requirements as a negotiation problem. A some-what similar
approach was developed in (Wooldridge et al., 1996), where the problem of
determining an optimal production sequence for a factory was analyzed using the
tools of game and negotiation theory.

1.3.1.3 Air Traffic Control

Kinny et al. (1996) describe a sophisticated agent-realized air traffic control system
known as OASIS. In this system, which is undergoing field trials at Sydney airport
in Australia, agents are used to represent both aircraft and the various air traffic
control systems in operation. The agent metaphor thus provides a useful and natural
way of modeling real-world autonomous components. As an aircraft enters Sydney
airspace, an agent is allocated for it, and the agent is instantiated with the
information and goals corresponding to the real-world aircraft. For example, an
aircraft might have a goal to land on a certain runway at a certain time. Air traffic
control agents are responsible for managing the system. OASIS is implemented
using the AAII’s own dMARS system. This system allows an agent to be
implemented using the belief-desire-intention model of agency – one of the most
popular approaches to reasoning about agents in theoretical multi-agent systems.

1.3.2 Commercial Applications

1.3.2.1 Information Management

As the richness and diversity of information available to us in our everyday lives
has grown, so the need to manage this information has grown. The lack of effective
information management tools has given rise to what is colloquially known as the
information overload problem. Put simply, the sheer volume of information
available to us via the Internet and World Wide Web (WWW) represents a very
real problem. The potential of this resource is immediately apparent to anyone with
more than the most superficial experience of using the WWW. But the reality is
often disappointing. There are many reasons for this. Both human factors (such as
users getting bored or distracted) and organizational factors (such as poorly
organized pages with no semantic markup) conspire against users attempting to use

Applications of Intelligent Agents 13

the resource in a systematic way. We can characterize the information overload
problem in two ways:

• Information filtering. Every day, we are presented with enormous amounts of
information (via email and newsnet news, for example), only a tiny proportion
of which is relevant or important. We need to be able to sort the wheat from the
chaff, and focus on information we need.

• Information gathering. The volume of information available prevents us from
actually finding information to answer specific queries. We need to be able to
obtain information that meets our requirements, even if this information can
only be collected from a number of different sites.

One important contributing factor to information overload is almost certainly
that an end user is required to constantly direct the management process. But there
is in principle no reason why such searches should not be carried out by agents,
acting autonomously to search the Web on behalf of some user. The idea is so
compelling that many projects are directed at doing exactly this. Three such
projects are described below:

• Maxims: (Maes, 1994) describes an electronic mail filtering agent called
Maxims. The program ‘learns to prioritize, delete, forward, sort, and archive
mail messages on behalf of a user’ (p. 35). It works by ‘looking over the
shoulder’ of a user as he or she works with their email reading program, and
uses every action the user performs as a lesson. Maxims constantly makes
internal predictions about what a user will do with a message. If these
predictions turn out to be inaccurate, then Maxims keeps them to itself. But
when it finds it is having a useful degree of success in its predictions, it starts to
make suggestions to the user about what to do.

• Newt: (Maes, 1994) also describes an example of an Internet news filtering
program called Newt. This program, implemented in C++ on a UNIX plat-form,
takes as input a stream of usenet news articles, and as output gives a subset of
these articles that it is recommended the user reads. The Newt agent is
‘programmed’ by means of training examples: the user gives Newt examples of
articles that would and would not be read, and this feedback is used to modify
an internal ‘model’ (we use the term very loosely) of the user’s interests. The
user can, if desired, explicitly program Newt by giving it precise rules (e.g.,
“give me all articles containing the word ‘agent’”). Newt retrieves words of
interest from an article by performing a full-text analysis using the vector space
model for documents.

• The Zuno Digital Library: A digital library is an organized, managed collection
of data, together with services to assist the user in making use of this data. The
Zuno Digital Library (ZDL) system is a multi-agent system that enables a user
to obtain a single, coherent view of incoherent, disorganized data sources such
as the World Wide Web, a user’s own data, collections of articles on publishing
house sites, and so on (Zuno, 1997). Agents in ZDL play one of three roles:

14 Jennings and Wooldridge

• consumer – representing end users of the system, who can be thought
of as consuming information;

• producer – representing ‘content providers’, who own the information
that customers consume; and

• facilitator – mapping between consumers and producers.

Consumer agents in the system are responsible for representing the user’s
interests. They maintain models of users, and use these models to assist them,
by proactively providing information they require, and shielding them from
information that is not of interest. ZDL thus acts both as an information filter
and an information gatherer.

