
1. About StructProc, and About this Document.

StructProc 9a is the internal knowledge representation language of the Scienceomatic 9a: an
environment for scientific reasoning, visualization, discovery, education, etc. Its design borrows from
several computer languages including C++, Prolog, Java and Ruby. It also borrows from Lisp,
including morphology of the name: Lisp = LISt Processing; StructProc = STRUCTure PROCessing.
More succinctly it is named SP9a.

Although StructProc9a borrows from several computer languages, it has several features that
combine to make it uniquely for science:

A word about font usage.
Emphasis is denoted by underlining and italicizing.
Text that could be typed by the user is denoted in italicized courier font.
Text that could be returned by StructProc9A is denoted in non-italicized courier font.
Discouraged StructProc9A code is in orange courier font.
Illegal StructProc9A code is in red courier font.

2. How to start StructProc, and how to leave.

Start StructProc by simply typing sp9a from the Linux command line:

$ sp9a

The program will respond by telling you the language file it will use, and then listing the library files it
loads. Finally it will give you the command prompt:

Reading kb file defaultInitKb.som9
SP9a1 :) [1]

Now that you have got it working, among the most important commands of any system is the
request to leave. To leave the StructProc type quit, followed by a semicolon (;).

SP9a1 :) [1] quit;
quit

$

The semicolon is important: all commands need to end with one. If you forget the semicolon then
type it on the next line.

SP9a1 :) [1] quit
SP9a1 :) [2] ;
quit
$

StructProc has several options that you may give on the command line to tell how to run it. Besides
running it with a command-line interface, perhaps the other most popular option is to run it with an
HTTP interface. To do that, type on the Unix command line:

$./sp9a --serverMode=http
http (2022-01-10 11:08:00): Beginning
Reading kb file defaultInitKb.som9
http (2022-01-10 11:08:00): Connect to http://127.0.0.1:8080
som (2022-01-10 11:08:00): Beginning
som (2022-01-10 11:08:00): Process 2242 attempt

execl(/opt/AppPhiloSci/SOM/Ver9A/Bin/somRApp)
Running on port 58384. Press Ctrl-C to stop:

Leave the command-line shell running for as long as you want the server to keep running. Connect to
this process by loading the URL http://127.0.0.1:8080 into your browser. Like the
introductory message says, press Ctrl-C in command-line window to stop the HTTP server.

Only one StructProc9 server process is allowed to run in a given directory at a given time. This is
enforced in part by the creation of a file named lock.txt in the /Misc directory of the process. If
the process crashes then be sure to delete this file before attempting to run it again.

To run it in batch mode where all input (after libraries are read) comes from file input.som9, all
output should go to file output.txt, and the normal printing of the language and library files should
not be printed, start StructProc with:

3. Non-Annotated Boolean, String and Numeric Constants

StrucProc has 3 classes of non-annotated data: booleans, strings and numbers. Booleans (class
Boolean) have two legal values: false and true. String constants are composed of Unicode
characters and are delimited by double quote characters. Class Number is sub-divided into four sub-
classes: Integer, Rational, Real and Complex. The term “non-annotated” means that without
meta-data1, thus the non-annotated numbers lack dimensionality, units, subject, etc.

One important note: in SP9a methods are run with the “arrow” operator ->. This syntax is taken
from C++ for running a method given a pointer to an instance, but is different from the period operator
used in Java, and is different from the period operator used in C++ for running a method given an
instance directly. The reason for the arrow is because it allows the language to run methods on
instances of Integer. So this is supported:

SP9a1 :) [3] 1->toString() ++con 2->toString();
12
SP9a1 :) [4] 1 + 2;
3

The former runs the toString() methods on both Integer instances 1 and 2, and then
concatenates the results to form the string "12". The latter just adds both to compute Integer
instance 3.

Class Boolean of course has two values: false and true. The supported operators on
Boolean values are and, or, equality and inequality. They are listed in order of decreasing
precedence in the table below:

Operator Associativity
! N/A

==ref !=ref left-to-right
and left-to-right
or left-to-right

The operator ==ref returns true if the two operand values on either side of it refer to the same
fundamental thing. The “==” part is taken from the C programming language. The operator !=ref
returns true if the two operand values on either side of it do not refer to the same fundamental thing.
Again, the “!=” part is taken from the C programming language.

The names of operators and and or are taken from Pascal. However, like in C, and and or both
“short-circuit”. That is, operator and does not compute the right-hand-side operand if the left-hand-
side operand computes to false: it just returns false. Likewise, operator or does not compute the
right-hand-side operand if the left-hand-side operand computes to true: it just returns true.

String constants are composed of unicode characters and are delimited by double quote characters.
SP9a1 :) [1] "Hello world!";
Hello world!
SP9a1 :) [1]

1 For the computer scientists they are implemented as immutable singletons.

String constants may use the same backslash-escape sequence characters as defined in C:

newline NL (LF) \n audible alert BEL \a

horizontal tab HT \t backslash \ \\

vertical tab VT \v question mark ? \?

backspace BS \b single quote ‘ \’

carriage return CR \r double quote " \"

formfeed FF \f

SP9a1 :) [1] "\n\tHello\n";

Hello

Strings may be concatenated with the ++con operator.

SP9a1 :) [2] "Hello " ++con "there!";
Hello there!

There are also two string “uncatenation”2 operations. Both use two operators. The --unc operator
goes between the two strings. The ~ operator may go in front of the second string meaning the second
string's occurrence should be removed from the end of the first string.

SP9a1 :) [3] "redoing" --unc ~"ing";
redo

The ~ operator may also go in behind of the second string meaning the second string's occurrence
should be removed from the beginning of the first string.

SP9a1 :) [4] "redoing" --unc "re"~;
doing

In either case if the second string does not occur in the first string then the result just is the first string
unmodified.

SP9a1 :) [5] "redoing" --unc ~"ING";
redoing
SP9a1 :) [6] "redoing" --unc "RE"~;
redoing

We will get to methods later, but while we are on the topic of String instances, it is natural to
introduce these methods on them:

2 “Concatenate” is from the Latin: “con-” (with) “caten(a)” (chain). By similar construction “uncatenate” is meant to
mean “unchaining”, esp. of strings.

String method: Purpose:

string_length() Returns the length of the string.

string_capitalize() Returns the same string with its first character
capitalized. If the string is empty, or if its first letter is
not a lowercased letter, then returns the same string.
Leaves all other characters but the first unchanged.

string_hasPrefix(substring) Returns true if the given string begins with
substring, or false otherwise.

string_prefix(count) Returns the first count characters of the string.

string_hasSuffix(substring) Returns true if the given string ends with substring,
or false otherwise.

string_suffix(count) Returns the last count characters of the string.

string_substring(index,count) Returns the substring of the count characters starting
from index index.

sp8b :) [12] "12345"->string_length();
5
sp8b :) [13] "1234"->string_length();
4
sp8b :) [14] "123"->string_length();
3
sp8b :) [15] "12"->string_length();
2
sp8b :) [16] "1"->string_length();
1
sp8b :) [17] ""->string_length();
0
sp8b :) [18] "hello"->string_capitalize();
Hello
sp8b :) [19] ""->string_capitalize();

sp8b :) [20] "123"->string_capitalize();
123
sp8b :) [21] "HELLO"->string_capitalize();
HELLO
sp8b :) [22] "redoing"->string_hasPrefix("redo");
true
sp8b :) [23] "redoing"->string_hasPrefix("re");
true
sp8b :) [24] "redoing"->string_hasPrefix("r");
true
sp8b :) [25] "redoing"->string_hasPrefix("Redo");
false
sp8b :) [26] "redoing"->string_hasPrefix("Re");
false

sp8b :) [27] "redoing"->string_hasPrefix("R");
false
sp8b :) [28] "redoing"->string_prefix(4);
redo
sp8b :) [29] "redoing"->string_prefix(3);
red
sp8b :) [30] "redoing"->string_prefix(2);
re
sp8b :) [31] "redoing"->string_prefix(1);
r
sp8b :) [32] "redoing"->string_prefix(0)->string_length();
0
sp8b :) [33] "redoing"->string_prefix(1000000);
redoing
sp8b :) [34] "redoing"->string_hasSuffix("ing");
true
sp8b :) [35] "redoing"->string_hasSuffix("ng");
true
sp8b :) [36] "redoing"->string_hasSuffix("g");
true
sp8b :) [37] "redoing"->string_hasSuffix("ion");
false
sp8b :) [38] "redoing"->string_hasSuffix("on");
false
sp8b :) [39] "redoing"->string_hasSuffix("n");
false
sp8b :) [40] "redoing"->string_suffix(3);
ing
sp8b :) [41] "redoing"->string_suffix(2);
ng
sp8b :) [42] "redoing"->string_suffix(1);
g
sp8b :) [43] "redoing"->string_suffix(0)->string_length();
0
sp8b :) [44] "redoing"->string_suffix(1000000);
redoing
sp8b :) [45] "redoing"->string_substring(0,2);
re
sp8b :) [46] "redoing"->string_substring(2,2);
do
sp8b :) [47] "redoing"->string_substring(4,3);
ing
sp8b :) [48] "redoing"->string_substring(10,10)->string_length();
0

There are 4 subclasses of Number: Rational and its subclass Integer, and Complex and its

subclass Real.3 Integers are denoted by just typing them. Rationals are denoted as two integers
separated by the backslash. You may type them is as any integer over any other integer but they are
stored such that the denominator is always positive and all common primes are removed:

SP9a1 :) [1] 5\10;
1\2
SP9a1 :) [1] 5\-10;
-1\2
SP9a1 :) [2] -5\10;
-1\2
SP9a1 :) [3] -5\-10;
1\2

The methods rational_numerator() and rational_denominator() are defined on
instances of Rational. They return the numerator and denominator of the number respectively. For
instances of Integer, rational_numerator() always returns that integer itself while
rational_denominator() always returns 1:

SP9a1 :) [6] 1\2->rational_numerator();
1
SP9a1 :) [7] 1\2->rational_denominator();
2
SP9a1 :) [8] 4->rational_numerator();
4
SP9a1 :) [9] 4->rational_denominator();
1

Reals may either be given with a decimal point, or in floating point exponent notation:

SP9a1 :) [2] 10.0;
10.
SP9a1 :) [3] 1e+1;
10.

Complex numbers have an “i” postfixing their imaginary component. Just “i” by itself denotes one
times the square root of -1. Complex numbers whose real and imaginary components are non-zero are
wrapped in parentheses:

SP9a1 :) [4] i;
i
SP9a1 :) [5] 2 + 2i;
(2.+2.i)

The following unary functions are defined on instances of both Real and Complex. (For these
functions both Integer and Rational are cast to Real, so they may use used too.)

Name: Purpose:
sin(x) Sine of x radians

3 Yes, technically Complex ⊇ Real ⊇ Rational ⊇ Integer, but the internal representation of Complex
and Real is both as floating points, while that of Rational and Integer is both as integers. The class
hierarchy reflects these differences. Integers are just rationals whose denominator is 1. Reals are just
complex numbers whose imaginary component is just 0.0.

Name: Purpose:
cos(x) Cosine of x radians
tan(x) Tangent of x radians
asin(x) Arc-sine of x returning radians
acos(x) Arc-cosine of x returning radians
atan(x) Arc-tangent of x returning radians
exp(x) ex

exp2(x) 2x

exp10(x) 10x

log(x) Logarithm base e
log2(x) Logarithm base 2
log10(x) Logarithm base 10

Non-annotated numbers support the typical operations. They are listed in order of decreasing
precedence in the table below:

Operator Associativity:
(unary operators) N/A

^ right-to-left
* / left-to-right
+ - left-to-right

< <= > >= left-to-right
==ref !=ref ==num !=num non-associative

When used as a binary operator, ^ means raise-to-the-power. The * and / naturally mean
multiplication and division. The + and - naturally mean addition and subtraction. The operators <,
<=, > and >= mean their respective comparisons, and all return Boolean instances. The Boolean-
returning operators ==ref and !=ref compare if the two operands refer to the same thing. The
Boolean-returning operators ==num and !=num compare if the two operands are numerically equal.
Thus:

SP9a1 :) [1] 2 ==num 2.0;
true
SP9a1 :) [1] 2 ==ref 2.0;
false
SP9a1 :) [2] 3\2 !=num 1.5;
false
SP9a1 :) [3] 3\2 !=ref 1.5;
true

Later we will see three algebraic operators: << (is-much-lesser-than), >> (is-much-greater-than) and
= (equals). These do compare their left-hand and right-hand sides, nor do they return Boolean
instances. Instead, they are used to defined algebraic relationships among expressions.

4. Basic Knowledge Assertion
An identity is some thing that the Scienceomatic knows about. It could be a name (like Idea) or a

number (like 42). For example, 42 is the identity of the corresponding rational integer.
One fundamental distinction among identities is that some are used as instances and others as

classes. Instances represent specific instantiations of classes, and may belong to one or more classes.
For example, 41, 42, and 43 are all instances of the class of integers: Integer. Classes may
subsume more specific classes. For example, Integer is a subclass of Rational, and Rational is a
subclass of the Number.

StructProc9a is a pure object-oriented language. Everything that is representable ultimately an
instance of the class Idea. Important subclasses of Idea include:
Class, an immediate subclass of Idea. All classes are instances of Class.
Nonaffiliated, an immediate subclass of Idea. Nonaffiliated is the class into which are

placed classes and instances when their position in the ontology has not yet been given by the user.
Such “homeless” classes are made subclasses of Nonaffiliated, and instances are made
instances of Nonaffiliated. As soon as the user gives their proper position in the ontology
they are removed from Nonaffiliated. One may not explicit assert any instance or subclass
of Nonaffiliated, it is meant as a temporary way station.

Attribute, an immediate subclass of Idea. Attribute is the class of all attributes, Identity
instances that represent properties of other Identity instances. Examples of attributes (i.e.
instances of Attribute) include attrsDomainA, which maps attributes to their domains (a
representation of the class they describe), and attrsRangeA, which maps attributes to their
ranges (a representation of the class in which their values lie).

ProgramObject, an immediate subclass of Idea. ProgramObject is the class of all
programming constructs of which StructProc9a may be made self-aware. Important immediate
subclasses of ProgramObject include Iterator (the class of all iterators),
DataStructure (the immediate superclass of List, Bag and Map) and IOStream (the class
of all input/output streams).

EmpiricalEntity, an immediate subclass of Idea. EmpiricalEntity is the class of all
things in the “real-world” of which StructProc9 should be aware. Examples include the local
galactic group, the Earth, hummingbirds, and glucose molecules.

Value, an immediate subclass of Idea. Value is the immediate superclass of
AnnotatedValue and NonannotatedValue.

AnnotatedValue, an immediate subclass of Value. Annotated values exist to represent values
annotated with meta-data like dimensions, units, and the subject and attribute to which the value
pertains.

NonannotatedValue, an immediate subclass of Value. Subclasses of NonannotatedValue
include Boolean, String and Number. Non-annotated values were discussed in Chapter 3.

