
Struct Proc 9a Tutorial Guide

Joseph Phillips

Applied Philosophy of Science

Last Modified 2024 July 8

I. Introduction
Congratulations! You are about to learn the basics of the Struct Proc 9A computer language, the low-

level internal language of the SP9a reasoner. Learning this language will let you talk to the knowledge
base directly, and create your own reasoning methods.

From the culture of
scientific mathematics!

A quick note: the design of this language leans heavily on both the
notation and culture of basic scientific mathematics. The language has
features not common to other languages, even scientific computational
languages. When language design decisions were made, they were made
with the notation and culture of basic scientific mathematics in mind.
This document will be sure to highlight these decisions with asides like
this one.

Also note, this document is only a tutorial. Its purpose is to give you an intuition for the design of the
language, and to get you to start writing useful code. However, there are many details that it does not
explain. For a more thorough and systematic discussion of the language, please see “The SP9A
Reference Manual”.

A word about font usage.
Emphasis is denoted by underlining and italicizing.
Text that could be typed by the user is denoted in italicized courier font.
Text that could be returned by StructProc9A is denoted in non-italicized courier font.
Discouraged StructProc9A code is in orange courier font.
Illegal StructProc9A code is in red courier font.
Know bugs are shown in blue courier font.

II. How to start Struct Proc, and how to leave
Start StructProc by simply typing sp9a from the Linux command line:

$ sp9a

or perhaps,

$ sp9a path=(path of StructProc9 home directory)

The program will respond by telling you the language file it will use, and then listing the library files it
loads. Finally it will give you the command prompt:

Reading kb file defaultInitKb.som9
SP9a1 :) [1]

Now that you have got it working, among the most important commands of any system is the
request to leave. To leave the StructProc9 type quit, followed by a semicolon (;).

SP9a1 :) [1] quit;
quit
$

The semicolon is important: all commands need to end with one. If you forget the semicolon then
type it on the next line.

SP9a1 :) [1] quit
SP9a1 :) [2] ;
quit
$

The Scienceomatic is a whole environment having several interacting programs. Besides running a
single process with a command-line interface, perhaps the other most popular option is to run it with an
HTTP interface. To do that, type on the Unix command line:

$./somAdmin --serverMode=http
http (2022-01-10 11:08:00): Beginning
Reading kb file defaultInitKb.som9
http (2022-01-10 11:08:00): Connect to http://127.0.0.1:8080
som (2022-01-10 11:08:00): Beginning
som (2022-01-10 11:08:00): Process 2242 attempt

execl(/opt/AppPhiloSci/SOM/Ver9A/Bin/somRApp)
Running on port 58384. Press Ctrl-C to stop:

Leave the command-line shell running for as long as you want the server to keep running. Connect to
this process by loading the URL http://127.0.0.1:8083 into your browser. Like the
introductory message says, press Ctrl-C in command-line window to stop the Scienceomatic
environment.

Only one StructProc9 application is allowed to run in a given directory at a given time. This is
enforced in part by the creation of a file named lock.txt in the /Misc directory of the process. If
the process crashes then be sure to delete this file before attempting to run it again.

III. Basic Types and Operations
Like most computer languages, Struct Proc 9A has integers and floating points (which, following

Pascal, are called “reals”, or Real) predefined. The common mathematical operations are defined on
them, too. You can see this from the command line:

SP9a1 :) [1] 1+2; // Addition of 2 integers
3
SP9a1 :) [2] 1.+2.; // Addition of 2 reals
3.
SP9a1 :) [3] 1+2.; // Addition of real and integer give real
3.
SP9a1 :) [4] 4.5 * 2;
9.
SP9a1 :) [5] 4 - 7;
-3
SP9a1 :) [6] sin(3.14159265358979323846);
1.22465e-16 // sin() expects a real in radians
 // The result should be 0.0, but this is
 // close.