1.3.2.2 Electronic Commerce

Currently, commerce is almost entirely driven by human interactions; humans
decide when to buy goods, how much they are willing to pay, and so on. But in
principle, there is no reason why some commerce cannot be automated. By this, we
mean that some commercial decision making can be placed in the hands of agents.
Lest the reader suppose that this is fanciful, and that no sensible commercial
organization would make their decision making (and hence money spending) the
responsibility of a computer program, it should be remembered that this is precisely
what happens today in the electronic trading of stocks and shares. Widespread
electronic commerce is, however, likely to lie some distance in the future. In the
near term, electronic trading applications are likely to be much more mundane and
small scale. As an example, Chavez and Maes (1996) describe a simple ‘electronic
marketplace’ called Kasbah. This system realizes the market-place by creating
‘buying’ and ‘selling’ agents for each good to be purchased or sold respectively.
Commercial transactions take place by the interactions of these agents.

1.3.2.3 Business Process Management

Company managers make informed decisions based on a combination of judge-
ment and information from many departments. Ideally, all relevant information
should be brought together before judgement is exercised. However obtaining
pertinent, consistent and up-to-date information across a large company is a
complex and time consuming process. For this reason, organizations have sought to
develop a number of IT systems to assist with various aspects of the manage-ment
of their business processes. Project ADEPT (Jennings et al., 1996) tackles this
problem by viewing a business process as a community of negotiating, service-
providing agents. Each agent represents a distinct role or department in the
enterprise and is capable of providing one or more services. For example, a design
department may provide the service of designing a telecom network, a legal
department may offer the service of checking that the design is legal, and the
marketing department may provide the service of costing the design. Agents who

Applications of Intelligent Agents 15

require a service from another agent enter into a negotiation for that service to
obtain a mutually acceptable price, time, and degree of quality. Successful
negotiations result in binding agreements between agents. This agent-based
approach offers a number of advantages over more typical workflow solutions to
this problem. The proactive nature of the agents means services can be scheduled in
a just-in-time fashion (rather than pre-specified from the beginning), and the
responsive nature of the agents means that service exceptions can be detected and
handled in a flexible manner. The current version of the system has been tested on a
British Telecom (BT) business process involving some 200 activities and nine
departments and there are plans to move toward full scale field trials.

1.3.3 Medical Applications

Medical informatics is a major growth area in computer science: new applications
are being found for computers every day in the health industry. It is not surprising,
therefore, that agents should be applied in this domain. Two of the earliest
applications are in the areas of health care and patient monitoring.

1.3.3.1 Patient Monitoring

The Guardian system described in (Hayes-Roth et al., 1989) is intended to help
manage patient care in the Surgical Intensive Care Unit (SICU). The system was
motivated by two concerns: first, that the patient care model in a SICU is
essentially that of a team, where a collection of experts with distinct areas of
expertise cooperate to organize patient health care; and second, that one of the most
important factors in good SICU patient health care is the adequate sharing of
information between members of the critical care team. In particular, specialists
tend to have very little opportunity to monitor the minute-by-minute status of a
patient; this task tends to fall to nurses, who, in contrast, often do not have the
expertise to interpret the information they obtain in the way that an appropriate
expert would. The Guardian system distributes the SICU patient monitoring
function among a number of agents, of three different types:

• perception/action agents – responsible for the interface between Guardian and
the world, mapping raw sensor input into a usable symbolic form, and trans-
lating action requests from Guardian into raw effector control commands,

• reasoning agents – responsible for organizing the system’s decision making
process, and

• control agents – of which there will only ever be one, with overall, top-level
control of the system.

These agents are organized into hierarchies, and the system as a whole is
closely based on the blackboard model of control, wherein different agents
(‘knowledge sources’) cooperate via sharing knowledge in a common data structure
known as a blackboard.

16 Jennings and Wooldridge

1.3.3.2 Health Care

Huang et al. (1996) describe a prototypical agent-based distributed medical care
system. This system is designed to integrate the patient management process, which
typically involves many individuals. For example, a general practitioner may
suspect that a patient has breast cancer, but this suspicion cannot be con-firmed or
rejected without the assistance of a hospital specialist. If the specialist confirms the
hypothesis, then a care programme must be devised for treating the patient,
involving the resources of other individuals. The prototype system allows a natural
representation of this process, with agents mapped onto the individuals and,
potentially, organizations involved in the patient care process. Agents in the
prototype contain a knowledge-based (intelligent) system, containing the domain
expertise of the agent, a human-computer interface, allowing the user to add,
remove, or view system goals, and a communications manager, which realizes the
message-passing functionality of agents. The intelligent system component is based
on the KADS model of expertise, and the whole agent architecture is implemented
in PROLOG. Message passing is realized via extensions to standard email.