Number, an immediate subclass of NonannotatedValue. Number serves as the immediate
superclass of both Rational and Complex.

Rational, an immediate subclass of Number. Rational is the immediate class of all
representable rational numbers: rational numbers with numerators between -
9,223,372,036,854,775,808 and 9,223,372,036,854,775,807 inclusive with denominators between
2 and 18,446,744,073,709,551,615 inclusive after all common prime integers have been removed

from both numerator and denominator. All such representable rational numbers are instances of
Rational. Rational is also the immediate superclass of Integer.

Integer, an immediate subclass of Rational. Integer is the immediate class of all
representable integers: rationals whose numerators are between -9,223,372,036,854,775,808 and
9,223,372,036,854,775,807 inclusive, and whose denominator is 1. All such representable integers
are instances of Integer. (Note that Integer is a subclass of Rational, and not the other
way around. Having Rational as a subclass of Integer would have the advantage of saving
memory in a traditional object-oriented language because one need not store the denominator for
integers. However, it is not mathematically sound. Mathematically, all integers are rationals, but
not all rationals are integers.)

Complex, an immediate subclass of Number. Complex is the immediate class of all representable
complex numbers: complex numbers with imaginary component other than 0, and whose real and
imaginary components are both representable with IEEE 8-byte double floating point numbers.
All such representable complex numbers are instances of Complex. Complex is also the
immediate superclass of Real.

Real, an immediate subclass of Complex. Real is the immediate class of all representable real
numbers: numbers whose imaginary component is 0, and whose real component is representable
with IEEE 8-byte double floating point numbers. All such representable real numbers are
instances of Real. (Note that Real is a subclass of Complex, and not the other way around.
Having Complex as a subclass of Real would have the advantage of saving memory in a
traditional object-oriented language because one need not store the complex component for reals.
However, it is not mathematically sound. Mathematically, all reals are complex, but not all
complex are real.)

String, an immediate subclass of Value. String is the class to which all strings belong.
Boolean, an immediate subclass of Value. Boolean is the class to which true and false

belong.

One may, of course, define one’s own classes and instances. Define a class with:

class MyClass
{*
*};

Notice the keyword class at the beginning and the semicolon at the end. We did not say where in the
ontology MyClass should go, so while MyClass is an instance of Class, it is a subclass of
Nonaffiliated.

Define an instance of MyClass with the following:

myInstance
{*
 instanceOf->assertZ(MyClass)
*};

Again, notice the semicolon at the end. Here, instanceOf is an attribute mapping myInstance to
the class of which it is a member: MyClass. More will be said about asserting knowledge below.

It is the culture of StructProc9a to begin instance names with a lowercased character (e.g.
theKnowledgeBase) and class names with an uppercased character (e.g. ProgramObject).

From there, both use “camel-back” morphology (capital letters marking the beginning of words in
terms with minimal use of underscores) is recommended. (StructProc9a also can handle arbitrary
names: names that begin with digits, contain spaces, use non-ASCII characters, etc. To do so, wrap the
name in grave (or “back-tick”) characters: (`). An example is `2001: A Space Odyssey`.)

The properties of the Identity being defined go between the {* and *} lexemes. A property is a
(attribute, value) pair. For example,

 instanceOf->assertZ(MyClass)

in the definition of myInstance above defines the triplet (instanceOf, MyClass, default
justification) as a property of myInstance. The attribute is instanceOf, the value is MyClass.

Identities may have multiple values for the same attribute. The values of a given attribute are kept in
a list. If no properties (attribute, value pairs) have been given for an attribute then that attribute's list is
empty.

Properties may be given to a node with the following methods:
• attribute ->assertZ(value) adds value to the end of the list for attribute

attribute,
• attribute ->assertA(value) adds value to the beginning of the list for attribute

attribute,
• attribute ->assert(value) erases the list for attribute attribute and makes value

the sole member of the list.
Properties defined in this way are said to be locally-asserted because the property is directly stated with
the identity that it modifies. The term assertX() does not exist in the language, but is used to refer
to assert(), assertA() and assertZ() collectively.

<MUST REVISE>
To see the node definition of an identity (e.g. theKnowledgeBase) say:

SP9a1 :) [1] stdOut->describeLn(theKnowledgeBase);
theKnowledgeBase
{*
 instanceOf->assertZ(NatLangNounTerm),
 ^TermsTextA[*toEnglish*]->assertZ("knowledge base")
*};
stdOut

stdOut is the identity for the main output file, oftentimes the user's screen. We are running the
describeLn(identity) method of output files, which causes the output stream to print the
definition of identity to itself, followed by a newline character. Finally, the describeLn()
method returns the file to which the output was sent; this accounts for the ending stdOut in the output
above.

The actual definition outputted is similar to what was described above: name, beginning {*, list of
properties, enclosing *}, all separated by a comma (,). The only difference should be one or more
^TermsTextA[*..*] attribute properties. More will be said about anonymous instances
(^TermsTextA) in chapter 8, and about implicit construction ([*..*]) in chapter 7.

There is also a describe() method that omits the newline character; its output is generally less
attractive.

SP9a1 :) [2] stdOut->describe(theKnowledgeBase);
theKnowledgeBase
{*
 instanceOf->assertZ(NatLangNounTerm),
 ^TermsTextA[*toEnglish*]->assertZ("knowledge base")
*};
stdOut

Classes have unique attributes by virtue of being classes. The isA attribute tells of another class (the
“superclass”) that has the given class as a subclass, just as the instanceOf attribute tells of a class
that has the given instance as an instance of itself. In the partial definition below the class
NatLangNounTerm is noted as a subclass of both NatLangTerm and NatLangNounPhrase
with the isA attribute.

NatLangNounTerm
{*
 natLangNounPhrasesNounA->subAssertZ(theSubject),
 nounPhrasesPluralityA->subAssertZ(singularPlurality),
 nounPhrasesPersonA->subAssertZ(thirdPerson),

 isA->assertZ(NatLangTerm),
 isA->assertZ(NatLangNounPhrase)
*};

</MUST REVISE>

However, beyond specifying properties for themselves, classes may also state properties that are
inherited by instances of themselves. Such values are also managed with lists:

• attribute ->subAssertZ(value) adds value value to the end of attribute
attribute's list,

• attribute ->subAssertA(value) adds value value to the beginning of attribute
attribute's list,

• attribute ->subAssert(value) erases attribute attribute's list and makes value
value its sole member.

<MUST REVISE>
In the example above theKnowledgeBase (as an instance of NatLangNounTerm) will inherit the
property that attribute nounPhrasesPluralityA has value singularPlurality, and the
property that attribute nounPhrasesPersonA has value thirdPerson.
</MUST REVISE>

Attributes instanceOf and isA are root-wards pointing attributes: they build the ontology by
pointing towards more general classes. There are also instances-wards pointing attributes that point
from general classes to more specific classes, and to instances. Attribute hasInstance is the inverse

of attribute instanceOf. If instance instance asserts that it is an instanceOf class class,
then StructProc9a will automatically assert that class class has hasInstance value instance.
Similarly, attribute hasSubclass is the inverse of attribute isA. You can see this by looking at the
definition of class NatLangNounTerm:

<MUST REVISE>
SP9a1 :) [3] stdOut->describeLn(NatLangNounTerm);
NatLangNounTerm
{*
 natLangNounPhrasesNounA->subAssertZ(theSubject),
 nounPhrasesPluralityA->subAssertZ(singularPlurality),
 nounPhrasesPersonA->subAssertZ(thirdPerson),

 isA->assertZ(NatLangTerm),
 isA->assertZ(NatLangNounPhrase),
 hasSubclass->assertZ(NatLangDynamicallyConstructedNounTerm),
 hasInstance->assertZ(theOuterSubject),
 hasInstance->assertZ(theLastRequestedComputation)
 . . .
*};
stdOut

Attributes hasSubclass and hasInstance are listed by the describe() and the
describeLn() methods for completeness. They should not be directly asserted, however. They are
automatically asserted whenever attributes isA (in a subclass) and instanceOf (in an instance) are
asserted, respectively.
</MUST REVISE>

Ideally asserted properties have their values already defined. However, there are times when this is
not possible (e.g. for circular references). In such cases one should declare an Identity before it is
defined. (Declaration of instances in StructProc9a is similar in spirit to declaration of symbols in C/C+
+.) To declare something use the syntax:

 instance in ClassOfInstance

Here, instance may itself be a class, just have ClassOfInstance be the class Class, because
all classes are instances of Class.

// PURPOSE: To represent the set of attributes of Widgets:
class WidgetA
{*
 isA->assertZ(EmpiricalObjectA),
 // WidgetA is a subclass of the attributes of empirical objects

 attrsDomainA->subAssert(Widget in Class)
 // We assert that the domain of instances of WidgetA is Widget,
 // even though Widget has yet to be defined.
*};

…

// Finally we define what Widgets are:
// PURPOSE: To represent the set of Widgets.
class Widget
{*
 isA->assertZ(EmpiricalObject)
*};

Attempting to define a class for an Identity different from the class to which it has been declared will
result in an error.

(example)

Attempting to re-declare a class for an Identity different from the class to which it was originally
declared will also result in an error.

(example)

One may assert declared Identities as values in properties. However, because they are not yet
defined one may not query over them. Furthermore, even though one has stated their class, if one
iterates over the instances of that class, they will not show up. They will only show up after they have
been defined.

If there is anything that declared but not defined then the knowledge base is in an unfinished state. It
cannot be saved until all declared Identity instances have been defined.

The subject thisSE (for “this Scienceomatic Environment”) represents the currently running
system. One changes the behavior of the system by asserting properties to it. For example, the system
will tell you the assembly language that its virtual machine will run by setting its attribute
spEnvsShouldDisplayPreAssemPostOptA to true:

SP9a1 :) [1] thisSE->assert(spEnvsShouldDisplayPreAssemPostOptA,true);
thisSE
SP9a1 :) [2] true and false;
 loadPoin %0x0, const(0x0,0x5) # true
 ifFalseGotoPoin %0x0, label_FFFFFFFF
 loadPoin %0x0, const(0x0,0x4) # false
 copyPoin %0x0, %0x0
 stopWSuccessPoin

false

To turn this off, just assert the value false for the same attribute:

SP9a1 :) [3] thisSE->assert(spEnvsShouldDisplayPreAssemPostOptA,false);
 loadPoin %0x0, const(0x0,0x1C) # thisSE
 loadPoin %0x1, const(0x0,0x37) # spEnvsShouldDisplayPreAssemPostOptA
 loadPoin %0x2, const(0x0,0x4) # false
 assertPoin %0x0, %0x1, %0x2, %0x2
 copyPoin %0x0, %0x0
 stopWSuccessPoin

thisSE
SP9a1 :) [4] true and false;
false

By default, the system starts out at its lowest level of optimization. However, this may be changed
by asserting attribute spEnvsOptimizationDegreeA. Its legal values are
optimizeDegreeLowest, optimizeDegree2ndLowest, optimizeDegree2ndHighest
and optimizeDegreeHighest. We can see the affect of the optimization by looking at the
generated assembly language code. At the lowest optimization degree the expression (true and false) is
computed with the following assembly language snippet:

SP9a1 :) [5] thisSE->assert(spEnvsOptimizationDegreeA,optimizeDegreeLowest);
thisSE
SP9a1 :) [6] thisSE->assert(spEnvsShouldDisplayPreAssemPostOptA,true);
thisSE
SP9a1 :) [7] true and false;
 loadPoin %0x0, const(0x0,0x5) # true
 ifFalseGotoPoin %0x0, label_FFFFFFFF
 loadPoin %0x0, const(0x0,0x4) # false
 copyPoin %0x0, %0x0
 stopWSuccessPoin

false
SP9a1 :) [8] thisSE->assert(spEnvsShouldDisplayPreAssemPostOptA,false);
 . . .

However, even at the 2nd lowest level of optimization, the expression is computed at compile-time.
So the resulting run-time assembly language is:

SP9a1 :) [9] thisSE->assert(spEnvsOptimizationDegreeA,optimizeDegree2ndLowest);
thisSE
SP9a1 :) [10] thisSE->assert(spEnvsShouldDisplayPreAssemPostOptA,true);
thisSE
SP9a1 :) [11] true and false;
 loadPoin %0x0, const(0x0,0x4) # false
 stopWSuccessPoin

false
SP9a1 :) [12] thisSE->assert(spEnvsShouldDisplayPreAssemPostOptA,false);
 . . .

zzz

5. Basic Querying

5.1 get(), localGet(), subGet() and theSubject:
Once asserted, knowledge may be queried. The most general way to get the first of attribute attr

is with the get(attr) method. It will retrieve both locally-asserted and inherited property values.

6. Intermediate Knowledge Assertion.

6.1 Continuing an Identity's Definition.
In StructProc, unless we explicitly say otherwise, we may add more knowledge to a node. For

example, even though theKnowledgeBase already has a definition like:

6.2 Assigning nicknames
Units often have abbreviations: “m” for “meters”, “kg” for “kilograms”, etc. StructProc9A can

assign nicknames to Identities by asserting a list of strings of nicknames to the nicknameListA
attribute.

For example, for meters we may state:

meters
{*
 nicknameListA->assertZ(["m"])
*};

Now, assuming “m” is not the name of an existing Identity, “m” will actually connote “meters”.

SP9a1 :) [1] m;
meters

The argument to the nicknameListA assertion must be a list of strings.
You may overwrite nicknames with new nicknames, but you will be warned each time you do.

SP9a1 :) [2] moles {* nicknameListA->assert(["m"]) *};
WARNING: Nickname "m" used to map to meters, now to map to moles
SP9a1 :) [3] m;
moles
SP9a1 :) [4] meters {* nicknameListA->assert(["m"]) *};
WARNING: Nickname "m" used to map to moles, now to map to meters
SP9a1 :) [5] m;
meters

6.3 Classes with Automatically-Named Instances:
StructProc9 allows the user to specify that new instances of some classes be named in a systematic

fashion by the system. This allows users to know in advance what the name of the next newly-created
instance of a class will be.

The purpose of this feature is to support World Wide Web protocols. World Wide Web protocols
favor communications that are “idempotent”: where the effect of doing them once is the same as doing
them several times. If activity pages were anonymous, then doing several uploads of the definition of a
single new page to a StructProc9 server via HTTP method PUT would result in several pages. This is
not idempotent. However, if the pages were named, then uploading the same named page several times
would be the same as uploading it once. This is idempotent.

This can only be done if the name of the next class instance can be established in advance. For

classes, the method getNextAutomaticInstanceName() either returns the name of the next
instance of that class:

SP9a1 :) [1] UserActivity->getNextAutomaticInstanceName();
__UserActivity__0__
SP9a1 :) [1] ^UserActivity;
__UserActivity__0__
SP9a1 :) [2] UserActivity->getNextAutomaticInstanceName();
__UserActivity__1__

 or null if the class is not noted as having automatically-named instances.