But wait! Beyond having mere classes Integer and Real, the language has classes Rational
and Complex too:

SP9a1 :) [7] 4/7; // 4 divided by 7 is the fraction 4/7
4\7 // This is how to represent that rational
SP9a1 :) [8] (4/7)*7; // Multiply it by 7 and get the integer 4
4
SP9a1 :) [9] 40/70; // Common primes are automatically removed
4\7 // from numerator and denominator
SP9a1 :) [10] exp(3.14159265358979323846i);
(-1.+1.22465e-16i) // Well, exp(pi*i) should be -1.,
 // but +1.22465e-16 is close to 0.0

There are also true and false of class Boolean:

SP9a1 :) [11] true and false;
false
SP9a1 :) [12] true or false;
true
SP9a1 :) [13] !false;
true

And, of course, there is class String.

SP9a1 :) [14] "Hello " ++con "there"; // ++con is the concatenation
Hello there // operator

Numeric operators include:

Operator Associativity:
(unary operators) N/A

^ right-to-left
* / left-to-right
+ - left-to-right

< <= > >= left-to-right
==ref !=ref ==num !=num non-associative

When used as a binary operator, ^ means raise-to-the-power. The * and / naturally mean
multiplication and division. The + and - naturally mean addition and subtraction. The operators <,
<=, > and >= mean their respective comparisons, and all return Boolean values. The Boolean-
returning operators ==ref and !=ref compare if the two operands refer to the same thing. The
Boolean-returning operators ==num and !=num compare if the two operands are numerically equal.
Thus:

SP9a1 :) [15] 2 ==num 2.0;
true
SP9a1 :) [16] 2 ==ref 2.0;
false
SP9a1 :) [17] 3\2 !=num 1.5;
false
SP9a1 :) [18] 3\2 !=ref 1.5;
true

Some predefined functions include:

Name: Purpose:
sin(x) Sine of x radians
cos(x) Cosine of x radians
tan(x) Tangent of x radians
asin(x) Arc-sine of x returning radians
acos(x) Arc-cosine of x returning radians
atan(x) Arc-tangent of x returning radians
exp(x) ex

exp2(x) 2x

exp10(x) 10x

log(x) Logarithm base e of x
log2(x) Logarithm base 2 of x
log10(x) Logarithm base 10 of x

IV. Annotated Values
So far the numbers we have seen, instances of Integer, Rational, Real and Complex, have

been non-annotated. That means they have not been given meta-data to describe anything; they are just
numbers.

Annotated values have meta-data to describe what the numbers mean, and how they can properly be
used. Annotated values are instances of AnnotatedValue. An example of an AnnotatedValue
instance is the one below for equatorial radius of the Earth:

6378.1366 (* +/-0.0001, defaultKmDomain *);1

Annotated values are denoted by ordinary rational or floating point numbers followed by annotations
delimited by (* and *). Here, the floating point number 6378.1366 has been annotated with two
the attributes:

• +/-0.0001: This is the uncertainty associated with the value. The system takes this as the
standard deviation.

• defaultKmDomain. As hinted by its name, the domain tells the units (kilometers).
Therefore, it also implies the dimensionality of the value: Distance. Domains may also tell
which values are legal for an AnnotatedValue instance.

All annotated values have domains associated with them. StructProc9, however, allows users to be
less precise and give units instead. When this is done, StructProc9 looks up the default domain of the
units (attribute unitsDefaultDomainA), or creates the corresponding Domain instance if
necessary. Thus, these are legal:

3.14159(*meters*);
3.14159(*kilometers*);
3.14159(*millimeters*);

Further, StructProc9 also has a parser just for units, and the nicknames of common units have been
specified. Units may be given as a string of operations on abbreviated units names. Thus, these are all
legal as well:

3.14159(*"m/sec"*);
3.14159(*"m/sec^2"*);
3.14159(*"1/sec"*);
3.14159(*"m*kg/sec"*);

Strings may specify units according to the following rules:
(1) Units may be given by their official names (e.g. "meters"), or by their specified

abbreviations (e.g. "m"). Only units of fundamental dimensions may be specified. Thus, even
though the system knows of Newtons and its abbreviation "N", this is illegal: "N*meters".
Instead say "kg*m^2/s^2", or "Joules", or just "J".

(2) Two or more units may be multiplicatively combined with the asterisk, as in "meters*m".

1 From “IAU Division I Working Group, Numerical Standards for Fundamental Astronomy , Astronomical Constants :
Current Best Estimates (CBEs)” http://maia.usno.navy.mil/NSFA/NSFA_cbe.html#EarthRadius2009, downloaded 2019
February 3.