1.3.4 Entertainment

The leisure industry is often not taken seriously by the computer science com-
munity. Leisure applications are frequently seen as somehow peripheral to the
‘serious’ applications of computers. And yet leisure applications such as computer
games can be extremely lucrative – consider the number of copies of id Software’s
‘Quake’ sold since its release in 1996. Agents have an obvious role in computer
games, interactive theater, and related virtual reality applications: such systems tend
to be full of semi-autonomous animated characters, which can naturally be
implemented as agents.

1.3.4.1 Games

Wavish et al. (1996) describe several applications of agent technology to com-puter
games. For example, they have developed a version of the popular Tetris computer
game, where a user must try to make a wall out of irregularly shaped falling blocks.
The agent in the game takes the part of the user, who must control where the blocks
fall. Trying to program this agent using traditional symbolic AI techniques would
require going through a knowledge elicitation stage, repre-senting knowledge about
the game and the role of the user in terms of symbolic data structures such as rules,
and so on. This approach would be entirely un-realistic for a game like Tetris,
which has hard real-time constraints. Wavish and colleagues thus use an alternative
reactive agent model called RTA (Real Time Able). In this approach, agents are

Applications of Intelligent Agents 17

programmed in terms of behaviors. These behaviors are simple structures, which
loosely resemble rules but do not require complex symbolic reasoning.

1.3.4.2 Interactive Theater and Cinema

By interactive theater and cinema, we mean a system that allows a user to play out a
role analogous to the roles played by real, human actors in plays or films,
interacting with artificial, computer characters that have the behavioral charac-
teristics of real people. Agents that play the part of humans in theater-style
applications are often known as believable agents, a term coined by Joe Bates. His
vision is of

[Agents that] provide the illusion of life, thus permitting … [an]
audience’s suspension of disbelief. (Bates, 1994)

A number of projects have been set up to investigate the development of such
agents. For example, (Hayes-Roth et al., 1995) describe a directed improvization
system, in which human players act out roles in a dynamic narrative, creating a
new, user directed ‘work’.

1.3.5 Comments

At a certain level of abstraction, many of the above applications share common
features. Individual agents are designed and built to enact particular roles. These
agents are autonomous, goal directed entities, which are responsive to their
environment. They must typically interact with other agents in order to carry out
their role. Such interactions are a natural consequence of the inevitable inter-
dependencies which exist between the agents, their environment, and their design
objectives. As the agents are autonomous, the interactions are usually fairly
sophisticated – involving cooperation, coordination and negotiation. Following on
from this view, two important observations can be made about developing agent-
based applications:

• The detailed problem solving actions of the agent can only be determined at run
time. Individual behavior is regulated by a complex interplay between the
agent’s internal state and its external influences (its environment and the other
agents). Thus the precise ‘trajectory’ that an agent will follow can only be
discovered by running the agent in its environment.

• Because the behavior of individual agents is not uniquely determined at design
time, the behavior of the system as a whole can also only emerge at run time.

These points have some obvious (and perhaps alarming) implications for the
use of an agent-based approach in safety-critical application domains such as air
traffic control, where it is essential that the system satisfies its specification. We
comment on this issue in Section 1.4.

18 Jennings and Wooldridge

The above applications also illustrate that there are several different dimensions
along which we can analyze agent-based systems:

• Sophistication of the Agents. Agents can be seen as performing three broad
types of behavior. At the simplest level, there is the ‘gopher’ agent, which
carries out comparatively simple tasks, based on well-defined, pre-specified
rules and assumptions. The next level of sophistication involves ‘service
performing’ agents, which carry out a high-level, but still well-defined task at
the request of a user (e.g., arrange a meeting or find an appropriate flight).
Finally, there are the predictive/proactive agents, capable of flexible auto-
nomous behavior in the way we discussed above. Simple examples are agents
that volunteer information or services to a user, without being asked, whenever
it is deemed to be appropriate.