SP9a1 :) [3] Boolean->getNextAutomaticInstanceName();
null

To state that a class has automatically-generated instances, assertX that its value for attribute
areInstancesAutomaticallyNamedA is true.

class UserActivity
{*
 isA->assert(ProgramObject),

 areInstancesAutomaticallyNamedA->assert(true)
*};

7. Constructors and Implicit Construction

7.1 Basic Constructors
Supposed we wanted to inform our knowledge base about the results of simultaneously flipping five

coins: a 1-cent piece, a 5-cent piece, a 10-cent piece, a 25-cent piece, and a 50-cent piece. We could
define “5 coin flip” as being process:

SP9a1 :) [1] class Process5CoinFlip
{*
 isA->assertZ(EmpiricalEntity)
*};
Process5CoinFlip

Above we define Process5CoinFlip as a subclass of EmpiricalEntity. Because it is a class,
we follow the convention of beginning it with a capital letter.

Next, we define attributes for “was the 1 cent piece heads”, “was the 5 cent piece heads”, “was the
10 cent piece heads”, “was the 25 cent piece heads” and , “was the 50 cent piece heads” as Boolean
attributes of empirically existing things (rather than, say human-defined things, like meters and
kilograms):

SP9a1 :) [2] was1CentPieceHeadsA
{*
 instanceOf->assertZ(BooleanEmpiricalA)
*};
was1CentPieceHeadsA
SP9a1 :) [3] was5CentPieceHeadsA
{*
 instanceOf->assertZ(BooleanEmpiricalA)
*};
was5CentPieceHeadsA
SP9a1 :) [4] was10CentPieceHeadsA
{*
 instanceOf->assertZ(BooleanEmpiricalA)
*};
was10CentPieceHeadsA
SP9a1 :) [5] was25CentPieceHeadsA
{*
 instanceOf->assertZ(BooleanEmpiricalA)
*};
was25CentPieceHeadsA
SP9a1 :) [6] was50CentPieceHeadsA
{*
 instanceOf->assertZ(BooleanEmpiricalA)
*};
was50CentPieceHeadsA

Defining the identities above must be done before the coin-flipping data makes sense. However, the

only method we have seen for giving the coin-flipping data would be verbose and tedious4:

SP9a1 :) [7] first5CoinFlip
{*
 instanceOf->assertZ(Process5CoinFlip),

 was1CentPieceHeadsA ->assertZ(true),
 was5CentPieceHeadsA ->assertZ(false),
 was10CentPieceHeadsA->assertZ(true),
 was25CentPieceHeadsA->assertZ(true),
 was50CentPieceHeadsA->assertZ(true)
*};
first5CoinFlip
SP9a1 :) [8] second5CoinFlip
{*
 instanceOf->assertZ(Process5CoinFlip),

 was1CentPieceHeadsA ->assertZ(true),
 was5CentPieceHeadsA ->assertZ(false),
 was10CentPieceHeadsA->assertZ(true),
 was25CentPieceHeadsA->assertZ(false),
 was50CentPieceHeadsA->assertZ(false)
*};
second5CoinFlip
SP9a1 :) [8] third5CoinFlip
{*
 instanceOf->assertZ(Process5CoinFlip),

 was1CentPieceHeadsA ->assertZ(true),
 was5CentPieceHeadsA ->assertZ(false),
 was10CentPieceHeadsA->assertZ(false),
 was25CentPieceHeadsA->assertZ(false),
 was50CentPieceHeadsA->assertZ(false)
*};
third5CoinFlip

Fortunately, there is an alternative: implicit construction. Implicit construction allows us to list the
values of attributes. StructProc assigns values to their corresponding attributes in the order in which
both attributes and values are listed.

Let us add a constructor to Process5CoinFlip's definition:

SP9a1 :) [9] class Process5CoinFlip
{*
 implicitConstructorA->
subAssert
(^Constructor

[*

4 Thank you to Random.org for the data.

 [[was1CentPieceHeadsA, Boolean],
 [was5CentPieceHeadsA, Boolean],
 [was10CentPieceHeadsA,Boolean],
 [was25CentPieceHeadsA,Boolean],
 [was50CentPieceHeadsA,Boolean]
]
*]

)
*};
Process5CoinFlip

Above, we give instances of Process5CoinFlip (rather than Process5CoinFlip itself) a value

for attribute implicitConstructorA with subAssert. That value is:

^Constructor
[*
 [[was1CentPieceHeadsA, Boolean],
 [was5CentPieceHeadsA, Boolean],
 [was10CentPieceHeadsA,Boolean],
 [was25CentPieceHeadsA,Boolean],
 [was50CentPieceHeadsA,Boolean]
]
*]

We give ^Constructor one value5: the list of binary lists:

 [[was1CentPieceHeadsA, Boolean],
 [was5CentPieceHeadsA, Boolean],
 [was10CentPieceHeadsA,Boolean],
 [was25CentPieceHeadsA,Boolean],
 [was50CentPieceHeadsA,Boolean]
]

Each binary list tells both an attribute and a domain for that attribute. Thus, above we list all 5
attributes and tell that all of the domains of their values is Boolean (that is, the values must be either
true or false).

7.2 Implicit Construction of Named Instances
Now that the constructor is defined we can use it to create three more coin-flipping events:

SP9a1 :) [10] fourth5CoinFlip[*Process5CoinFlip|true,true,false,
false,false*];
fourth5CoinFlip
SP9a1 :) [11] fifth5CoinFlip[*Process5CoinFlip|true,true,false,
true,true*];
fifth5CoinFlip

5 What does ^Constructor[* .. *] mean? Please wait until chapter 7!

SP9a1 :) [12] sixth5CoinFlip[*Process5CoinFlip|false,true,false,
true,false*];
sixth5CoinFlip

Note the syntax:
•the identity name,
•a beginning [*,
•the class name,
•a vertical bar (|),
•the values in order separated by commas,
•an ending *].

The final semicolon (;) makes signifies that it is a complete StructProc expression.
This creates three more Process5CoinFlip instances just as if we created then with explicit

construction ({* .. *}), only easier. We can see this by looking at them:

<must revise>
SP9a1 :) [13] stdOut->describeLn(first5CoinFlip);
first5CoinFlip
{*
 instanceOf->assertZ(Process5CoinFlip),
 was1CentPieceHeadsA->assertZ(true),
 was5CentPieceHeadsA->assertZ(false),
 was10CentPieceHeadsA->assertZ(true),
 was25CentPieceHeadsA->assertZ(true),
 was50CentPieceHeadsA->assertZ(true)
*};
stdOut
SP9a1 :) [14] stdOut->describeLn(fourth5CoinFlip);
fourth5CoinFlip
{*
 instanceOf->assertZ(Process5CoinFlip),
 was1CentPieceHeadsA->assertZ(true),
 was5CentPieceHeadsA->assertZ(true),
 was10CentPieceHeadsA->assertZ(false),
 was25CentPieceHeadsA->assertZ(false),
 was50CentPieceHeadsA->assertZ(false)
*};
stdOut
</must revise>

7.3 Implicit Construction with Default Values
Implicit construction may also be used to define default values. Let us say we suspect the 50 cent

piece to be slightly biased to give heads over tails. We could redefine the inherited constructor as:

SP9a1 :) [15] class Process5CoinFlip
{*
 implicitConstructorA->
subAssert
(^Constructor

[*
 [[was1CentPieceHeadsA, Boolean],
 [was5CentPieceHeadsA, Boolean],
 [was10CentPieceHeadsA,Boolean],
 [was25CentPieceHeadsA,Boolean],
 [was50CentPieceHeadsA,Boolean]
],
 [[was50CentPieceHeadsA,false]
]
*]

)
*};
Process5CoinFlip

Here, the call to ^Constructor[*..*] is given two lists. The first is the same as before. The
second, however, is another list of binary lists:

 [[was50CentPieceHeadsA,false]
]

The sole binary list tells an attribute (was50CentPieceHeads) and its default value (false). This
value will be given to implicitly constructed instances of Process5CoinFlip before the listed
values are. This allows the listed values to overwrite default values. Thus, if the seventh flip's 50 cent
piece comes out tails, we may abbreviate this as:

SP9a1 :) [16] seventh5CoinFlip[*Process5CoinFlip|true,true,true,
true*];
seventh5CoinFlip

seventh5CoinFlip's property for attribute was50CentPieceHeadsA is false, even

though we did not explicitly say so during its construction. We can see this both by querying the
attribute and by describing the identity:

<must revise>
SP9a1 :) [17] seventh5CoinFlip->localGet(was50CentPieceHeadsA);
false
SP9a1 :) [18] stdOut->describeLn(seventh5CoinFlip);
seventh5CoinFlip
{*
 instanceOf->assertZ(Process5CoinFlip),
 was1CentPieceHeadsA->assertZ(true),
 was5CentPieceHeadsA->assertZ(true),
 was10CentPieceHeadsA->assertZ(true),
 was25CentPieceHeadsA->assertZ(true),
 was50CentPieceHeadsA->assertZ(false)
*};
stdOut

</must revise>

However, if the eighth flip's 50 cent piece comes out heads, then we can override it by explicitly
giving a fifth value:

SP9a1 :) [19] eighth5CoinFlip[*Process5CoinFlip|true,true,true,
true,true*];
eighth5CoinFlip

eighth5CoinFlip's first property for attribute was50CentPieceHeadsA is true, as querying

attests. The results obtained by describing it may, however, be unexpected:

<must revise>
SP9a1 :) [20] eighth5CoinFlip->localGet(was50CentPieceHeadsA);
true
SP9a1 :) [21] stdOut->describeLn(eighth5CoinFlip);
eighth5CoinFlip
{*
 instanceOf->assertZ(Process5CoinFlip),
 was1CentPieceHeadsA->assertZ(true),
 was5CentPieceHeadsA->assertZ(true),
 was10CentPieceHeadsA->assertZ(true),
 was25CentPieceHeadsA->assertZ(true),
 was50CentPieceHeadsA->assertZ(true),
 was50CentPieceHeadsA->assertZ(false)
*};
stdOut
</must revise>

Describing eighth5CoinFlip shows it has two value: the first being true and the second false.
Having two values for a single-valued attribute may seem weird, but it reflects one of StructProc's

design philosophies. StructProc is for science, and scientists often want alternatives: the given value
and the default value. Both are present.

7.4 Mixed Implicit and Explicit Construction
The last topic of this section is that implicit construction and explicit construction may be mixed.

Say we also had an ordinary six-sided die. We could defined an attribute to map to the value of its roll:

7.5 The toJson() method
The method toJson() uses the constructor to build the string giving the Json definition of

anonymous identities. The format is:

{ "type":"<classOfIdentity>",
 "constructorAttr0":<recursiveToJsonCallOnValue0>,
 . . .
 "constructorAttrN-1":<recursiveToJsonCallOnValueN-1>,
}

An example is below:

8. Anonymous and Single-Distinct Identities

8.1 Anonymous Identities
The last chapter introduced implicit constructors and implicit construction of named identities.

Sometimes, however, we wish to create an identity without bothering to name it. This is commonly
done for programming elements like loops and conditions (covered in the next chapter).

Unnamed identities are called anonymous identities. To make one, let us again create a class that
represents the simultaneously flipping of five coins: a 1-cent piece, a 5-cent piece, a 10-cent piece, a
25-cent piece, and a 50-cent piece as we did in chapter 7, and give it a constructor:

8.1 Single-Distinct Identities
Consider ToUnitsAttr, a class of attributes that tell how to convert from one set of units to

another:

kilometers
{*
 instanceOf->assertZ(DistanceUnits),
 unitsDefaultDomainA->assertA(defaultKmDomain),
 ^ToUnitsAttr[*meters*]->
 assertA(^LinearUnitsToUnitsStruct[*1\1000*])
*};

Here, the last assertion twice uses constructors to create instances. The attribute represents “that this is
how one converts from the subject (i.e. kilometers) to meters”. The value states “multiply it by
1/1000”.

There is no problem with the constructor usage to create a LinearUnitsToUnitsStruct
instance. Of course, one would use identical structures to converts from kilograms to grams, or
kilocalories to calories. But there is no problem with creating identical
LinearUnitsToUnitsStruct instances for those other cases.

Contrast that, however, with the constructor usage to create a ToUnitsAttr instance. If we got
one instance of ToUnitsAttr when assert the knowledge (e.g. for converting kilometers to meters),
and another instance of ToUnitsAttr when querying “How to convert from kilometers to meters?”,
then we would never find the previously stated property.

Single-distinct identities solve this problem. By asserting a class as “single-distinct”, every time an
instance is created by passing identical arguments to the constructor, the same identity is returned.
Thus, they are like named identities in that they are always returned when uniquely called upon, but
they are still anonymous because they do not have unique names.

Single-distinctness is a local property of the class.

class ToUnitsAttr
{*
 …
 isSingleDistinctA->assertZ(true)
*};

By asserting value true for class attribute isSingleDistinctA, any instance created thereafter
will be registered at single-distinct. Constructor calls with the exact same arguments will always return

the same identity. Because of this, such identities are not allowed to change their properties. Thus,
single-distinct instances are also immutable (have attribute isImmutableA value true).

9. Annotated Values

9.1 Introduction
So far the numbers we have seen, instances of Integer, Rational, Real and Complex, have

been non-annotated. That means they have not been given meta-data to describe anything; they are just
numbers.

Annotated values have meta-data to describe what the numbers mean, and how they can properly be
used. Annotated values are instances of AnnotatedValue. An example of an AnnotatedValue
instance is the one below for equatorial radius of the Earth:

6378.1366 (* +/-0.0001, defaultKmDomain *);6

Annotated values are denoted by ordinary rational or floating point numbers followed by annotations
delimited by (* and *). Here, the floating point number 6378.1366 has been annotated with two
the attributes:

• +/-0.0001: This is the uncertainty associated with the value. The system takes this as the
standard deviation.

• defaultKmDomain. As hinted by its name, the domain tells the units (kilometers).
Therefore, it also implies the dimensionality of the value: Distance. Domains may also tell
which values are legal for an AnnotatedValue instance.

All annotated values have domains associated with them. StructProc9, however, allows users to be
less precise and give units instead. When this is done, StructProc9 looks up the default domain of the
units (attribute unitsDefaultDomainA), or create the corresponding Domain instance if
necessary. Thus, these are legal:

3.14159(*meters*);
3.14159(*kilometers*);
3.14159(*millimeters*);

Further, StructProc9 also has a parser just for units, and the nicknames of common units have been
specified. Units may be given as a string of operations on abbreviated units names. Thus, these are all
legal as well:

3.14159(*"m/sec"*);
3.14159(*"m/sec^2"*);
3.14159(*"1/sec"*);
3.14159(*"m*kg/sec"*);

Strings that specify units according to the following rules:
(1) Units may be given by their official names (e.g. "meters"), or by their specified

abbreviations (e.g. "m"). Only units of fundamental dimensions may be specified. Thus, even
though the system knows of Newtons and its abbreviation "N", this is illegal: "N*meters".
Instead say "kg*m^2/s^2", or "Joules", or just "J".

