
CSC 380/480 – Foundations of Artificial Intelligence 
Winter 2007 

Assignment 3 Solutions to Selected Problems 
 
 
1. Suppose we have a knowledge base KB containing the following 4 sentences: 
 

KB1:  (A \/ B) /\ C => E 
KB2   D /\ F => A 
KB3:  E \/ D 
KB4:  B /\ C 
KB5:  F 

 
Want to derive sentence A (i.e., show that A is entailed by the knowledge base KB).  

 
Solution: 
 
Using forward chaining and rules of inference: 
 

Note that this is not the 
only possible derivation. 
There are rules that can 
be used at various steps 
eventually leading to A.  

   1. C    KB4 and AND-Elimination 
   2. B    (again) KB4 and AND-Elimination 
   3. A ∨ B   Step 2, using OR-Introduction (introducing A) 
   4. (A ∨ B) ∧ C Step 3, Step 1, and AND-Introduction  
   5. E    Step 4, KB1, and Modus Ponens 
   6. D    Step 5, KB3, and Resolution 
   7. D ∧ F   Step 6, KB5, and AND-Introduction 
   8. A    Step 7, KB2, and Modus Ponens 

  
Using resolution-refutation procedure: First we convert the KB into clause form (note that KB1 and 
KB4 each become two separate clauses): 
 
  KB1.1:   ¬A \/ ¬C \/ E 
  KB1.2:   ¬B \/ ¬C \/ E 
  KB2:     ¬D \/ ¬F \/ A 
  KB3:     E \/ D 
  KB4.1:    B 
  KB4.2:    C 
  KB5:       F 
 
Details of converting KB1 to clause form:  
 
(A \/ B) /\ C => E   Ù  ¬ [ (A \/ B) /\ C ] \/ E  Ù ¬(A \/ B) \/ ¬C  \/ E Ù (¬A /\ ¬B) \/ (¬C \/ E) 
 
Now: using distributivity, we get a conjunction of two clauses: (¬A \/ ¬C \/ E) /\ (¬B \/ ¬C \/ E). These 
can then just be divided into two independent clauses KB1.1 and KB1.2, above. 
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To perform resolution-refutation we start with ¬A and applying resolution at each step, try to arrive at 
the empty clause: 
 

¬A resolve with KB2: ¬D \/ ¬F \/ A 
 
 
¬D \/ ¬ F       KB3: E \/ D 
 
 
¬F \/ ¬E   KB5: F 
 
 
¬E   KB1.2: ¬B \/ ¬C \/ E 
 
 
¬B \/ ¬C   KB4.1:  B 
 
 
¬C   KB4.2:  C 
 
 
 

 ⌧  (empty clause) 
 
 
Since empty clause (contradiction) was reached by starting with ¬A, then we can conclude that A entails 
from the knowledgebase KB. 

Again, there are other possible derivations here. Also, some 
choices of clauses selected in intermediate steps, may not 
lead to success. I such cases, other possible clauses must 
be tried until no other options are available. 
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2.  Translation to First-Order Predicate Logic: 
 
Solution: 
 
We will use the following predicates for this problem. Others used are clear from context: 
 

• takes(x, c, t) Æ student x takes course c during term s 
• passes(x, c, t) Æ student x passes course c during term s 
• buys(x, y, z) Æ x buys y from z 
• fools(x, y) Æ x cooks for y 

 

(a) Some students took history in Fall 04:  ∃x [ student(x) /\ takes(x, hist, fall04) ] 
 
(b) Not everyone who took sociology, passed it: 
 ¬∀x∀t [ ( student(x) /\ takes(x, soc, t) ) => passes(x, soc, t) ] 
 
(c) Every student who passes both history and sociology, takes anthropology: 
 ∀x∀t [ ( student(x) /\ takes(x, hist, t) /\ takes(x, soc, t) ) => takes(x, anthro, t) ] 
 
(d) Only one student failed (did not pass) both history and sociology: 

No
wri
wa

 ∃x∃t [ student(x) /\ ¬ passes(x, soc, t) /\ ¬ passes(x, hist, t) ) /\ 
  ∀y∀t ( ( student(y) /\ ¬passes(x, soc, t) /\ ¬passes(x, hist, t) ) => (y = x) ] 
 
(e) There is a person who cooks for all those who do not cook for themselves: 
 ∃x [ person(x) /\ ∀y [ person(y) /\ ¬cooks(y, y) => cooks(x, y) ] ] 
  
(g) There is a broker who sells stocks to people who do not own any stocks: 
 ∃x [ broker(x) /\ ∀y∀s  [ person(y) /\ stock(t) /\ ¬own(y, s) => ( ∃t stock(t) /\ sells(x, y, t) ) ] ]
 
(h) There is a barber who shaves all men in town who do not shave themselves: Note 

to dis
some
(t) an
owne

 ∀x [ investor(x) /\ ∃y ( broker(y) /\ buys(x, goog, y) ) => smart(x) 
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3.  Resolution-Refutation Problem: 
 
Solution: 
 
(a) The knowledge base in first order logic: 

 
∀x food(x) => likes(john, x) 
food(apple) 
food(chicken) 
∀x ∀y [ eats(x, y) /\ ¬killed-by(x, y) => food(y) ] 
eats(bill, peanuts) /\ alive(bill) 
∀x ∀y [ killed-by(x, y) => ~alive(x) ] 
∀x eats(bill, x) => eats(sue, x) 

 
(b) Translation to clausal form 

 
1. ¬food(x) \/ likes(john, x) 
2. food(apple) 
3. food(chicken) 
4. ¬eats(x, y) \/ killed-by(x, y) \/ food(y) 
5a. eats(bill, peanuts) 
5b. alive(bill) 
6. ¬killed-by(x,y) \/ ¬alive(x) 
7. ¬eats(bill, x) \/ eats(sue, x) 

 

Note: This can also be written as: 
 
∀x [ (∃y  killed-by(x, y) ) => ~alive(x) ] 
 
The translation into clause form will still 
be the same as below. 