• Role of the Agents. Agents play many types of role. For example, in several of
the industrial and commercial applications discussed above, the role of the
agent system is to provide a decision support functionality. The agents act
autonomously and proactively to gather information and to make recommen-
dations, but a human operator makes the ultimate decisions. In contrast, in the
entertainment domain (for example), the agent completely automates a problem
solving role – it is thus delegated a particular activity and is entirely respon-
sible for carrying it out.

• Granularity of View. In some of the applications discussed above, the signi-
ficant unit of analysis and design is the individual agent, whereas in other
applications it is the society of agents that is key. The decision about whether to
adopt a single-agent or multi-agent approach is generally determined by the
domain, and is similar in nature to decisions about whether monolithic,
centralized solutions or distributed, decentralized solutions are appropriate.
Single-agent systems are in a sense much simpler than multi-agent systems,
since they do not require the designer to deal with issues such as cooperation,
negotiation, and so on.

1.4 The Agent Development Bottleneck

At the time of writing, expertise in designing and building agent applications is
scarce. There is little in the way of production-quality software support for building
agent applications, and still less general understanding of the issues that need to be
addressed when building such systems. Worse, most of today’s agent systems are
built from scratch, using bespoke tools and techniques, which cannot easily be
applied to other types of system. This is particularly worrying because a lot of
infrastructure is required before the main components of an agent system can be
built. At the moment, most developers rebuild this infrastructure from scratch in
every new case; this process is clearly not sustainable.

However, there is an increasing awareness that this situation must change if
agents are to make it into the mainstream of software development (Kinny, 1996;

Applications of Intelligent Agents 19

Wooldridge, 1997). Support is required throughout the agent system development
process. In what follows, we use a traditional software engineering model as a basis
for structuring our discussion of this issue. We begin our discussion with
requirements specification, since the stage that precedes it – requirements analysis
– does not differ in any significant way from that for other types of software
system. The requirements analysis stage typically concludes with a user require-
ments document – a statement of the properties that the analyst or developer
believes the user (client) wants of the new system. This document is usually written
in non-technical language, so that it can be understood by both client and
developer.

1.4.1 Requirements Specification

Once an understanding is reached of the client’s needs with respect to the newly
commissioned system, a precise statement is required of what the developers intend
to build. This document tends to be written as formally as possible – it aims to be a
precise statement of the properties of the system that the developers will build. A
number of approaches have been developed to agent system requirements
specification, and in particular to formal (mathematical) approaches (Wooldridge,
1997). The details of these formalisms tend to be rather complex, but broadly
speaking, they characterize agents as rational decision makers. By this, we mean
systems whose internal state can be expressed in terms of ‘mentalistic’ constructs
such as belief, desire, and intention. An agent’s decision making can then be
characterized in terms of these constructs. It may be difficult to see how one might
specify a computer system in this way, but the idea is really quite straightforward.
One builds a specification out of a set of ‘rules’ (strictly speaking, logical
formulas), somewhat like this:

if agent 1 believes that agent 2 believes runway 1 is clear
then agent 1 should believe that agent 2 has erroneous information,

and agent 1 should intend that agent 2 is informed of its error.

One might wonder why terms such as ‘believe’ and ‘intend’ are used. Beliefs
are generally used to refer to the information that agents have about their
environment. This information can be incorrect – in just the same way that
information we have about the environment (our beliefs) could be wrong. The term
intention is used to refer to a goal that the agent will pursue until it either succeeds
or fails completely – it admits the possibility of failure, a realistic possibility in
many complex systems, one which traditional formalisms tend to ignore. The
chapter by Georgeff and Rao is the clearest expression of this view in this volume.
The reader is also referred to (Wooldridge, 1997) for a detailed discussion on these
approaches.

20 Jennings and Wooldridge

1.4.2 System Design

The design of robust, efficient systems is one of the most important issues
addressed by software engineers, and a great deal of effort has been devoted to
making system design a methodical, rigorous process. At the time of writing,
comparatively few workers in the agent research community have considered how
design methodologies might be applied to agent systems. This situation must
clearly change if agent systems are to become widely used, and in particular, the
following key questions need to be addressed:

• Adopting an agent-based approach. In much of the work that goes under the
agent banner, the rationale behind the choice of an agent-based approach (over
other, arguably simpler alternatives) is unclear. The analysis of appropriate
domain properties (Sections 1.2 and 1.3) represents a step toward this end.