(2) Two or more units may be multiplicatively combined with the asterisk, as in "meters*m".

6 From “IAU Division I Working Group, Numerical Standards for Fundamental Astronomy , Astronomical Constants :
Current Best Estimates (CBEs)” http://maia.usno.navy.mil/NSFA/NSFA_cbe.html#EarthRadius2009, downloaded 2019
February 3.

(3) Powers may be specified by the unit, followed by the caret, followed by a non-zero integer. An
example is "m^2".

(4) Inverse relationships may either be specified by following a caret with a negative integer, or by
giving the units after a forward slash. So both "m/sec" and "m*sec^-1" are legal.
Negative powers may not be given on the denominator side, so "1/m^-1" is illegal.

(5) If there is no numerator unit, give "1" as the numerator, as in "1/sec".
(6) The forward-slash, if it appears at all, may only appear once.
(7) Putting units both as numerator and denominator is allowed, but discouraged. Thus, these are

discouraged: "meters/m", "m*m^-1".
(8) Raising units to the power of zero is also allowed but discouraged. So this "m^0" is

discouraged.

Please note, however, that while automatically-created domains have dimensions and units, they lack
meaningful limitation information. Thus, specifying the domain by name is always preferred.

Attributes of instances of Domain include:
domainsDimensionA: maps from instance of Domain to an instance of Dimension.
domainsUnitsA: maps from instance of Domain to an instance of Units.
domainsDefaultAttrA: maps from instance of Domain to an instance of

EmpiricalEntityA, attributes of empirical entities.

Attributes of instances of Dimension include:
isDimensionConventionallyFundamentalA: maps from instance of Dimension to true

if that dimension is conventionally considered to be fundamental, or to false otherwise.
dimensionsDefaultDomainA: maps from instance of Dimension to the Domain instance that

that dimension uses by default.
dimensionsDefaultAttrA: maps from instance of Dimension to the EmpiricalEntityA

instance that that dimension uses by default.
compositeDimensionsBasicDimListA: maps from a non-conventionally fundamental

dimension to a VectorList of CompositeDimensionsBasicDimStruct instances that
give the fundamental dimensions and powers of the non-conventionally fundamental subject. For
example, the compositeDimensionsBasicDimListA property dimension Force is:

 compositeDimensionsBasicDimListA->
assertZ
 ([^CompositeDimensionsBasicDimStruct[*Mass,1*],

 ^CompositeDimensionsBasicDimStruct[*Distance,1*],
 ^CompositeDimensionsBasicDimStruct[*Time,-2*]

]);

Attributes of instances of Units include:
unitsDefaultDomainA: maps from instance of Units to the instance of Domain that that unit

uses by default.
unitsDimensionA: maps from instance of Units to the instance of Dimension that that unit use

measures.
unitsDefaultAttrA: maps from instance of Units to the instance of EmpiricalEntityA

that that unit describes by default.

compositeUnitsBasicUnitToPowerMapA: maps from instance of Units of a non-
fundamental dimension to a map. This map maps, units of fundamental dimensions to their powers
to tell how the subject non-fundamental unit is composed.

nicknameListA: maps from instance of Units to a VectorList that gives nicknames of that
unit as strings.

For example, the following is the definition of Newtons:

Newtons
{*
 instanceOf->assertZ(Units),
 unitsDefaultDomainA->assertZ(newtonsDomain),
 unitsDimensionA->assertZ(Force),
 unitsDefaultAttrA->assertZ(force),
 compositeUnitsBasicUnitToPowerMapA->

assertZ(<<<* kilograms(1), meters(1), seconds(-2) *>>>),
 nicknameListA->assertZ(["N"])
*};

The following is a table of the Dimension instances that StructProc9 knows by default, and the
attributes, default domains, and units of those default domains.

Dimension Attribute Default Domain Units of Default
Domain

dimensionless unitless
arc angle radians
Distance length meters (abbr. "m")
Time duration seconds (abbrs. "s",

"sec")
Mass mass kilograms (abbr.

"kg")
ElectricalCharge electricalCharge Coulombs (abbr. "C")
Temperature temperature Kelvins (abbr. "K")
CountDimension things
Moles moles mol
Area area squareMeters
Volume volume cubicMetersDomain cubicMeters
Velocity velocity metersPerSecond
Acceleration acceleration metersPerSecondSq

uared
Momentum momentum
Force force Newtons (abbr. "N")
Energy energy Joules (abbr. "J")
Power power Watts (abbr. "W")
Pressure pressure Pascals (abbr. "Pa")
ElectricalCurrent electricalCurrent Amperes (abbr. "A")
Voltage voltage voltsDomain Volts (abbr. "V")

To print the justifications associated with annotated values, execute the following.

SP9a1 :) [1] thisSE->assert(spEnvsShouldPrintJustificationA,true);

thisSE
SP9a1 :) [2] 4(* *);
4(*limitlessDimensionlessDomain*) <~
^BySaySoOf[*`kbRun_developer_2020-05-28_21:38:46_CDT`*]

The printing of justifications can be turned of by typing:

SP9a1 :) [3] thisSE->assert(spEnvsShouldPrintJustificationA,false);
thisSE
SP9a1 :) [4] 4(* *);
4(*limitlessDimensionlessDomain*)

The raise-to-a-power operator is ^ used as a binary operator. The exponent operand (the right-hand-
side operand) must be dimensionless.

SP9a1 :) [47] 2.0(* meters *) ^ 3;
8.(*cubicMetersDomain*)
SP9a1 :) [48] 8.(*cubicMetersDomain*) ^ (1\3);
2.(*defaultMetersDomain*)

10. Introduction to Arguments, Justifications and Attacks

10.1 Introduction
Key to science is not just an “answer” to a scientific question, but also the reasoning behind it. Also

key is the reasoning behind why some other answer should not be believed.
SP9A uses justifications to support answers and attacks to critique them. Both justifications and

attacks are subdivided into instances and patterns. Justification and attack instances are directly
associated with answers and do the immediate supporting (or attacking). Patterns, however, are
associated with assertions that create answers. Patterns are used to create justification and attack
instances to associate with answers once that assertion generates an answer.

For example, consider an assertion representing a least-squares fit of y as a function of x.

X Y

1.0 9.9

2.0 18.9

5.0 50.4

7.5 74.0

10.0 101.1

Let the assertion state:

R-squared 0.9995

Slope 10.12

Intercept -0.7544

Although this assertion may have justification and attack instances directly attached to it concerning
the validity of the data X and Y, and with the validity of the means by which the least-squares was
computed, let us first deal with two attack patterns that could be associated with the least-squares fit.
Two attacking patterns could be:

(1) The independent variable had a range from 1.0 to 10.0. Thus, any attempt to use this linear fit
for values far outside this range is not supported by this limited range.

(2) The R-squared error is 0.9995.

When we use this assertion to compute Y at X = 9.0 we get 90.3. To this answer we apply both attack
patterns and generate two attack instances: (1) Hey! The source data for X had a limited range from
only 1.0 to 10.0! (2) Hey! R-squared error is 0.9995!

In this particular case both (1) and (2) may be considered irrelevant. Our X = 9.0 is in [1.0, 10.0],
and an R-squared error of 0.9995 is considered very close to linear. Therefore, in this particular case,
our the attacking instances generated by both (1) and (2) would themselves be attacked by two
additional attacking instances! The purpose of keeping all these attacks is to show “Yes, we are aware
of problems with least-squared fits in general. For this particular case, however, we have shown that
they are not applicable.”

10.2 Ontology
The class Argument covers classes AbstractJustification and AbstractAttack.

AbstractJustification is further subdivided into JustificationPattern and
Justification (justification instances). Likewise, AbstractAttack is further subdivided into
AttackPattern and Attack (attack instances).

10.3 JustificationPattern
JustificationPattern covers

10.4 Justification
Justification covers justification instances and is not subclassed. The attributes listed for the

constructor are:

Attribute name: Description:

justificationsSubjectA Maps to what has the value that is being justified.

justificationsAttrA Maps to the attribute of the subject being justified.

justificationsImmediateTypeA Tells classification of operator in by justification type.
Types include byArithmetic, byConvention, byHypothesis,
byAbduction, and byObservation.

justificationsDependentTypes
DsA

A data-structure that includes that value of
justificationsImmediateTypeA and all other type values
through-out the tree defined by the operand map.

operatorA Tells computation that was just done to compute justified
value or assertion.

justificationsOperandMapA Tells arguments to computation that was just done to
compute justified value or assertion.

justificationsValueA Maps to the annotated value or assertion being justified.

JustificationsCompareOpA One of {=,!=, <, <=, >, >=, AND}. The first six of these
tell the relationship between
(justificationSubjectA,justificationAttrA) and
justificationsValueA. For example, “>” means
(justificationSubjectA,justificationAttrA) >
justificationsValueA.
AND signifies that two justifications concerning the same
(justificationSubjectA,justificationAttrA) pair are being
combined into one larger, conjunction. It is meant to
define dual-relations like:

value[lo] <= (subject,attr) <= value[hi]
out of:
value[lo] <= (subject,attr) AND (subject,attr) <= value[hi]

10.5 AttackPattern
Instances of AttackPattern are typed by the nature of the attack:

AppliedValueOutsideInducedAssertionRa

nge

AssertionInaccurate The assertion used is inaccurate, e.g. has error bars that are
too great.

UnreliableAgent An agent (“agent” in the A.I. sense: human, intelligent
machine, extra-terrestrial intelligence, precocious bonobo,
etc.) used to generate the value is unreliable.

UnreliableInstrument

UnreliableComputationalTechnique

UnwarrantedBecauseOf An attack pattern that attacks attack instances by claiming
the original attack is unwarranted. Refers both to the
original attack, and information telling why it is not
applicable.

10.6 Attack
Attack covers attack instances.

attackTypeA Maps to one of the AttackPattern instances

attackTargetA Maps to the assertion being attacked

attackArgumentsMapA Maps to a map that maps supplemental arguments to their
values. For example, for AttackPattern
UnreliableAgent, the map maps agentA to the
identity of allegedly unreliable agent.

11. A Calculus of Justifications
Justification instances may just be called "justifications" when the reference is not ambiguous with

justification patterns. Justifications have the syntax:

(annotated value) <~~ (justification instance)

Mathematics already has the notation:

y <- x

to signify that y is true when x is, and already uses ~ to mean “is similar”7. A more precise semantics
for “y <~~ x” is “Although x may or may not be able to derive y as the annotated value for the
subject and attribute of x, x at least supports the credibility of y being that annotated value”.

In general, a justification instance is a tree of justifying nodes. Each node has its own attributes,
which in terms of the tree should not be considered leaves, but just structure within the node itself. For
example, a node may group together the subject (Joe Phillips), attribute (mass) and annotated value
(80.51 kg). However, when a justifying node has another justifying node as one of its values, then it
becomes an internal node of some overall justification tree.

The intuition behind math on justified annotated values is that one should get an annotated value that
results form the specified math operation, but whose justification combines the justifications of the
operands. For example, given an annotation for 80.51 kilograms:

80.51(*kgDomain*)

a justification instance for it:

joeTellsJoesMass2020Jan22[*ByMeasurement|`Joseph Phillips`,
mass,`Joseph Phillips`,^Date[*2020,1,22*],`Joe’s master bathrm`,
`Conair Corp Model WW404GD scale`*];8

80.51(*kgDomain*) <~~ joeTellsJoesMass2020Jan22;

then multiplying it with an annotated value (9.81(*metersPerSecSqrDomain*)) gives another
justified annotated value:

80.51(*kgDomain*) <~~ joesTellsJoesMass2020Jan22 *
9.81(*metersPerSecSqrDomain*);

789.(*newtonsDomain*) <~~ ^ByMath_1234;

The dimensionality (newtonsDomain) and value (789.) of the resulting annotated value have been
calculated to the available precision. Additionally, a new justification instance has been generated:

7 Mathematics has A |= B that means “in every model in which A is true, B is also true”, and x |- y which means “y
is derivable from x”. However, I wanted a notation where the annotated value being supported comes first.

8 The expression defines joeTellsJoesMass2020Jan22 as an instance of ByMeasurement with subject
`Joseph Phillips` and attribute mass. It was made by `Joseph Phillips` on 2020 January 22, at Joe’s
master bathroom, using a Conair Corp Model WW404GD scale.

^ByMath_1234. The exact name has been system-generated and is not important. What is
important, however, is its definition. ^ByMath_1234 tells that it derives from multiplying
80.51(*kgDomain*) <~~ joesTellsJoesMass2020Jan22 by
9.81(*metersPerSecSqrDomain*).

One may also combine justified annotated values with other justified annotated values:

80.51(*kgDomain*) <~~ joesTellsJoesMass2020Jan22 *
9.80665(*metersPerSecSqrDomain*) <~~ cgpm3DefinesStdG9;

789.5(*newtonsDomain*) <~~ ^ByMath_1238;

The result is similar, another justified annotated value to the given precision. However, this time
^ByMath_1238 knows that it depends on two prior justification instances:
joesTellsJoesMass2020Jan22 and cgpm3DefinesStdG.

A justified annotated value (e.g. 789.5(*newtonsDomain*) <~~ ^ByMath_1238) can be
thought of as a number (789.5) but with units, a dimension (newtonsDomain), an optional error
range or standard deviation, and a justification instance (^ByMath_1238) attached. As such, it can
be added, subtracted, multiplied, divided, etc.

Syntactically, <~~ is another annotation to the value, much like “kg” helps describe “80.51”. Much
like “kg” in “80.51 kg” the justification portion binds closer than any mathematical operators because it
truly is part of the value. Thus, this is both syntactically wrong and sematically meaningless:

sin(3.141592(*radiansDomain*)) <~~ ^ByWhatever;

just as “sine(3.141592) radians” makes little sense. The proper form should be:

sin(3.141592(*radiansDomain*) <~~ ^ByWhatever);

because sin() is applied to the whole value: both the units of radians and the justification.

Semantically, while 789.5(*newtonsDomain*) is an annotated value,
789.5(*newtonsDomain*) <~~ ^ByMath_1238 is a justification with
789.5(*newtonsDomain*) as its annotated value. Thus, while 789.5(*newtonsDomain*)
<~~ ^ByMath_1238 is called a “justified annotated value”, it is classified as a justification.

What are the rules for combining annotated values with justified annotated values, and for combining
justified annotated values with themselves? For computing the value and error bars or standard
deviation the rules are as established by the existing rules of mathematics and precision. For
computing the domain the rules are as established by existing rules of dimensional analysis and unit
conversion.

What the remainder of this chapter aims to establish are the rules for computing the justification.