(3) Powers may be specified by the unit, followed by the caret, followed by a non-zero integer. An
example is "m^2".

(4) Inverse relationships may either be specified by following a caret with a negative integer, or by
giving the units after a forward slash. So both "m/sec" and "m*sec^-1" are legal.
Negative powers may not be given on the denominator side, so "1/m^-1" is illegal.

(5) If there is no numerator unit, give "1" as the numerator, as in "1/sec".
(6) The forward-slash, if it appears at all, may only appear once.
(7) Putting units both as numerator and denominator is allowed, but discouraged. Thus, these are

discouraged: "meters/m", "m*m^-1".
(8) Raising units to the power of zero is also allowed but discouraged. So this "m^0" is

discouraged.

Please note, however, that while automatically-created domains have dimensions and units, they lack
meaningful limitation information. Thus, specifying the domain by name is always preferred.

The system is clever enough to convert units when adding or subtracting:

BUG BELOW! Wrong number of returned digits are returned:
SP9a1 :) [6] 1.000(*meters*) + 1.0(*cm*);
1.0e+00(*defaultMetersDomain*)
SP9a1 :) [7] 1.0(*cm*) + 1.000(*meters*);
1.0e+02(*defaultCmDomain*)

From the culture of
scientific mathematics!

Here, the resulting sum (or difference for subtraction) will get the
domain (and thus units) of the first number of the addition (or
subtraction). This follows from the culture of scientific mathematics:

x[new] = x[old] + ∆x

x[new] is just a slight perturbation from x[old]. So, x[new]
inherits the meta-data of x[old], not that of ∆x.

From the culture of

scientific mathematics!
Also note, that this system keeps track of the number of significant

digits. Therefore, the sum:

1.0000(*meters*) + 1.0(*meters*)

returns:

2.0e+00(*defaultMetersDomain*)

as opposed to:

2.0000e+00(*defaultMetersDomain*)

or some other value.

A note about notation: the system has to distinguish between attributes and the dimensions of their
intended values. For example, we believe the Earth has mass of 5.972168×1024 kg (or,
5.972168e+24(*kg*) in our notation). The term “mass” in “Earth has mass” serves as an attribute
of Earth. However, the value 5.972168e+24(*kg*) has dimensionality of Mass. One is an
attribute of a physical thing, the other is an attribute of a number.

By convention, we denote attributes by beginning them with a lowercase letter. Thus, the attribute of
Earth is mass. We denote the corresponding dimension with by beginning them with an uppercase
letter. So, the dimensionality of 5.972168e+24(*kg*) is Mass.

V. Instances in the knowledge base, and running
methods

The language is a true object-oriented language where everything is either an instance or a class.
Also, dynamically-generated classes become full fledged classes with all the properties of other classes.

Use the C++ arrow notation, instance->method(), to run a method on a class. For example, to
ask to what class anything belongs, run the method localGet() with argument instanceOf. To
ask what is the superclass of any class, run method localGet(isA).

SP9a1 :) [14] 1->localGet(instanceOf);
Integer
SP9a1 :) [15] Integer->localGet(isA);
Rational
SP9a1 :) [16] 1->localGet(instanceOf)->localGet(isA);
Rational
SP9a1 :) [17] 1.->localGet(instanceOf);
Real
SP9a1 :) [18] 4\7->localGet(instanceOf);
Rational
SP9a1 :) [19] i->localGet(instanceOf);
Complex
SP9a1 :) [20] "Hello world"->localGet(instanceOf);
String

There are several other predefined methods for different classes. For example, instances of class
String have:

SP9a1 :) [21] "hello"->string_length();
5
SP9a1 :) [3] "hello"->string_capitalize();
Hello
SP9a1 :) [4] "hello"->string_hasPrefix("he");
true
SP9a1 :) [5] "hello"->string_hasPrefix("she");
false
SP9a1 :) [6] "hello"->string_prefix(3);
hel

Here are some more methods on basic types.

String method: Purpose:

rational_numerator() Returns the numerator integer of a rational number.

rational_denominator() Returns the denominator integer of a rational number.

string_length() Returns the length of the string.