• Macro-system Structure. Once given an abstract, high-level system speci-
fication, we need to transform this specification into agents, and relate these
agents to one another in a system structure. This process is known as refine-
ment. In just the same way that object-oriented design methodologies exist,
which give guidelines relating to the identification of objects and object inter-
dependencies, so we might expect soon to see agent-oriented design method-
ologies, which offer clear guidelines about how to decompose a problem into
agents and what effects a given decomposition is likely to have on the system
performance. The design problem is exacerbated by the fact that legacy systems
often need to be incorporated in agent systems. Thus design needs to be done
both from a top-down perspective (how should the problem be decomposed
ideally?) and from a bottom-up perspective (what software groupings already
exist and cannot be changed?). Both perspectives must be accommodated.

1.4.3 System Implementation

An agent system design will both describe the various different roles that exist
within the system and characterize the relationships that exist between these roles.
However, the design will not generally prescribe an implementation of these agents.
So, having identified the various agent roles in a system, the next step is to
determine how each of these roles can be best realized. An agent architecture needs
to be devised or adopted for each role, which will deliver the required functional
and non-functional characteristics of the role.

Many agent architectures have been developed by the intelligent agents
community, with many different properties (Wooldridge and Jennings, 1995). At
one extreme, there are ‘strong AI’ systems, which allow users to build agents as
knowledge-based systems, or even as logic theorem provers. In order to build
agents using such systems, one goes through the standard knowledge-based system
process of knowledge elicitation and representation, coding an agent’s behavior in
terms of rules, frames, or semantic nets. At the other extreme, there are many agent
frameworks that simply offer enhanced versions of (for example) the Java

Applications of Intelligent Agents 21

programming language – they include no AI techniques at all. Neither of these
extremes is strictly right or wrong: they both have merits and drawbacks. In
general, of course, the simplest solution that will effectively solve a problem is
often the best. There is little point in using complex reasoning systems where
simple Java-like agents will do. Obviously, more detailed guidelines to assist with
this decision making process are desirable.

1.4.4 System Testing, Debugging, and Verification

As long ago as 1987, Les Gasser wrote:

Concurrency, problem-domain uncertainty, and non-determinism in
execution together conspire to make it very difficult to comprehend the
activity in a distributed intelligent system […] we urgently need graphic
displays of system activity linked to intelligent model-based tools which
help a developer reason about expected and observed behavior. (Gasser,
1987)

Gasser’s comments remain as true of agent system development in the late
1990s as they did of the mid-1980s. Sadly, testing and debugging are still much
neglected areas of the agent development process. Developers need assistance with
visualizing what is happening, and need debugging facilities to step through the
execution and amend behavior where appropriate. Visualization is particularly
important – determining what is happening in asynchronous, concurrent systems is
an exceedingly difficult task. This is true both within an agent and even more so
between agents. Traditional debugging features which allow execution to be
stopped, internal states to be examined, states to be changed, message arrivals to be
simulated, and so on are also essential. In most systems these features and tools are
developed from scratch – clearly an undesirable state of affairs.

1.5 The Structure of This Book

The chapters in this book cover a wide spectrum of issues related to the appli-
cations of intelligent agents and multi-agent systems. There are introductory
chapters that explain the basic concepts and summarize the state of the art, there are
vision chapters which look to the future of agent applications (from both a technical
and a marketing perspective), and, finally, there are experience chapters, which
deal with specific agent systems and applications.

In more detail:

• Technological issues that are addressed include: architectures for individual
agents and multi-agent systems; frameworks for implementing agent appli-
cations; methodologies for designing agents and multi-agent systems; techni-
ques for attaining efficient and coherent communication, cooperation and

22 Jennings and Wooldridge

coordination; and techniques for personalizing agents to reflect the needs of
individual users.

• Predictions are made about the following issues: the types of markets where
agents are likely to have the highest impact; the economic value of various
agent markets; the time scales by which agent technology will enter various
aspects of mainstream software solutions; and the (technical and non-technical)
obstacles that need to be overcome if agents are to achieve their potential.

• Application domains for which agent systems are described include: telecom-
munications systems, personal digital assistants, information management,
information economies, business applications, air traffic control, computer
simulation, transportation management, and financial management.

The range of author affiliations (British Telecom, US West, IBM, GPT, Sharp,
Daimler-Benz, Siemens, GTE Labs, France Telecom, US Treasury, and Swiss
Bank Corporation) covers a significant proportion of the large commercial organ-
izations that are currently investing in agent technology, and illustrates forcefully
the pervasive nature of this exciting new technology.