We start with addition, and following Phillips [P10] we note that semantically “addition” can mean at

9 The 3rd Conférence Générale des Poids et Mesures (CGPM) met in 1901 and established the standard that g is defined to
be 9.806 65 m/s2.

least one of two things. With grouping addition one conceptually creates a bag of the subjects whose
attributes are being added, and the sum describes pertains to the bag. For example, consider adding the
masses of an adult male rubythroated hummingbird with that of an adult male rufous hummingbird: the
sum pertains to the bag of those particular birds.

In contrast with grouping addition is extension addition where the resulting subject is taken as a
modified form of one of the subjects of the addends. For example, the mass of Joe Phillips increases
upon eating a rich piece of chocolate cake. The Joe Phillips that just ate the cake is taken as pretty
much the same of entity as the Joe Phillips from before the cake.

Thus, we need two different addition operators to address these two different cases. I propose that
the plus sign (+) denote extension addition, and that the n-ary function sum() denote grouping
addition. While the new subject of grouping addition is the bag of all subjects, the subject of extension
addition is the subject on the left hand side.

Please note, both 2.0(*kgDomain*) + 2.0(*kgDomain*) and
sum(2.0(*kgDomain*),2.0(*kgDomain*)) compute the same annotated value
(4.0(*kgDomain*)). They only differ in how they handle the subject meta-data of the justification.

sum(3.0(*gramsDomain*) <~~ ^ReportedAdultRubythroatMass,
3.9(*kgDomain*) <~~ ^ReportedAdultRufousMass) =

3.9(*kgDomain*) <~~ ^BagOfReportedMasses

80.51(*kgDomain*) <~~ ^ReportedJoePhillipsMass +
120(*gramsDomain*) <~~ ^ReportedCakeMass =

80.63(*kgDomain*) <~~ ^NewComputedJoePhillipsMass

Grouping addition
The sum resulting from a grouping addition is a property of the group, not its individuals. The

function group() returns an entity that represents the group as a whole:

group({rubythroatedHummingbird67,rufousHummingbird77})

As a bonus we can use the same function for attributes. For example, consider the attribute that
results from adding the height of Joe Phillips with the width of Joe Phillips:

group({height,width})

Extension addition
Like grouping addition, extension addition uses the function group() to compute the resulting

attribute. However, extension addition uses the subject of the left-hand-side addend as the subject of
the sum:

x <~~ JusticationWithSubjectA + y <~~ JusticationWithSubjectB =
(x+y) <~~ JusticationWithSubjectA

The reason for this is to agree with formulas of the general form:

xnew = xold + Δx

because, generally, xnew is taken to be very similar to xold, but with some small, defined change.
Note, for the subject, (+) addition is still associative:

(x <~~ JustSubjA + y <~~ JustSubjB) + z <~~ JustSubjC
= x <~~ JustSubjA + (y <~~ JustSubjB + z <~~ JustSubjC)

(x+y)<~~JustSubjA + z<~~JustSubjC =
 x<~~JustSubjA + (y+z)<~~JustSubjB

(x+y+z) <~~ JustSubjA = (x+y+z) <~~ JustSubjA

However, it is no longer commutative:

x<~~JustSubjA + y<~~JustSubjB ≠subj y<~~JustSubjB + x<~~JustSubjA

(x+y) <~~JustSubjA ≠subj (y+x) <~~ JustSubjB

Here ≠subj denotes the inequality of the subjects on both sides. Arithmetically, (x+y) of course, still
equals (y+x).

Unfortunately, this rule could disagree with the intuition behind common polynomial notation.
Polynomials are generally written in order of decreasing powers.

Ax2 + Bx1 + Cx0 = Ax2 + Bx + C

Here, the constant C is the fixed thing that establishes the value to which the squared and linear terms
are added. Thus, it makes sense to have C have the subject. Unfortunately the subject of the resulting
sum will come from A.

However, it agrees with when polynomials are written in the reverse order. An important example of
this is the Taylor series used for approximating a smooth function around a point when the value of that
function at the point, and some of its derivatives are known:

f(x) = f(x0) + f’(x0)*(x-x0) + f’’(x0)*(x-x0)2/2 + f’’’(x0)*(x-x0)3/6
+ ...

Again, the subject of f(x) is taken to be that of f(x0), with some potentially minor changes made.

Grouping and extending subtraction
In analogous form to grouping addition using sum() and extending addition using (+), grouping

subtraction uses diff() and extending subtraction uses (-). The function diff(x,y) computes the
quantity (x-y) and is equivalent to sum(x,-y). The operation (x-y) computes the quantity (x-y)
and is equivalent to (x + -y).

Grouping multiplication
Grouping addition uses sum() and grouping multiplication uses product(). The subject of the

justification is handled exactly the same way as with sum(): by creating a bag of the multiplied
subjects. The attribute of the justification, however, changes with dimensionality and units according
to what has been multiplied.

As an example, say one wants to compute the probability of obtaining a “6” on the roll of a single fair
die, and obtaining a “heads” of the flip of a fair coin, and obtaining a “6 of clubs” when choosing a
card at random from a standard set of playing cards:

prod(1\6 <~~ ^ByMath(^FairChoice(die,6)),
 1\2 <~~ ^ByMath(^FairChoice(coin,heads)),
 1\52 <~~ ^ByMath(^FairChoice(deckOfCards,clubs6)) =
1\624 <~~ ^ByMath({^FairChoice(die,6),
^FairChoice(coin,heads),^FairChoice(deckOfCards,clubs6)})

The resulting justification has references the bag {^FairChoice(die,6),
^FairChoice(coin,heads),^FairChoice(deckOfCards,clubs6)}. Using an non-
ordered bag is appropriate because the ordering of the die-rolling, coin-flipping and card-picking does
not matter.

Scaling multiplication
Scaling multiplication (*) is similar to extension addition (+) in that the subject in the justification of

the output comes from just one operand. However, for scaling multiplication the subject of the product
becomes the subject of the right-hand-side argument, while the extension addition the subject of the
sum was the subject of the left-hand-side.

The reason for using the right-hand-side is that simple multiplications by a constant are often written
as:

product = constant * factor

where factor contains the specific details of the thing whose quantity is being multiplied. By getting
the right-hand-side subject, we pass the subject along to the product.

Common equations where this policy works well include:

Hooke’s Law: f(x) = -kx

Diameter of a circle: d = 2 rπ

There are, however, cases that require some re-thinking, if not re-writing. Consider weight = mass *
(gravitational acceleration):

w = mg

Our policy would obtain the subject of w from that of g. If g is thought of as pertaining to the Earth,
that would be bad because it would appear to attempt to compute the “weight of the Earth on Earth”.
However, if instead we think of g as being “the acceleration due to gravity of the mass whose subject
is m”, then we compute the correct subject.

This being careful of exactly what g means helps us in other ways too. The experienced value of g
differs slightly according to altitude and position on Earth. By making g position-dependent, we also
(potentially) make it more accurate.

Now consider the Ideal Gas Law:

PV = nRT

On the left-hand-side we have pressure*volume. If we naively think of this as the “volume of the
container” then we have computed a property (thermal energy) of the container, and not the contained
gas. Instead, we should think of v as being “the volume of the gas held in the container” (which in
equilibrium is just the volume of the container itself). Then we compute the thermal energy of the gas.

Now consider the right-hand-side: (number of moles of gas)*(gas

constant)*(absolute temperature of gas). The gas constant is a constant, so a better
way to write it would be:

PV = RnT

or:

PV = RTn

Unfortunately, there are cases were the conventional form should be re-written. Consider:

dnew = dold + r * Δt

Extension addition properly gives dnew the same subject as dold. The multiplication, however, gets its
subject from the right-hand-side of the product: Δt. This is just some time step assumed by the
simulation or process; it is not inherent to the thing whose motion is being calculated. But r is. Thus,
the proper way to write this formula is as:

dnew = dold + Δt * r

Grouping and scaling division
In analogous form to grouping multiplication using product() and scaling multiplication using

(*), grouping division uses div() and scaling division uses (/). The function div(x,y) computes
the quantity (x/y) and is equivalent to product(x,y-1). The operation (x/y) computes the
quantity (x/y) and is equivalent to (x*y-1).

Much like for grouping and scaling multiplication, for grouping and scaling division the attribute that
results depends upon what was divided.

12. Scientific Knowledge Representation

12.1. Introduction

Finally, we have enough background to state knowledge beyond just specific and inherited values!
Let us start with the Ideal Gas Law:

PV = nRT

Note that “R” is a constant. Therefore, as discussed in Chapter 11, a better way to represent it given the
right-hand-side attribute passing nature of scaling multiplication is as:

PV = RnT

Where should we place this equation? The equation is for gases, but it is an equation of state. Thus,
the recommended Scienceomatic policy is to define it in a class BeingAGas, which is subclass of
Event. The class Event covers processes and states, and defining such equations under it
consolidates such knowledge.

12.2. Entities and Values

The equation implies the existence of both a gas and a container for it. The equation interrelates the
pressure, volume, quantity and temperature of a gas in equilibrium. Further, to be in equilibrium with
some fixed volume implies a container of fixed internal volume (which the gas completely fills,
because it is a gas).

We introduce the gas and its container with these statements given within the explicit construction of
BeingAGas:

(?this,gas)->subConstEntity(?gas,Gas);
(?this,container)->subConstEntity(?container,PhysicalObject);

The morphology ?var signifies a structural variable. Structural variables represent values
mentioned by the structure. Here, ?this represents some particular instance of being a gas, ?gas
represents the gas and ?container represents the container.

In the sub-expression (?this,gas), gas is an attribute of the structure (in this case,
BeingAGas). The full expression:

(?this,gas)->subConstEntity(?gas,Gas);

binds the new variable ?gas as a stand-in for whatever value denoted by attribute gas of ?this.
Further, this value is limited to be within class Gas. The “sub” of subConstEntity() means that
?gas stands in for a gas at instances of this class, not this class itself. The “Const” means that the gas
does not change. The “Entity” means that ?gas represents an empirical entity or cultural convention
(i.e. Gas must be a subclass of either EmpiricalEntity or CulturalConvention). The
following methods exist to declare structural variables:

Method Purpose: To declare a structural variable that ...
constEntity Is constant and ranges over EmpiricalEntity or

Method Purpose: To declare a structural variable that ...
CulturalConvention for ?this.

subConstEntity Is constant and ranges over EmpiricalEntity or
CulturalConvention instances for ?this.

constValue Is constant and ranges over Dimension for ?this.
subConstValue Is constant and ranges over Dimension instances for ?this.

varValue Is variable and ranges over Dimension for ?this.
subVarValue Is variable and ranges over Dimension instances for ?this.

In principle, there could also be varEntity and subVarEntity to represent variables that range
instances of EmpiricalEntity and CulturalConvention. This however, implies that a
subject itself is changing in some fundamental fashion. For now, subjects must be constant.

Now that we can refer to the gas instance as ?gas, we can introduce the four variables of the
equation:

(?gas,pressure)->subConstValue(?pressure,Pressure);
(?gas,volume)->subConstValue(?volume,Volume);
(?gas,numMoles)->subConstValue(?numMoles,NumMoles);
(?gas,temperature)->subConstValue(?temp,Temperature);

The first line declares that ?gas should have a constant attribute (pressure), that will be denoted
with ?pressure. Further, this value is in dimension Pressure, which is a numeric value (as
denoted by “Value” as opposed to “Entity”). The other three are similar.

Note that ?volume refers to the volume of the gas, not that of the container. Let us introduce
another variable to represent the internal volume of ?container.

(?container,internalVolume)->subConstValue(?innerVolume,Volume);

We will tie these two volumes together in an equation shortly.

12.3. Relations

We may now state the Ideal Gas Law equation:

relationList->
 subWacati
 (idealGasLawEqn
 [*Relation |
 ?pressure * ?volume = gasConst * ?numMoles * ?temp,
 [], // Justification list
 [] // Attack list
 *]
);

The subWacati() statement creates a vector list for the inherited relationList if it does not
have a value. Then it inserts its argument (in this case the Relation instance) into this list. If
relationList already has a value but it is not a data-structure upon which insert() may be

done, then an exception is thrown. The term wacati is short for “when absent create; and then
insert”10. Besides assertion methods wacati() and subWacati(), there are also wacatiA() and
subWacatiA(). They insert at the beginning of the lists, just like insertA().

The argument to this subWacati() is a relation. There is also just wacati(), which also may
take a relation as an argument. Relations relate two expressions of defined structural variables,
constants, and mathematical operators. The highest-level relation operator must be one of the
following: =, << (is much lesser than), <, <=, >, >> (is much greater than) or >=.

The constant gasConst is actually a named justification for why the gas constant has the value that
it does.

The constructor for Relation lists these attributes:
assertionsExpressionA: maps from the relation instance to the expression that represents it.
assertionsJustificationListA: maps from the relation instance to a list of justifications

for that particular relation (as opposed to the larger structure that it is in). Such justifications
could include the derivation of the expression.

assertionsAttackListA: maps from the relation instance to a list of attacks for that particular
relation (as opposed to the larger structure that it is in). Such attacks could include the
assumptions that had to be made to derive the expression.

12.4. Implication Sentences and Conditions

Events often have preconditions and assumptions associated with them. Conditions exist to state
such knowledge. And one of the most common form of condition is the implication sentence.

Implication sentences have general form:

forAll(?var0,Class0),
forAll(?var1,Class1):
...
 pred0(...),
 pred1(...)
 ...
 =>
 consequent(...)

There may be zero or more forAll clauses before the colon, each of which introduces a variable that
is restricted to the specified class. (If there are no forAll clauses then the colon is absent.) The
predicate clauses before the implication tell a conjunction of conditions. The philosophy of these
clauses is that they either introduce a variable over a broad class, or they restrict a previously
introduced variable to the domain of interest. Actually assigning of values ought to be done by Skolem
constants and functions in the implied clauses. Supported predicates include:

isMemberOf(instance,composition): That instance is a member of the
composition. For example, a fuselage is a member of the composition for an
airplane.

isInstanceOf(instance,class): That instance is an instance of class.
isSubclassOf(subclass,superclass): That subclass is a subclass of superclass.
inTimeRange(subRange,superRange): That subRange is a time range wholly within

superRange.

10 It follows in the tradition established by the computing term WYSIWYG being short for “what you see is what you
get”. And, “wacati” is another verb!

event(name, referenceFrame, timeFrame, entityList, propertyList):
That the Event instance named name with reference frame referenceFrame and
time frame timeFrame exists. It interrelates the entities of entityList given their
properties as given in propertyList. The members of entityList may either be
entity(?variable,Class), which introduces a new variable ?variable to be
restricted to membership in class Class, or distinct(?variable,Class)
which does the same, with the caveat that whatever ?variable stands for is distinct
from any other stood-for thing in the entity list.

Supported action predicates include:
prop(subj,attr,val): That subject subj has attribute attr value val. If subj and

attr are either constants or bound variables then val may be new variable; the clause
binds that variable to the computed value.

Supported Skolem functions include:
val(subj,attr): Returns (or syntactically behaves as if it returns, à la Prolog) the value that

subject subj has for attribute attr.