(c) Prove that john likes peanuts: 
 

resolve with subgoal (resolvant) 
________________________________________________________________________ 

 

 ¬likes(john, peanuts) 
(1)  ¬food(peanuts) 
(4)  ¬eats(x, peanuts) \/ killed-by(x, peanuts) 
(5a)  killed-by(bill, peanuts) 
(6)  ¬alive(bill) 
(5b)  ⌧  (empty clause) 
 

Since we arrived at the empty clause, the original goal likes(john, peanuts) is proved.
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(d) What food does sue eat?  ( i.e., ∃x food(x) /\ eats(sue, x)? ). Negating this goal results in:  

¬ (∃x food(x) /\ eats(sue, x)). Conversion to clause form results in: ¬food(x) \/ ¬eats(sue, x) . 
This will be the starting goal for resolution-refutation. 

 
resolve with subgoal (resolvant) 

________________________________________________________________________ 
 

 ¬food(x) \/ ¬eats(sue, x) 
(7)  ¬eats(bill, x) \/ ¬food(x) 
(5a)  ¬food(peanuts) (with substitution { x = peanuts } 
 
After this point the rest of the derivation becomes exactly the same as part (c) above 
(after the 2nd resolution step): 

 
 

 
(e) The new axioms, replacing eats(bill, peanuts) /\ alive(bill),  are as follows: 
 

∀x (¬∃y eats(x, y) ) => dead(x)  (if people don't eat anything then they'll die) 
∀x dead(x) => ¬alive(x) 
alive(bill) 

 
 Translating the first statement above to clause form will be done as follows: 
 
 ∀x (¬∃y eats(x, y) ) => dead(x)  Ù ∀x ¬ (¬∃y eats(x, y) ) \/ dead(x) 

Ù ∀x ∃y eats(x, y) \/ dead(x) 
Ù ∀x eats(x, sk1(x)) \/ dead(x) 
Ù eats(x, sk(x)) \/ dead(x) 

 
Note that the elimination of the existential quantifier (within the scope of ∀x) has resulted in the 
creation of a Skolem function (of x), sk(x), representing a specific but unknown object. 

 
Translating to everything into clausal form, the full revised knowledge base becomes: 
 

1. ¬food(x) \/ likes(john, x) 
2. food(apple) 
3. food(chicken) 
4. ¬eats(x, y) \/ killed-by(x, y) \/ food(y) 
5. ¬killed-by(x, y) \/ ¬alive(x) 
6a. eats(x, sk(x)) \/ dead(x) (where sk is a Skolem function) 
6b. alive(bill) 
6c. ¬dead(x) \/ ¬alive(x) 
7. ¬killed-by(x,y) \/ ¬alive(x) 
8. ¬eats(bill, x) \/ eats(sue, x) 
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Now, we use resolution to again (as in part d) ask what sue eats (this time we don't know that bill eats 
peanuts): 
 
What food does sue eat?  ( i.e., ∃z food(z) /\ eats(sue, z)? ). Negating this goal results in:  
¬ (∃z food(z) /\ eats(sue, z)). Conversion to clause form results in: ¬food(z) \/ ¬eats(sue, z) . [Note: this 
time variable name z was used instead of x, just to distinguish different occurrence of variables in the 
proof below]. 
 
 

resolve with subgoal (resolvant) 
________________________________________________________________________ 

 

 ¬eats(sue, z) \/ ¬food(z) 
(8)  ¬eats(bill,z) \/ ¬food(z)   
(6a)  ¬food(sk(bill)) \/ dead(bill)   ( with  z = sk(bill)  ) 
(6c)  ¬food(sk(bill)) \/ ¬alive(bill) 
(6b)  ¬food(sk(bill)) 
(4)  ¬eats(x, sk(bill)) \/ killed-by(x, sk(bill)) 
(5)  ¬eats(x, sk(bill)) \/ ¬alive(z) 
(6b)  ¬eats(bill, sk(bill))  
(6a)  dead(bill) 
(6c)  ¬alive(bill) 
(6b)  ⌧ (empty clause) 
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3.  Backward Chaining and AND/OR Graphs: 
 
Solution: 
 
The knowledge base and the query to be answered are depicted below: 
 

 
 
In effect, the query is asking the system to provide answers (binding for the variable w) to the question: 
"which blocks are above the block B?" 
 
We show the solution in stages. The query above(w,B) can unify with the head of two rules in the KB (4, 
and 5). These represent alternative (OR) branches in the proof tree. Success along either of these 
alternatives will result in an answer for the query (a constructive proof). In the case of rule 5, we get an 
AND branch. This means that success along this branch will require success along both subtrees 
corresponding to the two conjuncts on the left-hand-side of rule 5. 
 
The successful proof along the left OR branch is shown below: 
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The success along the right branch of the OR node (which itself is and AND branch) is shown below: 
 
 

 
 
 
Note that the left subtree of the AND branch (with root on(w,z)) can unify with KB facts 1, 2, and 3, each 
resulting in a successful proof of this node with its own bindings for variables w and z. Selecting any of 
these successful branches will result in the corresponding bindings to propagate to the right subtree of the 
AND node. In this case, selecting the branches corresponding to the substitutions {w=A,z=C} and 
{w=D,z=B} will eventually result in failure in the right subtree of the AND node (not shown here). In the 
above figure, we have only shown the right subtree given the selection of the substitution {w=E,z=D} in 
the left subtree. 
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