1.5.1 Introductory Chapters

These two chapters introduce the basic terms and concepts of agent systems. They
provide the underpinning for the remainder of this book and offer a good point of
entry to those who are new to the field.

Nwana and Ndumu provide a broadly based and up-to-date introduction to the
basic concepts and terminology of agent systems. They define a typology that
specifies the range of agents which currently exist, offer an assessment of the key
problems and promises of the different agent types, and describe a number of
exemplar systems.

Laufmann takes a complementary approach to that of Nwana and Ndumu. He
identifies and specifies an ideal intelligent agent, and shows how the current agent
landscape can be divided by considering extant systems as highlighting particular
attributes of this ideal model. He espouses three different, but related, views of
agents – agents as automated personal assistants, agents as cooperating problem
solvers, and agents as communicating software entities. He then concentrates on the
third view and outlines a strategy for software development that should lead to
substantially improved agent applications in the near term.

1.5.2 Vision Chapters

These four chapters assess where agents are today and where they are likely to be in
five to ten years time. When taken together, the chapters convey the excitement and
potential of this field and highlight the key open problems.

Applications of Intelligent Agents 23

Janca presents an analysis of the current state of agent-enabled applications and
describes how this is likely to change in the coming years. He identifies two broad
classes of agents – user interface agents which act on behalf of the user (capturing
their goals and translating these into actions) and process agents which are
responsible for enacting these goals. Based on an analysis of the current market for
agent technology (see also the contribution by Guilfoyle) he notes that the current
generation of applications exist in self-contained niches, that the agents use
proprietary formats, and that there are no standards for interconnection (see
contributions by Huhns and Singh and Kearney). To circumvent these short-
comings, he presents an agent design model which acts as a unifying framework for
agent applications and which can have standard re-useable parts. In this view,
building different applications becomes more of a ‘plug-and-play’ than a ‘start from
scratch’ endeavor. Finally, he presents a series of commercial challenges that need
to be overcome before agents can reach their full potential.

Guilfoyle presents an analysis of the market for agent technology (also see
Janca’s contribution). She identifies the main areas in which agent technology is
likely to have an impact and the main vendors that are currently active in this field.
She assesses the current trends of agent applications and offers various predictions
about how the size and direction of the market will expand over time.

Foss concentrates on the concept of information brokerage (one of the key agent
application domains identified by Janca and Guilfoyle). He outlines the role of
intelligent agents as an intermediary service between consumers and infor-mation
sources, and presents a vision of a future commercial information trading
environment which is rich enough for true electronic commerce to take place. This
view includes dealing adequately with the currently neglected issues of taxation,
rights, royalties, and revenues. A case is then made for the pivotal role of agent
technology in this vision (see Plu’s contribution for an indication of how such a
vision can begin to be realized using current generation technology).

Kearney concentrates solely on one class of agents – personal digital assistants
(PDAs). Again, this is an important current and future market for agent technology
as identified by Janca and Guilfoyle. For this application class, he posits a role for
agent software which involves mediating between the individual user and a range of
online services (see also the contributions of Foss and Janca). He suggests a path
from the current state of the art through successive generations of PDAs to a state
in which agents are ubiquitous providers of personalized services. For this vision to
be attained, he identifies agent interoperability as the key problem to be solved (see
also the contribution by Huhns and Singh).

1.5.3 Systems and Their Applications

The chapters in this section represent the current state of the art in applied agent
systems. They outline the types of agent frameworks and architectures that are

24 Jennings and Wooldridge

currently being used to develop and implement agent systems and discuss, in detail,
a wide range of agent applications built using this technology.

Georgeff and Rao present results related to the design and implementation of
rational software agents. In this work, they address one of the fundamental
problems of agent research – the gap between theory and practice. This gap is
currently large and both sides of the field plough along in isolation. However, in
their work, the authors use a formal framework to specify and implement their
agents. The particular class of agents they address are Belief-Desire-Intention
(BDI) agents (also see the contribution by Burmeister et al.). Thus, they sketch the
theoretical foundation of their agents and how they are realized in a practical agent
implementation. They then discuss how this implementation was used to build
large-scale, real-world agent applications in the domains of air traffic management,
business process management, and air combat modeling.