With that established we may now approximate some assumptions of the Ideal Gas Law equation:
(1) “The gas consists of molecules whose collective volume is much smaller than the volume of the

container”
(2) “The molecules have the same mass”
(3) “The molecules are spherical and collide elastically with themselves and the walls of the

container”
(4) “The molecules do not interact with each other except by elastic collisions. No inter-molecular

forces, relativistic effects, quantum effects. The equations of motion are reversible.”
(5) “Average kinetic energy of molecules depends only on the absolute temperature of the system.”

“The gas consists of molecules whose collective volume is much smaller than the volume of the
container” can be represented with:

(?gas,molecularComposition)->subConstEntity(?gasMolecule,Molecule);
(?gasMolecule,volume)->subConstValue(?molecularVolume,Volume);
conditionList->
 subWacati
 (^Relation
 [* avogadrosConst * ?numMoles * ?molecularVolume
 << ?innerVolume
 *]
);

The first two subConstDecl() statement introduce ?molecularVolume. We need that to define
the << inequality relation that is the argument to subWacati() statement.

“Molecules have the same mass” can be approximated with “For all molecules, if they are members
of the molecular decomposition of the gas then that molecule has the mass as the first returned member
of the that molecular decomposition.”

conditionList->

 subWacati
 (forAll(?mol,Molecule):
 isMemberOf(?mol,val(?gas,molecularComposition))
 =>
 prop(?mol,
 mass,
 val(val(val(?gas,molecularComposition),memberOf),mass)
)
);

“Molecules are spherical ...” can be represented with “For all molecules, if they are members of the
molecular decomposition of the gas then that molecule has the shape of a sphere.”:

conditionList->
 subWacati
 (forAll(?mol,Molecule):
 isMemberOf(?mol,val(?gas,molecularComposition)
 =>
 prop(?mol,shape,sphere)
);

“… and collide elastically with themselves and the walls of the container. Molecules do not interact
with each other except by elastic collisions. No inter-molecular forces, relativistic effects, quantum
effects. The equations of motion are reversible.” can be approximated with:

conditionList->subWacati
(forAll(?event,Event):

event(?event, // Name
??, // Reference frame
?eventTime, // Time frame
[distinct(?molecule0,??), // Entity list

 distinct(?molecule1,??)
],
?? // Property list

),
inTimeRange(?eventTime,?time),
instanceOf(?molecule0,Molecule),
instanceOf(?molecule1,Molecule),

 isMemberOf(?molecule0,val(?gas,molecularComposition)),
 isMemberOf(?molecule1,val(?gas,molecularComposition))

=>
instanceOf(?event,ElasticCollision)

);

The implication sentence says “For all events that mention only two distinct molecules in the gas that
happen during the time of the outer BeingAGas event, those events are instances of
ElasticCollision”. The sentence uses variables ?time and ?gas that are bound outside the
scope of the sentence, and ?event, ?molecule0 and ?molecule1 that are bound inside. The
variable ?? is like the variable “_” in Prolog: it matches anything, and different occurrences in the
same sentence are free to match different things. There is a similar sentence for events between gas
molecules and the container.

“Average kinetic energy of molecules depends only on the absolute temperature of the system.” can be
written as:

conditionList->
 subWacati(^Relation
 [* sumOver
 (?molecule,
 ?gasDecomposition,
 ?molecularMass * val(?molecule,velocity)^2 / 2
)
 / avogadrosConst * ?numMoles
 = FO(?temp)
 *]
);

Inside of the summation-computing sumOver(?var,Class,expression) clause
val(subj,attr) is being used as a two-argument function that retrieves values. There is also the
analogous product-computing clause prodOver(?var,Class,expression). Both
sumOver() and prodOver() only bind their variables in that clause itself.

The expression FO() will be explained in the next sub-chapter.

12.5. FO() and fo()

The purpose of FO() and fo() is to restrict the future algebraic form of some expression. They are
named “fo” for “function-of” and have a syntax motivated by O-notation in computer science. For
example, to say function f(n) could be written as An2+Bn+C+g(n), one may write:

f(n) = fo(n2+n+1)

While to say f(n) must be written as An2+Bn+C, one writes:

f(n) = FO(n2+n+1)

f(n) = FO(1) means “f(n) is constant”, while f(n) = fo(1) tells you nothing about f(n).

12.6. Reasoning

Computation is done using annotated-values (non-optimized) or non-annotated (optimized) when
walking an expression tree in a relation. The justification is created and attached to the final computed
annotated value. This justification is then attacked by realized conditions from both the relations that
were used to compute the annotated value and the conditions of the Event instances.

For example, if we are given that a particular simple of gas has:
volume = 2.00 liters
temperature = 300 Kelvin
quantity = 0.200 moles

then the computed pressure would be 9.98e+5 Pascals (9.98e+5(*Pascals*)). The resulting
justification would be attacked by the six11 conditions mentioned section 12.4, with external variables
substituted with the particular values for the gas sample.

11 Five listed one, plus an ElasticCollision one for gas molecule/container events similar to the given gas
molecule/gas molecule events.

The system call support(attackedJustification,maxNumAttacks) tries to create a
new justification equivalent to attackedJustification but with no more than
maxNumAttacks attack instances against it. It uses an algorithm like the one listed below:

Justification support
 (Context: context,
 Justification: attackedJustification,
 NonNegativeInteger: maxNumAttacks
)
{
 numAttacks = attackedJustification.attackList.length;
 maxDepth = context.maxSearchDepth;
 currentDepth = 1;

 while (numAttacks <= maxNumAttacks)
 {
 if (currentDepth > maxDepth)
 return null;

 for (attack in attackedJustification.attackList)
 if (canDefendAgainst(attack.statement,currentDepth))
 attackedJustification.attackList.remove(attack);

 currentDepth++;
 numAttacks = attackedJustification.attackList.length;
 }

 return attackedJustification;
}

Here, canDefendAgainst() tries to prove that the necessary expression holds using the given
maximum search depth.

The algorithm listed above is a simplification in that once attacks have been successfully counter-
attacks, the attacks do not go away. Instead, the counter-attack is attached to the attack, and the
original attack is no longer considered a threat.

Reasoning uses knowledge from specific to general. Therefore:
(1) The context queried first
(2) Knowledge given with a subject is queried second
(3) Inherited knowledge given at classes of the subject are queried from the most specific class up to

Idea.
(4) At Idea, analytical knowledge, e.g. knowledge of how to recast problem (definitions of

predicates, switching between Cartesian and Polar coordinates) should be stated

StructProc9 borrows both syntax and semantics from Prolog by using Skolem functions. In Prolog,
Skolem functions are a syntactic trick. The Prolog reasoning engine manipulates expressions so that
functions are never “called” in the sense of being executed as in imperative languages. StructProc9,
however, can either manipulate logic sentences syntactically (as in Prolog), or call them as true
functions.

12.7. Parameterized Equations

Now we consider parameterized equations, like acceleration, velocity and position as a function of
time. First, let us introduce class Event.

class Event
{*
 isA->assertZ(EmpiricalEntity),

 (?this,refFrame)->subConstEntity(?refFrame,ReferenceFrame),

 (?this,when)->subConstValue(?tcc,Time),
 // ?tcc = calendar/clock time:
 // when Event started according to a global chronology

 (?this,time)->subVarValue(?tsw,Time)
 // ?tsw = stop-watch time: time during event
*};

Event introduces three structural variables for all classes that derive from it: ?refFrame, ?tcc and ?
tsw. ?refFrame tells the reference frame. The reference frame is a fixed cultural convention that is
held by instances of Event, so we introduce ?refFrame with subConstEntity(). ?tcc stands
for “calendar/clock time” and tells the fixed time that the event instance started according to some
external notion of time. ?tsw stands for “stop-watch time” and represents the flow of time during the
event. This starting time is a fixed value, so we introduce the variable with subConstValue(). ?
tsw is not fixed (except, perhaps for instantaneous events), so we introduce it with
subVarValue().

Now that we have introduced Event, we can an introduce immediate subclass of it.

class OneDimensionalMotion
{*
 isA->assertZ(Event),

 (?this,movedThing)->subConstEntity(?movedThing,PhysicalObject),
 (?movedThing,acceleration)->subVarValue(?a,Acceleration,[?tsw]),
 // ?a is in dimension Acceleration, and varies as a fnc of ?tsw
 (?movedThing,velocity)->subVarValue(?v,Velocity,[?tsw]),
 (?movedThing,position)->subVarValue(?p,LinearPosition,[?tsw]),

 relationList->
 subWacati(^Relation[* ?v[?tsw] = integral(?a,?tsw) *]),
 // This equation is not yet usable because we have not been
 // given ?a as a function of ?tsw
 relationList->
 subWacati(^Relation[* ?p[?tsw] = integral(?v,?tsw) *])
*};

Class OneDimensionalMotion talks about the motion of something (?movedThing) in one
dimension. In particular it introduces 3 variables of ?movedThing: its acceleration (?a), velocity (?
v) and position (?p). When we introduced variable ?tsw we did so with subVarValue(?
tsw,Time): ?tsw is an independent value in dimension Time. Variables ?a, ?v and ?p, however,
are dependent variables. In particular, they are vary with time ?tsw. We denote this with the third
argument to the subVarValue() method call: subVarValue(?a,Acceleration,[?tsw]).

Inside of the square brackets is an ordered list of variables that ?a is taken to be a function of. There is
just one: ?tsw.

Further, we interrelate ?a with ?v, and ?v with ?p with two relations. In plain mathematical
notation those two relations state:

v (t)=∫a(t)⋅dt

and

p (t)=∫ v (t)⋅dt

These formulas are analytically true, and useless without knowledge of a(t) or v(t).

Let us make them useful by defining a simple case: a(t) = constant:

class UniformAccelerationOneDimensionalMotion
{*
 isA->assertZ(OneDimensionalMotion),

 relationList->
 subWacati(^Relation[* ?a[?tsw] = FO(1) *])
 // System has been told ?a is constant, i.e. ?a[?tsw] = ?a[0]
 // (= ?a, now that it is constant no need to parameterize)
 // Knowing also that ?v = integral(?a,?tsw),
 // it is able to compute: ?v[?tsw] = ?a * ?tsw + ?v[0]
 // Likewise, it also knows:
 // ?p[?tsw] = 0.5*?a*?tsw**2 + ?v[0]*?tsw + ?p[0]
*};

We use the FO(1) notation to fix ?a to some constant value. This has immediate consequences. The
two integrals in the definition of OneDimensionalMotion are now analytically computable. Of
course, to make specific calculations we must specify ?a, ?v[0] and ?p[0].

dropBall15
{*
 instanceOf->assert(OneDimensionalMotion),

 movedThing->assert(ball15),
 relationList->wacati(^Relation[*?a = -9.8(* "meters/sec^2" *)*]),
 relationList->wacati(^Relation[*?v[0(*sec*)]= 0(*"meters/sec"*)*]),
 relationList->wacati(^Relation[*?p[0(*sec*)]= 10.0(* meters *)*])
*};

With instance dropBall15 we assert that attribute movedThing has value ball15. This fixes the
variable ?movedThing introduced by subConstEntity(?movedThing,PhysicalObject)
back in OneDimensionalMotion. (We can also verify that ball15 is an instance of
PhysicalObject.) ?a, ?v and ?p were all introduced as varying parameterized values, so we fix
them with three equations.

We may introduce another subclass where the acceleration is not just constant, but zero. Therefore,
the velocity is constant.

class ConstantVelocityOneDimensionalMotion
{*
 isA->assertZ(UniformAccelerationOneDimensionalMotion),

 relationList->subWacati(^Relation[* ?a = 0.0(*"m/s^2"*) *])
 // Told ?a = 0, therefore can compute:
 // ?v[?tsw] = ?a*?tsw + ?v[0] = ?v[0]
 // (= ?v, no need to index)
 // ?p[?tsw] = 0.5*?a*?tsw**2 + ?v[0]*?tsw + ?p[0]
 // = ?v[0]*?tsw + ?p[0]
*};

All of this is nice, but it is in one dimension. We generalize to two dimensions with the following:

class TwoDimensionalMotion
{*
 isA->assertZ(Event),

 (?this,xMotion)->subConstEntity(?xMotion,OneDimensionalMotion),
 (?this,yMotion)->subConstEntity(?yMotion,OneDimensionalMotion),

 (?this,refFrame)->subEquivalent(?xMotion,refFrame),
 (?this,refFrame)->subEquivalent(?xMotion,refFrame),
 // Ties reference frames of ?this, ?xMotion and ?yMotion
 // together

 (?this,when)->subEquivalent(?xMotion,when),
 (?this,when)->subEquivalent(?xMotion,when),
 // Ties starting times of ?this, ?xMotion and ?yMotion
 // together

 (?this,movedThing)->subEquivalent(?xMotion,movedThing),
 (?this,movedThing)->subEquivalent(?xMotion,movedThing),
 // Ties moved thing of ?this, ?xMotion and ?yMotion
 // together

 relationList->subWacati(^Relation[* ?tsw = ?xMotion->?tsw *]),
 relationList->subWacati(^Relation[* ?tsw = ?yMotion->?tsw *]),

 relationList->subWacati(^Relation[* ?ax = ?xMotion->?a *]),
 relationList->subWacati(^Relation[* ?vx = ?xMotion->?v *]),
 relationList->subWacati(^Relation[* ?x = ?xMotion->?p *]),

 relationList->subWacati(^Relation[* ?ay = ?yMotion->?a *]),
 relationList->subWacati(^Relation[* ?vy = ?yMotion->?v *]),
 relationList->subWacati(^Relation[* ?y = ?yMotion->?p *])

*};

Two dimensional motion is just considered to be two one dimensional motions. (Still have to say that
the motions are on orthogonal axes.) The subEquivalent() methods assert that the reference
frames, starting times and moved-things of both one dimensional motions is that same as that of the
two dimensional motion. We also introduce two equations that tie all three ?tsw times together.
Lastly, we introduce 3 new variables so we can talk about the acceleration, velocity and position on the
two different axes independently.

Now, let us use this new class as the base class for describing uniform velocity along one axis but
uniform acceleration along another. Such a class could describe ballistic motion neglecting wind
resistance (e.g. throwing a ball on the moon).

SimpleBallisticMotion
{*
 isA->assertZ(TwoDimensionalMotion),

 (?this,xMotion)->
subConstEntity(?xMotion,ConstantVelocityOneDimensionalMotion),

 (?this,yMotion)->
subConstEntity(?yMotion,UniformAccelerationOneDimensionalMotion)

*};

We can also use our two dimensional motion to describe uniform circular motion.