String method: Purpose:

string_capitalize() Returns the same string with its first character
capitalized. If the string is empty, or if its first letter is
not a lowercased letter, then returns the same string.
Leaves all other characters but the first unchanged.

string_hasPrefix(substring) Returns true if the given string begins with
substring, or false otherwise.

string_prefix(count) Returns the first count characters of the string.

string_hasSuffix(substring) Returns true if the given string ends with substring,
or false otherwise.

string_suffix(count) Returns the last count characters of the string.

string_substring(index,count) Returns the substring of the count characters starting
from index index.

Now is a good time to introduce to pre-opened output files, stdOut and stdErr. The main
methods on them are print() and printLn(), both of which take a single argument:

SP9a1 :) [7] stdOut->print("Hello");
HellostdOut
SP9a1 :) [8] stdOut->printLn("Hello");
Hello
stdOut

Notice that both return the same file that they were given. The reason for this is to allow for expresions
like:

SP9a1 :) [2] stdOut->print("Hello ")->print("there")->printLn("!");
Hello there!
stdOut

VI. Lists and Bags
The language supports lists using common mathematical notation:

SP9a1 :) [1] [0, 1, 2, 3, 4];
[0,1,2,3,4]

From the culture of
scientific mathematics!

This is the same as lists are represented in mathematics.

These lists are implementation as vector lists, as you may easily see:

SP9a1 :) [2] [0,1,2]->localGet(instanceOf);
VectorList

Node lists may be made by enclosing the items between [** and **].

SP9a1 :) [3] [** 0,1,2 **]->localGet(instanceOf);
NodeList

Of course, the difference between the two is the classic ease-of-random-access (advantage:
VectorList) vs. ease-of-insertion/deletion-in-the-middle (advantage: NodeList). Insertion and
iteration are covered below.

It supports bags, too:

SP9a1 :) [10] {0, 1, 2, 3, 4};
{0,1,2,3,4}

From the culture of
scientific mathematics!

This is taken from set notation in mathematics.

A bag is like a set in that there is no implied order among included things. However, a bag is like a list
in that the same thing may be included more than once.

SP9a1 :) [11] {0, 1, 2, 3, 4, 0, 1, 2, 3 };
{0(2),1(2),2(2),3(2),4}

Here, the index notation after each included item tells how many times that that item is included (if the
count is 2 or greater).

To force bag to act like a set, where all items are included at most once, write [*true*]
immediately after the set:

SP9a1 :) [7] {0,1,2,2}[*true*];
{0,1,2}[*true*]

We will see why we use this notation in the next chapter.

The last basic data-structure is that map. Each mapping has form key(value), and they are
enclosed between <<<* and *>>>.

SP9a1 :) [8] <<<* methyl(1), ethyl(2), propyl(3) *>>>;
<<<*methyl(1),ethyl(2),propyl(3)*>>>

To get a mapping, use the map_get() method:

SP9a1 :) [1] <<<*methyl(1),ethyl(2),propyl(3)*>>>->map_get(propyl);
3

To insert or change a mapping, use the map_put() method:

SP9a1 :) [1] <<<*methyl(1),ethyl(2),propyl(3)*>>>->map_put(butyl,4);
<<<*methyl(1),ethyl(2),propyl(3),butyl(4)*>>>

The (basic) methods of data-structures are:

Method Description

dataStruct_isEmpty() For all: returns true if the data structure is empty, or
false otherwise.

dataStruct_size() For lists: returns the number of items in the data
structure.

For bags: returns sum of the number of times all
inserted identities are present.

For maps: returns the number of keys in the map; each
<key,value> pair only counts once.

dataStruct_distinctCount() For lists: returns number of distinct identities.
For bags: returns number of distinct identities, not

summing their counts.
For maps: same as dataStruct_size().

dataStruct_iter() For lists: returns an iterator to range over the identities
in the list.
For bags: returns an iterator to range over the identities
in the list; if an identity c is in the bag N times then the
iterator will return c N times consecutively.
For maps: returns an iterator to range of the pairs.
Iterator method iter_key() returns the key of the
pair. Iterator method iter_value() returns the
value.

dataStruct_insertA(item) For lists: inserts item at the beginning of the list.
For bags: inserts item (again, if already present).
For maps: throws exception (maps want both a key
and value)
For lists and bags: returns the data structure.

dataStruct_insertZ(item) For lists: inserts item at the end of the list.