Burmeister et al. discuss how agent based techniques can be applied in the
domains of traffic management and manufacturing. They present their core
technology for realizing their agent applications: COSY, a modular agent archi-
tecture based on the concepts of behaviors, resources, and intentions (see also the
contribution by Georgeff and Rao); and DASEDIS, a development environment for
building such agents (cf. the development environment of Haugeneder and Steiner).
The application of this architecture to two traffic applications (traffic management
and freight logistics) and two manufacturing applications (flexible manufacturing
and plant control) is then discussed.

Haugeneder and Steiner present a conceptual design and specification of an
agent architecture and a multi-agent language (called MAIL) for implementing
single agents and cooperative interaction among them. This design is then refined
into a multi-agent environment for constructing cooperative applications based on
this model (cf. the DASEDIS framework of Burmeister et al.). Finally, the
architecture and the environment are demonstrated on two sample applications in
the areas of group scheduling and road traffic management (see also the
contribution of Burmeister et al.).

Weihmayer and Velthuijsen provide an overview of the role of agent systems in
the domain of telecommunications. They identify the types of telecommuni-cations
applications for which agent solutions have been constructed. These include
process support (see also contributions by Huhns and Singh and Janca), network
control, service management (see also Plu’s contribution), network management,
transmission switching, and network design. They then discuss the justification for
the intense interest on the part of telecommunications organizations in agent
technology, present a number of detailed system case studies, and, finally, offer a
balanced analysis of the future of agents in telecommunications.

Huhns and Singh describe how a set of autonomous agents can cooperate to
provide coherent management of transaction workflows. In particular, they
concentrate on the problem of how agents with diverse and heterogeneous

Applications of Intelligent Agents 25

information models can interoperate with one another (cf. the approach advocated
by Kearney). Their approach to such interoperation is predicated on the fact that the
agents maintain models of their information and resources. These models are then
mapped into a common ontology to ensure coherent semantics among the
cooperating group. Their approach is exemplified by considering a multi-agent
system for telecommunication service provisioning.

Plu presents an agent-based view of how organizations can design and build
computer infrastructures that provide sophisticated information and electronic
commerce services to many customers. Using the ISO standard architecture for
open distributed processing, he shows, with the aid of scenarios, the central role
that agent technology can play at many of the model’s distinct levels. He also
discusses issues related to mobile agents – identifying when they are appropriate
and the types of advantages they confer over their static counterparts.

Sycara et al. present the design and implementation of a series of agents for the
tasks of filtering, evaluating, and integrating information on the Internet. Their
agents team up, on demand, depending on the user, the task, and the situation, to
retrieve and filter information. The agents and their organizational structure also
adapt to the prevailing task and user. Their system is demonstrated in the domain of
financial portfolio management (see also Wenger and Probst’s contribution).

Goldberg and Senator detail the FAIS system, which links and evaluates reports
of large cash transactions to identify potential money laundering activities. The
system, which has been operational since 1993, is designed and implemented as a
cooperative endeavor involving humans and software agents (see Haugeneder and
Steiner’s contribution for further thoughts on such human-computer cooperation).
The main focus of the presently implemented system is knowledge discovery and
information analysis in large data spaces. However, as the system’s range of
applicability has increased, so the need for greater agent-to-agent cooperation has
emerged. To this end, the authors describe the next generation of FAIS and discuss
how adopting an agent-based perspective eases the system migration task.

Wenger and Probst analyse the potential role and impact of the agent paradigm
in the general area of providing financial services. They highlight the character-
istics of typical agent-based applications and provide illustrative scenarios for the
domains of mortgage sales, corporate financial management, and portfolio
management (see also the contribution by Sycara et al.). They then discuss the
various ways in which intelligent agents can add value to financial operations,
present a detailed scenario based on an investment sales transaction service, and
assess the future role of agent technology in this market segment.

26 Jennings and Wooldridge

References

AA97 (1997) Proceedings of the First International Conference on Autonomous Agents’97,
Marina del Rey, CA. ACM Press.

Bates, J. (1994) The role of emotion in believable agents. Communications of the ACM,
37(7), 122−125.

Bond, A. H., Gasser, L. (Eds.) (1988) Readings in Distributed Artificial Intelligence.
Morgan Kaufmann.

Chaib-draa, B., (1995) Industrial applications of distributed AI. Communications of the
ACM, 38(11), 47−53.

Chavez, A., Maes, P. (1996) Kasbah: An agent marketplace for buying and selling goods.
Proceedings of First International Conference on the Practical Application of
Intelligent Agents and Multi-Agent Systems, London, UK.