UniformCircularMotion
{*
 isA->assertZ(TwoDimensionalMotion),

 (?this,radius)->subConstValue(?r,Length),
 (?this,angularVelocity)->
 subConstValue(?angleVelo,AngularVelocity),
 (?this,angle)->subVarValue(?theta,Angle,[?tsw]),

 relationList->
 subWacati(^Relation[* ?theta[?tsw]
 = ?angleVelo * ?tsw + ?theta[0(*sec*)]
 *]
),

 relationList->
 subWacati(^Relation[* ?x = ?r * cos(?theta[?tsw])*]),
 relationList->
 subWacati(^Relation[* ?y = ?r * sin(?theta[?tsw])*])
*};

For uniform circular motion it is a lot easier to describe the motion in terms of a constant angular
velocity, and initial radius and angle. The ?x and ?y positions can then be thought of as cosine and
sine functions respectively, both as a function of time.

13. Hypothetical Knowledge

13.1 Introduction
The purpose of the knowledge base is to hold knowledge that is now, or once was, believed.

Scientists, however, are also interested in “what-if” questions. For example, “What if the mass of the
Sun was a tenth of its true value? How would the Solar System behave?” We are not (permanently)
asserting that the mass of the Sun has changed, we are just asserting a value for the sake of argument.
AssumeDo blocks exist to support this reasoning. Like Do blocks, the code to run is given in a

square-bracket ([..]) delimited VectorList instances. Unlike Do blocks, however, AssumeDo
statements have two such lists:

^Hypothesize
[*
 [
 // Assumptions are stated here
],
 [
 // Calculations are given here
]
*];

The first list is the “assume” part and is used to state hypothetical values. It may also be used to define
new, hypothetical entities (all new hypothetical entities must be subclasses or instances of
EmpiricalEntity).

The calculations to do with those assumptions are given in the second part, the “do” part. No new
entities are allowed to be created in the “do” part. There are two exceptions to this. First, of course,
the annotated values, and their associated justifications and attacks that are generated by the calculation
are allowed (and will) be calculated. The second is that when AssumeDo blocks are nested, the nested
ones should be in the “do” portion. Nesting is covered below.

AssumeDo is defined not to make any changes outside of itself to the wider knowledge base. The
“assume” and “do” portions may query the larger knowledge-base, but neither may change it. Entities
defined in the “assume” portion are called “hypotheticals”.

Because AssumeDo blocks do not change the wider knowledge-base, anything computed by them
ought to be output by stdOut->printLn() or such. Otherwise they may return the Identity value
of a hypothetical that will be unknown to the knowledge-base proper, and that will be printed as an
unintelligible sequence of hexadecimal numbers.

AssumeDo blocks may be nested. When this is done, the inner AssumeDo constructs should be
given in the “do” portion of the outer ones.

^AssumeDo
[*
 [
 // Assumptions A
],
 [
 // Calculations are given here
 ^AssumeDo
 [*

 [
 // Assumptions B1
],
 [
 // Calculations assuming A and B1
]
 *],
 ^AssumeDo
 [*
 [
 // Assumptions B2
],
 [
 // Calculations assuming A and B2
]
 *]
]
*];

Here the “do” portion of the first inner AssumeDo block assumes both A and B1. By contrast, the
“do” of the second block assumes both A and B2. It is legal to nest AssumeDo blocks because they
are defined not to make any changes outside of themselves. Inner ones have no effect on outer ones.

AssumeDo blocks are computationally limited by design. In particular, only the last asserted value
will be held for any property. Within the AssumeDo block, assertX() acts like assert() in that
it erases previous values. However, taking the AssumeDo block and knowledge-base as a whole,
assertX() acts like assertA() in that it does not erase the values found in the knowledge-base,
but it does “mask” them. Values asserted in AssumeDo are seen before values present in the outer
knowledge-base.

14. Justifications

14.1 Introduction

15. Knowledge Base Runs

15.1 Introduction
The work one does may be saved after changes have been made. One may later load this work to

continue altering and extending it. However, after one saves one’s work as finished it becomes
immutable as a finished knowledge base run. Although finished knowledge base runs may no longer be
changed, they have two properties that unfinished ones do not have:

1. They can be locally or globally published: made accessible to users of defined groups, or indeed
to everyone on the same Scienceomatic environment.

2. They can be extended: new knowledge base runs can be built on top of them.

Indeed, a Scienceomatic knowledge base is a directed acyclic graph of knowledge base runs. In this
graph the sole node without any other nodes pointing to it represents the only knowledge base run that
is allowed to change (if it has not already been finished). This is the active knowledge base run.

Knowledge base runs have both names and numeric indices for the knowledge base runs upon which
they are immediately based. Take, for example, the knowledge base comprised of 7 knowledge base
runs shown in Figure 13-1.

Figure 13-1: A knowledge base of 7 knowledge base runs

Knowledge base runs always reserve index 0 and knowledge base run name baseEnv for the sole
root of the directed acyclic graph. They always reserve index 1 and knowledge base run name
baseSci for the sole knowledge base run directly pointing to the root baseEnv. Further, the
knowledge base run name thisRun always refers to the knowledge base run in which it occurs. In
the example above, the knowledge base run standard has just one entry in its table of knowledge
base runs, one for itself at index 0. As it is its only entry in its table of knowledge base runs, it can

refer to itself by both names baseEnv and thisRun. The knowledge base run standardSci has
two entries in its table: baseEnv for the one at index 0, and either thisRun or baseSci for itself
at index 1.

Knowledge base runs Mike0 and Joe0 have three entries in their tables: one for baseEnv at 0,
one for baseSci at 1, and one for themselves (named thisRun in both) at index 2. Knowledge
base runs Mike1 and Joe1 have four entries in their tables: one for baseEnv at 0, one for baseSci
at 1, one for the knowledge base upon which they are directly based (either Mike0 and Joe0), at
index 2, and one for themselves (named thisRun in both) at index 3. The table for knowledge base
run Tiffany0 has 5 entries: baseEnv at 0, baseSci at 1, Mike1 (at either 2 or 3), Joe1 (at
either 2 or 3), and one for itself (thisRun) at index 4.

The purpose of knowledge base run baseEnv is to define the environment, including the base
ontology and behavior of sp9a. It defines fundamental concepts like Integer, Boolean, String,
true, false, etc., and serves as the “operating system” of a knowledge base. The purpose of
knowledge base run baseSci is to define the basic scientific concepts that subsequent knowledge
base runs will extend in the subontology EmpiricalEntity. These include basic scientific
concepts like Electron, Protein, Bacteria, Population, Ecosystem, Planet, and
Universe.

Different baseSci knowledge base runs imply different scientific worldviews, e.g. by what they
define (and what they do not define) in their ontologies. The scientific worldviews of Ptolemy,
Newton, Einstein and Heisenberg appear mostly self-consistent, but conflict with each other in
fundamental ways. Thus, they should represented by distinct baseSci kb runs. To unify two or more
knowledge base runs, as Tiffany0 does above, all subsumed knowledge base runs must be based
upon the same baseSci knowledge base run (and thus the same baseEnv knowledge base run). The
purpose of this requirement is to dissuade attempting to unify completely distinct views of science.

15.2 Knowledge Base Run Tables
Each knowledge base run keeps track of the prior knowledge base runs which it extends in a table:

1. The official name of the knowledge base run
2. A nickname of the run, which must conform to the naming conventions of an identifier
3. The time and date of creation
4. The time and date of finishing (if applicable)
5. The time and date of publishing (if applicable)
6. The name of the creator/owner
7. Public key of creator/owner
8. A cryptographic hash

Both the official names and the nicknames must be unique within the same table.

Let Mike0, Mike1, Joe0 and Joe1 serve as nicknames in all the appropriate tables. If Mike0
defines the concept “nucleus” to mean “the central, massive part of an atom”, but Joe0 defines
“nucleus” to mean “the organelle of a eukaryote cell that contains most of its DNA”, then Tiffany0
may refer to an atomic nucleus as Mike1:Mike0:nucleus, and may refer to a cellular nucleus as
Joe1:Joe0:nucleus.

15.3 Knowledge Base Run Linearizations
Knowledge base runs have tables containing baseEnv, baseSci, any other knowledge base runs

that they directly build upon, and themselves. However, they also have linearizations of all prior runs
upon which they directly or indirectly build. The purpose of linearizations is to establish sub-
sequences of knowledge base runs minimize how often they jump among differing extensions. This is

especially important for method inheritance, which is discussed in the next chapter.
Let knowledge the following knowledge base runs be finished on the following dates:

1. Joe0 on 2018 May 1
2. Mike0 on 2018 June 1
3. Joe1 on 2018 July 1
4. Mike1 on 2018 August 1

The knowledge base linearization for Tiffany0 will list the following knowledge base runs in the
following order:

1. baseEnv
2. baseSci
3. Joe0
4. Joe1
5. Mike0
6. Mike1
7. Tiffany0

The Joe0, Joe1 path will be listed first because Joe0 had and earlier finish date than Mike0. Joe1
is listed before Mike0, even though Joe1 was finished after Mike0, because presumably the jump
between Joe0 to Joe1 is less abrupt than that between Joe0 and Mike0. The one abrupt jump
between Joe1 to Mike0 is less jarring than three such jumps imposed by the purely temporal ordering
of Joe0 to Mike0, Mike0 to Joe1, and Joe1 to Mike1.

More formally, whenever there is a fork, the linearization follows the knowledge base run with the
earliest finish date and time until it joins with some other path (and it will join up because all paths
must join at thisRun, if not earlier). The next path taken is the path with the second earliest finish
date and time, etc. If there are two or more paths with knowledge base runs with the exact same
finishing date and time, then they are ordered by their cryptographic hash in ascending order.

15.4 The Recommend Semantics And Pragmatics of Knowledge Base Run
Unification

A knowledge base is largely defined by its ontology. This ontology states what does (and by
omission, what does not) exist. The Scienceomatic environment supports Kuhnian “normal science”
with its ready support for knowledge base runs to extend ontology at the leaves. Further, unifying two
or more runs is easiest when they have extended non-overlapping areas of the ontology.

There is less support for reorganizing the internals of a temporally-inherited ontology. Such an
operation is more akin to a “scientific revolution”, and is better addressed by creating a brand new
knowledge base from either baseSci, or if necessary baseEnv.

16. Variables and Flow Control
StructProc can be used as a general-purpose programming language with variables, conditionals,

loops and function calls. Conditional and looping structures are implemented by asserting values for
attributes special attributes. One could do this with assertX(), but it makes for needlessly verbose
code. Instead it is expected that you will make use of the implicit anonymous construction as detailed
in chapters 7 and 8.

14.1 The if-statement: If
Constructors are inherited from classes, like If. To construct an instance of class If, prepend it

with a caret (meaning “make an instance of this set only once when this code is read, a.k.a. 'read-
time'”). Place the arguments to the constructor in a comma-separated list delimited by curly braces.
Thus,

15. Iterators, Part 1

15.1 The Philosophy of StructProc Iterators
StructProc is for science. Scientists often want several answers to their queries, whether or not they

are mutually agreeing or contradictory. Iterators encapsulate the state of a query or search; thus they
are an essential part of StructProc.

StructProc also is a language in the artificial intelligence tradition, is designed for artificial
intelligence type problems, and assumes the artificial intelligence worldview. For those in artificial
intelligence querying is inherently “hard”: exponential, or at best NP-complete. Accordingly,
StructProc consciously restricts iterators.

Iterators can only be relied upon to support four kinds of operations:
1. Report their current finding (or return null if all findings have been exhausted).
2. Be advanced to the next finding.
3. Tell you if they have exhausted all of their findings.
4. Be reset back to the beginning of their query or data-structure.

Note: there is no “go back to the previous finding” operation: the fear being that might involve too
much space to cache, or too much time to recompute. (However, you as programmer are free to cache
it yourself.)

Contrast the artificial intelligence worldview with that held by computer scientists with backgrounds
in data-structures and databases. For them querying is “easy”. In general, if your query is worse than
O(lg n) then you have chosen the wrong data-structure/algorithm pair, or you have not properly
normalized your tables. Thus, iterators through data-structures can do all kinds of fancy things, like go
forwards in backwards, with equal agility. Not so for computer scientists with backgrounds in artificial
intelligence, and therefore not so for StructProc.

In finer detail, the philosophy of StructProc iterators is that they act as if they always point to the
current finding, or to an “end-of query/data-structure” marker. (Though this may be an illusion; their
actual implementation may use a lazy, “just-in-time” computation of the current finding.) The
conceptual advantage of this are that:

1. At any point in an iterator's life it has one answer for you (even though this may be an illusion,
asking for that one answer the first time may involve a lot of work), and,

2. Asking the same iterator for the same answer the second time should (ideally) involve much
less work. Ideally it should just require a finite sequence of O(1) look ups (assuming the
relevant knowledge is still in memory).

To be fair, there are other ways to think about iterators. For example, in Java iterators through
linked lists conceptually point in between list items. The Java-approach conceptually simplifies the
task of insertion into a linked list: the new item goes in between the two items to which the iterator
points. StructProc allows insertion at an iterator-specified position in a NodeList instance, but its
interface for doing so is not as clean as Java's. However, unlike Java, StructProc iterators support
general querying of the knowledge-base, so the “pointed to answer” approach is more applicable.

15.2 The Basics of Iterator Usage
We already have seen iterators used in loops.

SP9a1 :) [1] ^Do
[*[

 ^VarDecl[* @iter, Iterator *],

 ^For
 [*
 @iter := [Mary,had,a,little,lamb]->dataStruct_iter(),
 !@iter->iter_isAtEnd(),
 stdOut->print(@iter->iter_value())->print(" "),
 @iter->iter_advance()
 *],

 stdOut->printLn(""),

 ^For
 [*
 @iter->iter_reset(),
 !@iter->iter_isAtEnd(),
 stdOut->print(@iter->iter_value())->print(" "),
 @iter->iter_advance()
 *]
]*];
Mary had a little lamb
Mary had a little lamb stdOut

The example above demonstrates defining an iterator to iterate over a list, and then resets it to iterate
over the list again.

The basic methods of iterators are:

Method Description
iter_isAtEnd() Returns true if the iterator has gone past the last item, or false

otherwise.
iter_value() Returns the item at the iterator's current location, or null if

iter_isAtEnd() returns true.

iter_key() Returns the key at the iterator's current location. In general, this is
exactly the same as iter_value(), but when iterating through
instances of Map, iter_key() returns the key of a <key,value>
pair, while iter_value() returns the value. (See section 11.5 on
Maps)

iter_entry() Returns the complete derivation of how a value was computed, including
the value. For iterators over the ontology, and for iterators through data-
structures, this is just the value itself. For them its behavior is identical to
that of iter_value().

iter_advance() Advances the iterator to refer to the next item. Returns the item at the
iterator's old location.

iter_reset() Resets the iterator to refer to the beginning of its data-structures. Returns

Method Description

the iterator itself.

The question “How do I generate an iterator?” is as important as “What can I do with one?” The
table below lists the StructProc architecture-supported iterator-returning expressions to iterate over
data-structures and through the ontology.