Method Description

For bags: inserts item (again, if already present).
For maps: throws exception (maps want a key and

value pair)
For lists and bags: returns the data structure.

dataStruct_insert(item) For lists: inserts item at the end of the list.
For bags: inserts item (again, if already present).
For maps: throws exception (maps want both a key
and value)
For lists and bags: returns the data structure.

dataStruct_insert(item,n) For bags: inserts item n more times.
For lists and maps: throws exception.

dataStruct_didInsertBecauseNot
Present(item)

For lists: inserts item at the end only if it is not
already present.

For bags: inserts item only if it is not already present.
For maps: throws exception.
For lists and bags: returns the data structure.

dataStruct_doesHave(item) For lists and bags: returns true if the data structure
has item at least once, or false otherwise.

For maps: returns true if the data structure has
item as a key, or false otherwise.

dataStruct_didRemove(item) For lists: Returns true if the first occurrence of
item was found and removed, or false if there are
none.
For bags: Returns true if the one occurrence of
item was removed, or false if there are none.
For maps: Returns true if the pair with key item
was removed, or false if there was none.

dataStruct_clear() For all: removes all items in the data structure, making
its size 0. Returns the data structure.

dataStruct_copy() For all: returns a copy of the data structure.

list_firstItem() For lists: returns first identity, or null if the list is
empty.

For bags and maps: throws exception.

list_secondItem() For lists: returns second identity, or null if the list is
less than two items long.

For bags and maps: throws exception.

vList_didPut(index,item) For vector lists: places item at integer indexed
position index if it is a valid index into the vector
list, and returns true. If index is not a valid
index into the vector list then returns false and
takes no further action.

Method Description

vList_get(index) For vector lists: returns the item at integer indexed
position index if it is a valid index into the vector
list. Returns null if index is not valid.

vList_numInsertA() For vector lists: returns the number of times
dataStruct_insertA(item) has been called
since the last time dataStruct_clear() has
been called.

bag_count(item) For bags: returns the number of times item is present.

map_put(key,value) For maps: inserts <key,value> pair, overwriting the
existing value for key if it already is matched with
a value. Returns map.

For lists and bags: throws exception.

map_get(key) For maps: returns the value to which key has been
paired, or null if there is no such value.

For bags and lists: throws exception.

list_sort(order) For vector lists and node lists: sorts the list (must be of
either Number or String instances), according to
order (which must be either ascendingOrder or
descendingOrder).

list_sort(order,attribute)

VII. Explicit construction
So far we have seen

Data-Structure: Example:
VectorList [0, 1, 2, 3]
NodeList [** 0, 1, 2, 3 **]
Bag (and restricted to set) { 1,
Map <<<*0("zero"),1("one"),2("two"),3("three")*>>>

However, we have not considered structure construction, the Struct in StrucProc. We do so now.

The knowledge base keeps track of the knowledge associated with concepts. Distinct concepts have
are represented by their own identities internally. With each identity are <attribute, value> pairs, or
properties.

StructProc9 was designed for science. Often in science we want to remember several values for
attribute. Sometimes this is because we may now have a most believed modern value, but science
assumed different values in the past. Other times this is because different values were obtained by
different methodologies.

For example, Western Science has had a number of different estimates for the age of the Earth.
• 6000 years (Ussher)
• 75 Kya (Buffon)
• “several billion” (de Maillet, Buffon)
• ∞? (Hutton, Lyell)
• 100 Mya (Lord Kelvin)
• 20-40 Mya (Lord Kelvin)
• 3.4 Gya (Rutherford)
• 4.6 Gya (Meyer)
• 4.5±0.3 Gya (Houterman)

Keeping all of these around lets us re-do science within the worldview of historical science contexts.
Although some attributes must be single value, most may have a list of values:

StructProc9 allows for the managing of and iteration over these lists of values.