Crabtree, B., Jennings, N. R. (Eds.) (1996) Proceedings of First International Conference
on the Practical Application of Intelligent Agents and Multi-agent Systems, London,
UK.

Franklin, S., Graesser, A. (1996) Is it an agent, or just a program? Proceedings Third
International Workshop on Agent Theories, Architectures and Languages, Budapest,
Hungary, 193−206.

Gasser, L., Braganza, C., Herman, N. (1987) MACE: A flexible testbed for distributed AI
research. In: M. N. Huhns (Ed.) Distributed AI. Morgan Kaufmann.

Genesereth, M. R., Ketchpel, S. P. (1994) Software agents. Communications of the ACM,
37(7), 48−53.

Hayes-Roth, B., Hewett, M., Waashington, R., Hewett, R., Seiver, A. (1995) Distributing
intelligence within an individual. In: L. Gasser, M. N. Huhns (Eds.) Distributed AI,
Volume II, 385−412. Morgan Kaufmann.

Huang, J., Jennings, N. R., Fox, J. (1995) An agent-based approach to health care
management. Int. Journal of Applied Artificial Intelligence, 9(4), 401−420.

Janca, P. C. (1995) Pragmatic application of information agents. BIS Strategic Report.

Jennings, N. R., Varga, L. Z., Aarnts, R. P., Fuchs, J., Skarek, P. (1993) Transforming
stand-alone expert systems into a community of cooperating agents. Int. Journal of
Engineering Applications of Artificial Intelligence, 6(4), 317−331.

Jennings, N. R., Corera, J. M., Laresgoiti, I. (1995) Developing industrial multi-agent
systems. In: Proceedings of the First International Conference on Multi-agent
Systems, (ICMAS-95), 423-430.

Jennings, N. R., Faratin, P., Johnson, M. J., Norman, T. J., O'Brien, P., Wiegand, M. E.
(1996) Agent-based business process management. Int. Journal of Cooperative
Information Systems, 5(2, 3), 105−130.

Lesser, V. R., Corkill, D. D. (1983) The distributed vehicle monitoring testbed: a tool for
investigating distributed problem solving network. AI Magazine, Fall, 15−33.

Maes, P. (1994) Agents that reduce work and information overload. Communications of the
ACM, 37(7), 31−40.

Applications of Intelligent Agents 27

Mason, C. L. (1995) Cooperative interpretation of seismic data for nuclear test ban treaty
verification: a DAI approach. Int. Journal of Applied Artificial Intelligence, 9(4),
371−400.

Negroponte, N. (1995) Being Digital. Hodder and Stoughton.

Ovum Report (1994) Intelligent agents: the new revolution in software.

PAAM’97 (1997) Proceedings of the First International Conference on the Practical
Application of Intelligent Agents and Multi-agent Systems, London.

Parunak, H. V. D. (1987) Manufacturing experience with the contract net. In: M. N. Huhns
(Ed.) Distributed AI. Morgan Kaufmann.

Parunak, H. V. D. (1996) Applications of distributed artificial intelligence in industry. In: G.
M. P. O’Hare, N. R. Jennings (Eds.) Foundations of Distributed Artificial Intellig-
ence, 139−164. Wiley.

Pnueli, A. (1986) Specification and development of reactive systems. In: Information
Processing 86, Elsevier/North-Holland.

Sargent, P. (1992) Back to school for a brand new ABC. In: The Guardian, 12 March, p. 28.

Shoham, Y. (1993) Agent-oriented programming. Artificial Intelligence, 60(1), 51-92.

Smith, R. (1980) The contract net protocol. IEEE Trans. on Computers, C-29(12), 1104−
1113.

Wavish, P., Graham, M. (1996) A situated action approach to implementing characters in
computer games. Int. Journal of Applied Artificial Intelligence, 10(1), 53−74.

Wooldridge, M., Jennings, N. R. (1995) Intelligent agents: theory and practice. The
Knowledge Engineering Review, 10(2), 115−152.

Wooldridge, M. (1997) Agent based software engineering. IEE Proceedings on Software
Engineering, 144(1), 26−37.

Wooldridge, M., Bussmann, S., Klosterberg, M. (1996) Production sequencing as
negotiation. In: Proceedings of the First International Conference on the Practical
Application of Intelligent Agents and Multi-agent Systems, London.

Zuno Ltd (1997) See http://www.dlib.com/.