Multiple (perhaps conflicting) values of for the same attribute may be introduced all at once using
explicit construction.

Earth
{*
 instanceOf->assertZ(planet),
 mass->assertZ(5.97237e+24(*defaultKilogramsDomain*)),
 radius->assertZ(6378.137(*km*)),
 circumference->assertZ(40075.017(*km*)),
 age->assertZ(4.5e+9(*years,0.3e+9*)),// Houterman
 age->assertZ(3.4e+9(*years*)), // Rutherford
 age->assertZ(3.0e+6(*years,1e+6*)) // Lord Kelvin
*};

Here, instanceOf, mass, radius and age are attributes. All of them have values asserted.
Asserting knowledge using explicit construction uses the same arrow (->) syntax used to call methods.

From the culture of
scientific mathematics!

Notice the comma-separated assertions within the set-like {* and *}
delimiters! This is purposeful.

In mathematics the sets {1,2,3} and {3,2,1} are equivalent.
Likewise, asserting the properties of different attributes in any order
constructs the same description.

 Although asserting the properties of different attributes in any order constructs the same description,
asserting instanceOf first is preferred for ready comprehension.

// Preferred: instanceOf first
Earth
{*
 instanceOf->assertZ(planet),
 age->assertZ(4.5e+9(*years*))
*};

// Discouraged: instanceOf
// not given first
Earth
{*
 age->assertZ(4.5e+9(*years*)),
 instanceOf->assertZ(planet)
*};

Assertion ordering does matter for asserting different properties of the same attribute. For instances
(as opposed to classes), the three main assertion methods come from Prolog and are:

• attribute->assertA(value): Place value at the beginning of the value list of
attribute.

• attribute->assertZ(value): Place value at the end of the value list of attribute.
• attribute->assert(value): Erase the previous list for attribute and make value

is sole value.
Attribute instanceOf is special because it places an identity in the knowledge base. Multiple
inheritance is supported, but discouraged:

Earth
{*
 instanceOf->assertZ(planet), // Multiple inheritance
 instanceOf->assertZ(lifeSupportingBody), // is discouraged
 ...
*};

Within the same structure assertZ() is preferred over the same explicit construction because the
user sees the assumed best value first:

// Preferred
Earth
{*
 age->assertZ(4.5e+9(*years*)),
 age->assertZ(3.4e+9(*years*)),
 age->assertZ(3.0e+6(*years*))
*};

// Discouraged
Earth
{*
 age->assertA(3.0e+6(*years*))
 age->assertA(3.4e+9(*years*)),
 age->assertA(4.5e+9(*years*)),
*};

One exception to the above rule is when on subsequent explicit constructions elaborate and refine
knowledge about an identity over time:

// Encouraged
Earth
{*
 age->assertZ(3.0e+6(*years*)) // Lord Kelvin
*};
...

Earth
{*
 age->assertA(3.4e+9(*years*)) // Rutherford
*};
...

Earth
{*
 age->assertA(4.5e+9(*years*)) // Houterman
*};

VIII. Implicit Construction
Because explicit construction suffers for verbosity there are also several forms of implicit

construction. Here the attribute does not have to be given because it is implicit in the ordering of the
expression.

We have already seen an example of implicit construction when we defined a set (as opposed to a
bag):

SP9a1 :) [12] {1,2,3,4,5,3,2,1}[*true*];
{1,2,3,4,5}[*true*]

The argument true is passed to the Bag constructor because it is between the [* and *]. The first
argument (if given) to the Bag constructor is used to set the bag attribute
isBagRestrictedToSet. The default value that the constructor sets for this attribute is false,
but the user may override this by giving true in the implicit constructor call.

From the culture of
scientific mathematics!

Notice the similarity between list notation in mathematics ([..]) and
the implicit construction delimiters of [* … *]. This is because
ordering matters in both cases.

Implicitly constructing an instance of a class requires that that class has a constructor that is inherited
by its instances.

There are several variations on implicit notation. One can create a named instance of a class. For
example, in addition to classes StructProc9, also has EnumerativeCluster. Instances of
EnumerativeCluster exist to group like things together, but without the ontological certainty
implied by making them all members of the same class. EnumerativeCluster is itself a class its
constructor expects a class as its first argument (every member but be an instance of the class) and a
VectorList as its second argument (and here are the current members).

Thus we can define a terrestrial planet as “a planet, of which Earth is an example”:

`terrestrial planet` [* EnumerativeCluster | planet, [Earth] *];

Here, the backticks in `terrestrial planet` only serve to group characters of a name that also
includes a space.

From the culture of
scientific mathematics!

Notice the syntax:

name [* class | constructor arguments *]

Here, the vertical bar is meant to connote “such that” from mathematics.
The whole thing is meant to be read as “name is an instance of class
such that it has properties given in the constructor arguments”.

So, the example above, we have “`terrestrial planet` is an
instance of EnumerativeCluster such that its members must be
instances of class planet, and the one member we have so far is
Earth”.

Another variation of implicit construction is the creation of anonymous instances: identities with
properties, but without names. Its syntax is similar to used by named implicit constructions, but it
moves the class name before the [* … *], and precedes everything with ^:

^class [* constructor arguments *]

Not really
from the culture of

scientific mathematics!

The caret is an editing mark meaning “insert punctionation/word/phrase
here”. In a sense, that is what is it doing here: inserting a new compile-
time instance of a class.

So, if one wanted an anonymous EnumerativeCluster that included Venus and Mars, one
would say:

^EnumerativeCluster[* planet, [Venus, Mars] *];

Very important! Using the caret makes a new item at compile-time. This means one and only one
item will be created when the code compiles. Thus, it will live for the life of the knowledge base.

To dynamically create new items as the code runs use new. The new operator will be introduced in
the next chapter.

IX. Flow control, Variables and the new operator

A) Flow control
This chapter assumes that you have seen anonymous implicit construction. If not, please read the

previous chapter.

Now we can write code! Recall, conceptually everything in StructProc9 is an item in the knowledge
base. This includes snippets of code. Code uses anonymous implicit construction syntax.
Conceptually, all flow control elements are instances of classes.

If statements take either 2 or 3 arguments, depending upon whether there is code for “else”:

^If[* condition, then *]
^If[* condition, then, else *]

In StructProc9, all code returns the last thing that was computed. This includes If-statements. Thus,
the best translation of ^If[* condition, then, else *] into C is:

(condition ? then : else)

There are 3 types of loops: while-loops execute the “test” expression before the “body”, repeat-loops
execute the “body” before the “test” (akin to do-while loops in C, and repeat-until loops in
Pascal), and for-loops do the “initialization”, “test”, “body”, and “increment” in that order.

^While[* test, body *]
^Repeat[* body, test *]
^For[* initialization, test, body, increment *]

In C when we want to omit an element of a for-loop, we just omit it, as in:

for (; i <= 10;) {
 printf("%d\n",i);
 i++;
}

However, in StructProc9 we have to give something. Except for “test”, it is the culture of StructProc9
to give null for arguments that ought to be ignored. So the equivalent StructProc9 code is:

^For
[*
 null,
 @i <= 10,
 ^Do[*[stdOut->printLn(@i), @i := @i + 1]*]
 null
*]

We should also introduce Do, which defines a block of code to execute serially. It serves as { … }
in C, and begin … end in Pascal.

^Do[* codeList *];

Because Do wants only one thing (a list) and because the list always is denoted with […], it is the
culture of StructProc9 to group the syntax together as [*[…]*]:

// Recommended syntax:
^Do
[*[
 stdOut->printLn(@i),
 @i := @i + 1
]*]

Notice that all are preceded by the ^. This is because (conceptually) If, While, Repeat, For and
Do are all classes. All we are doing is making anonymous instances of them.

B) Variables
Now that have seen Do, we can define variables and constants. For the most part, both must be

declared within the scope a Do. For variables there are 3 forms:

^VarDecl[* @var *]
^VarDecl[* @var, Class *]
^VarDecl[* @var, Class, expression *]

Starting with the last one, it declares variable @var to be limited to class Class, and to have the
initial value computed by expression.

The middle one specifies the class of @var, but not the initial value. It will be given the default
value for the class:

• false for Boolean,
• 0 for Integer and Rational,
• 0.0 for Real and Complex,
• the empty string for String,
• null for anything else.

The first one does the same as the second, but the class defaults to Idea.

Declaring constants is similar, but all three arguments must be specified:

^ConstDecl[* @pi, Real, acos(-1) *]

We have variables! Let’s use them. We can count to ten:

^Do
[*[
 ^VarDecl[* @i, Integer, 1 *],

 ^For
 [*
 null,
 @i <= 10,
 stdOut->printLn(@i),
 @i := @i + 1
 *]
]*];

1
2
3
4
5
6
7
8
9
10
stdOut

Notice several points:
• @i was initialized in ^VarDecl, so the initialization step of ^For is null.
• The code is wrapped between [*[and]*]. Recall, this is really [...] inside of [*...*]. However, it is

best to think of it as combined syntactical elements.
• The code counts from 1 to 10, as expected. Then it prints stdOut. This is because Do returns

the last thing that it computed, which was the last thing that For computed, which was the last
thing that the body computed, which was what printLn() returned, which was the file to
which it printed.

• Everything in the constructor lists for VarDecl, For and Do are all separated by commas,
because they are in lists. However, at there is a semicolon at the end of everything.

And now we can also iterate over data-structures:

^Do
[*[
 ^VarDecl
 [*
 @iter,
 Iterator,
 ["StructProc","is","a","strange","language"]->dataStruct_iter()
 *],

 ^For
 [*
 null,
 !@iter->iter_isAtEnd(),
 stdOut->printLn(@iter->iter_value()),
 @iter->iter_advance()

 *]
]*];

StructProc
is
a
strange
language
stdOut

Note:
• Iterators are in class Iterator.
• dataStruct_iter() returns an iterator at the beginning of a data-structure: VectorList,

NodeList, Bag or Map.
• iter_isAtEnd() returns true when the iterator is at the end, or false otherwise.
• iter_value() returns the next value in the data-structure. For maps, it returns the mapped-to

value. For maps use iter_key() to get the key of the current pair.
• iter_advance() advances the iterator to the next item.
• iter_reset() resets the iterator to the beginning of the data-structure.

C) The new operator
Use the new operator to dynamically create a new instance of class, that is, at run-time. It uses the

same constructor as anonymous implicit construction with ^ at compile time.
Run-time? Compile-time? You can see the difference between ^VectorList[* *] and new

VectorList[* *] below:

Code Output

^Do
[*[
 ^VarDecl[* @i, Integer, 1 *],
 ^For
 [*
 null,
 @i <= 10,
 stdOut->
 printLn
 (^VectorList[* *]->dataStruct_insert(@i)),
 @i := @i + 1
 *]
]*];

[1]
[1,2]
[1,2,3]
[1,2,3,4]
[1,2,3,4,5]
[1,2,3,4,5,6]
[1,2,3,4,5,6,7]
[1,2,3,4,5,6,7,8]
[1,2,3,4,5,6,7,8,9]
[1,2,3,4,5,6,7,8,9,10
]
stdOut

^Do
[*[
 ^VarDecl[* @i, Integer, 1 *],
 ^For
 [*
 null,

[1]
[2]
[3]
[4]
[5]
[6]

Code Output

 @i <= 10,
 stdOut->
 printLn
 (new VectorList[* *]->dataStruct_insert(@i)),
 @i := @i + 1
 *]
]*];

[7]
[8]
[9]
[10]
stdOut

The first code snippet uses anonymous implicit construction with ^. One VectorList was created
before the code ever ran. All items were put into it. The second code snippet uses the new operator. A
new VectorList is created every time the loop runs. Thus, every new list only has one item.

Unlike Lisp, StructProc does not yet support the dynamic creation of new code. Therefore new Do,
new For, new VarDecl, etc are all prohibited.

X. The Ontology and Nomenclature

	I. Introduction
	II. How to start Struct Proc, and how to leave
	III. Basic Types and Operations
	IV. Annotated Values
	V. Instances in the knowledge base, and running methods
	VI. Lists and Bags
	VII. Explicit construction
	VIII. Implicit Construction
	IX. Flow control, Variables and the new operator
	A) Flow control
	B) Variables
	C) The new operator

	X. The Ontology and Nomenclature