Through what Expression which returns iterator:

Items in data-structure dataStruct. dataStruct->dataStruct_iter()

Superclasses to which class class belongs. class->class_superClassIter()

Subclasses underneath class class. class->class_subclassIter()

Classes to which instance instance belongs. instance->instance_classIter()

Instances of class class. class->class_instanceIter()

Only locally-asserted values of instance
instance for attribute attr.

instance->
instance_localPropIter(attr)

All values (locally-asserted first, then
inherited) of attribute attr for instance
instance.

instance->instance_propIter(attr)

Values inherited by instances of class class
for attribute attr that have been
subAsserted at class.

class->subProp_iter(attr)

16. Data-Structures: Vector Lists, Node Lists, Bags and Maps

StructProc is not meant to be a general-purpose programming language like C++, Java or C#. It has
limited abilities to let programmers define their own data-structures (beyond, of course, the structures
of its property quadruplets). It does have, however, four built-in datatypes: vector lists (instances of
VectorList), node lists (instances of NodeList), bags (instances of Bag), and maps (instances of
Map). StructProc's design philosophy is to have fewer, but more general-purpose data-structures.
Thus, bags take the place of set data-structures in other languages, and vector lists take the place of
arrays.

16.1 Vector Lists
We have seen compile-time vector lists already. For example, the sole parameter to Do's constructor

is a list of commands to do.

SP9a1 :) [1] ^Do
[*[
 stdOut->printLn("A"),
 stdOut->printLn("B"),
 stdOut->printLn("C")
]*];
A
B
C

stdOut

In the case above that list is [stdOut->printLn("A"), stdOut->printLn("B"),
stdOut->printLn("C")].

An empty VectorList that is allowed to hold instances of any class may be constructed at
compile-time with the usual class constructs of ^VectorList[**] or ^VectorList. However,
simply enclosing nothing between [and] is the most concise syntax:

SP9a1 :) [1] ^VectorList[**];
[]
SP9a1 :) [1] ^VectorList;
[]
SP9a1 :) [2] [];
[]

To limit the compile-time created VectorList to only hold instances of a particular class, specify
that class as the sole argument to the constructor list, as in ^VectorList[*Integer*], or more
concisely, [][*Integer*]. Attempts to create lists with instances that do not belong to that class,
or to insert them in after creation, will result in an ItemNotInRequiredDomainException.

SP9a1 :) [3] ^VectorList[*Integer*]->dataStruct_insertZ(1);
[1][*Integer*]
SP9a1 :) [4] ^VectorList[*Integer*]->dataStruct_insertZ(1.0);
1. at column 25 of line 5 of the command line is not in class Integer,
therefore dataStruct_insertZ could not be done
SP9a1 :) [5] [][*Integer*]->dataStruct_insertZ(1);

[1][*Integer*]
SP9a1 :) [6] [][*Integer*]->dataStruct_insertZ(1.0);
1. at column 16 of line 7 of the command line is not in class Integer,
therefore dataStruct_insertZ could not be done
SP9a1 :) [7] [1][*Integer*];
[1][*Integer*]
SP9a1 :) [8] [1.0][*Integer*];
1. at column 5 of line 9 of the command line is not in class Integer, therefore
dataStruct_insertZ could not be done

To create a VectorList at runtime, say new VectorList, or new VectorList[*Class*] to
restrict it to only hold members of a given class.

SP9a1 :) [1] new VectorList;
[]
SP9a1 :) [1] new VectorList[*Integer*];
[][*Integer*]
SP9a1 :) [2]

To retrieve an element from a VectorList use the vList_get(index) method. index
should be an integer. If the vector has never been extended by dataStruct_insertA(item)
then the indices will range from 0 to the list's size minus one. vList_get(index) either returns
the item at that position (if index is in range) or null if index is out-of-range.

To overwrite an element in a VectorList use vList_didPut(index,item). If index is
in range then this method places item in the vector list at position index, and returns true.
However, if index is not in range, then the method returns false and no other action is taken.

16.2 Methods of Data-structures
Now that we have seen our first data-structure, we can mention the methods of all data-structures.

The (basic) methods of data-structures are:

Method Description

dataStruct_isEmpty() For all: returns true if the data structure is empty, or
false otherwise.

dataStruct_size() For lists: returns the number of items in the data
structure.

For bags: returns sum of the number of times all
inserted identities are present.

For maps: returns the number of keys in the map; each
<key,value> pair only counts once.

dataStruct_distinctCount() For lists: returns number of distinct identities.
For bags: returns number of distinct identities, not

summing their counts.
For maps: same as dataStruct_size().

dataStruct_iter() For lists: returns an iterator to range over the identities
in the list.
For bags: returns an iterator to range over the identities
in the list; if an identity c is in the bag N times then the

Method Description

iterator will return c N times consecutively.
For maps: returns an iterator to range of the pairs.
Iterator method iter_key() returns the key of the
pair. Iterator method iter_value() returns the
value.

dataStruct_insertA(item) For lists: inserts item at the beginning of the list.
For bags: inserts item (again, if already present).
For maps: throws exception (maps want both a key
and value)
For lists and bags: returns the data structure.

dataStruct_insertZ(item) For lists: inserts item at the end of the list.
For bags: inserts item (again, if already present).
For maps: throws exception (maps want a key and

value pair)
For lists and bags: returns the data structure.

dataStruct_insert(item) For lists: inserts item at the end of the list.
For bags: inserts item (again, if already present).
For maps: throws exception (maps want both a key
and value)
For lists and bags: returns the data structure.

dataStruct_insert(item,n) For bags: inserts item n more times.
For lists and maps: throws exception.

dataStruct_didInsertBecauseNot
Present(item)

For lists: inserts item at the end only if it is not
already present.

For bags: inserts item only if it is not already present.
For maps: throws exception.
For lists and bags: returns the data structure.

dataStruct_doesHave(item) For lists and bags: returns true if the data structure
has item at least once, or false otherwise.

For maps: returns true if the data structure has
item as a key, or false otherwise.

dataStruct_didRemove(item) For lists: Returns true if the first occurrence of
item was found and removed, or false if there are
none.
For bags: Returns true if the one occurrence of
item was removed, or false if there are none.
For maps: Returns true if the pair with key item
was removed, or false if there was none.

dataStruct_clear() For all: removes all items in the data structure, making
its size 0. Returns the data structure.

dataStruct_copy() For all: returns a copy of the data structure.

Method Description

list_firstItem() For lists: returns first identity, or null if the list is
empty.

For bags and maps: throws exception.

list_secondItem() For lists: returns second identity, or null if the list is
less than two items long.

For bags and maps: throws exception.

vList_didPut(index,item) For vector lists: places item at integer indexed
position index if it is a valid index into the vector
list, and returns true. If index is not a valid
index into the vector list then returns false and
takes no further action.

vList_get(index) For vector lists: returns the item at integer indexed
position index if it is a valid index into the vector
list. Returns null if index is not valid.

vList_numInsertA() For vector lists: returns the number of times
dataStruct_insertA(item) has been called
since the last time dataStruct_clear() has
been called.

bag_count(item) For bags: returns the number of times item is present.

map_put(key,value) For maps: inserts <key,value> pair, overwriting the
existing value for key if it already is matched with
a value. Returns map.

For lists and bags: throws exception.

map_get(key) For maps: returns the value to which key has been
paired, or null if there is no such value.

For bags and lists: throws exception.

list_sort(order) For vector lists and node lists: sorts the list (must be of
either Number or String instances), according to
order (which must be either ascendingOrder or
descendingOrder).

list_sort(order,attribute)

The methods of classes of data-structures (VectorList, NodeList, Map, Bag and

DataStructure), rather than of data-structures themselves are listed below. (They are accessible

from the class of the data-structure rather than from individual data-structures themselves. The closest
level of organization in a conventional object-oriented language like C++ or Java is static methods.)

Method Description

dataStruct_getIdenticalSinglet
on(source)

For all: if source is the first instance of a data-
structure that is identical to itself, then (1) source
is internally registered, (2) it is marked as
immutable (is given property

Method Description

<ideasIsImmutableA,true>), and (3)
source is returned. However, if another data-
structure with the same contents in the same
order/mapping/count as source already has been
registered, then that already registered data-
structure is returned.

16.3 Node Lists
Although both dataStruct_insertA(item) and dataStruct_insertZ(item) are

defined on vector lists, vector lists are limited in that insertion cannot be done in the middle. Further,
while dataStruct_didRemove(item) is defined on vector lists, it is a O(n) operation (assuming
the list is in memory).

Node lists, however, are not restricted in this manner. While node lists cannot do array-style access
via vList_get(index) and vList_didPut(index,item) (and vList_numInsertA() is
similarly undefined), they can do all the other list methods.

Unlike vector lists, which are built upon extendable arrays of contiguous memory, node lists are
built of discrete nodes in memory. Each node list node keeps track of the node before it, the node after
it, and the item to which it refers. Additionally, all StructProc node lists have their own nil nodes,
which mark the end of the list. (NOTE: the nil nodes mark the end of a list, and are distinct from the
null idea used to denote “No more answers.”)

(Examples)

This next example demonstrates a variety of list manipulations. Note that compile-time node lists
begin with [** and end with **].

17. User-Defined Methods
Besides calling predefined methods, StructProc programmers may define their own methods. They

are owned by some class or instance of the ontology.

17.1. Introduction
An example of a user-defined method is presented below:

Idea
{*
 sub hello.str
 [* compMeth |
 [
 [@name, String]
],
 String,
 ^Do
 [*[
 ^Return[* "Hello " ++con @name *]
]*]
 *]
*};

The computational method (or colloquially just “method”) is prefaced with sub, meaning that although
it is owned by Idea, the method is for its instances. The alternative to sub is self, which means
that the method is for the instance in which it is defined.

After the sub or self is the method family name (in this case hello.str).
After the method name is the definition of the method within the [* *] pair. First is the keyword

compMeth. A vertical bar then separates this keyword from the rest of the definition, specifically the
parameter list, return type, and code. It is meant to convey “hello.str is a computational method
such that it has the parameter list, return type and code given as follows . . .”

The parameter list is a list of lists. If the method takes no arguments then the parameter list is just the
empty list, []. However, if arguments are given, then each parameter must have one of the following
forms:

[@variableName]

or, more preferably:

[@variableName, VariableDomainClass]

or sometimes:

[@variableName, VariableDomainClass, nullArgAllowed]

All three forms define a new parameter variable (@variableName). In the first case, this domain
class defaults to Idea. In the last two cases, this variable is limited to values in the specified domain
class (VariableDomainClass). In the very last case the constant null is allowed as an argument,
even if null is not in class VariableDomainClass. The term nullArgAllowed gives
programmers control over whether or not null is allowed as an argument (by default it is not if null

is not in VariableDomainClass). We consider this more elegant than always allowing null, or
always disallowing it and forcing the user to define two different methods. By default it is disallowed,
unless the user specifies otherwise with nullArgAllowed. And if they explicitly specify
nullArgAllowed, they should remember to handle a null argument in their method.

The return type may be a class (or a datatype prototype?). In the example above it is simply
String. All methods must return something, so there is no equivalent of void as in C, C++ and
Java. Methods that would return void in C, C++ or Java commonly return @this in StructProc9.

The last argument is the code of the method. Generally this code is wrapped in a ^Do[*[…]*]
block, although ^Return[* .. *] and ^If[* .. *] are also allowed. This code may only use
the variables given as arguments, defined within the code itself, or that are the special method variables
@this (which tells the subject of the method call, the entity to the left of the ->) or @these (telling
the class that owns the method).

The use of the vertical bar (“such that”) to separate compMeth from the rest of the method definition
is deliberate. The method definition above could be read as “hello.str is a computation method
such that it takes one String argument, returns an instance of a String, and executes the specified
code.”

The simplest way to call a method is to give a subject that is an instance of the class in which the
method resides, the arrow -> , the method family name, and the desired arguments of the correct
domains between a parenthesis pair.

1->hello.str("Joe");

Here, the Integer value 1 (or anything else in the knowledge base) is an instance of Idea and
serves as the subject of the call. This 1 will reappear in the body of the method in the variable @this.
This method has one parameter, and in this example the variable @name will take on value "Joe".

It is illegal to name a method the same name as a standard, predefined method. Doing so would be a
security risk, analogous to an operating system allowing arbitrary processes to change its interrupt
table.

17.2 Method Linking
The linker must deal with 3 issues:

1. Finding the best matching method in the hierarchy given the subject, @thisSubj. For
example, if the method isOdd() exists under both Integer and Idea, then the call 1-
>isOdd() should link with the one under Integer.

2. Finding the best matching method in the hierarchy given the arguments. For example, two
methods named print() exist under OutputStream, but one takes a Rational argument
(print(Rational)) while the other takes a String argument (print(String)) then
the call stdOut->print(1) should link with print(Rational).

3. Finding the best matching method in the knowledge base given the time the method was
defined, and the desires of the user. For example, a knowledge base has three runs created on
2018-April-15, 2018-May-15 and 2018-June-15. A method f() under Idea was
◦ defined in 2018-April-15,
◦ called in code on 2018-May-15,
◦ redefined on 2018-June-15.

Under linkForward the call written in 2018-May-15 would link with the version of f()
then existing: from 2018-April-15. Under linkBackward the call written in 2018-May-15
would link with the most recent version of f(): from 2018-June-15.

The first two of these issues are shared by many object-oriented languages, like C++ and Java. The last
issue, however, is unique to monotonic knowledge base languages like sp9a.

The first issue is addressed in a manner similar to that used by C++. If there are two or more
contending method definitions, class search is executed from the instance @thisSubj. The class that
has a matching method is called.

The second issue is addressed with a programmer-defined extension. All method prototypes should
be given a unique extension by the programmer, like hello.str for a method that takes a string as
its sole argument. (A warning will result if the extension is missing.) Much like file system entry
names, the extension portion of the name follows the period. The fullname of a method includes its
extension.

The system enforces the uniqueness of the fullnames of methods: if ever the user tries to violate it by
attempting to define the following:

class Whatever
{*
 sub compMeth
 [* hello.str |
 String,
 [[@name, String]],
 ^Do
 [*[
 ^Return[* "Hello " ++con @name *]
]*]
 *]
*};

class WhateverElse
{*
 sub compMeth
 [* hello.str |
 Integer,
 [[@int, Integer]],
 ^Do
 [*[
 ^Return[* 5 + @int *]
]*]
 *]
*};

then an error will result, even though the methods are in two different classes. The second method is
trying to repurpose hello.str to a different prototype, one that takes an Integer and returns an
Integer instead of taking a String and returning a String.

Method calls should use these extensions. Warnings will result when they are not used, even when
there is no ambiguity. If there is ambiguity then an error will result and linking will fail. This should
be resolved by specifying extensions.

Conflicts may arise when combining two different knowledge bases. In this case, the combining
algorithm may rename one or both prototype extensions.

The third issue is dealt by the giving a link specifier and/or a knowledge base run. One example is:

subject->kbRun:className::methodName.extension(methodArgs)

(Note the double-colon used after, and only after, the given class.) This form needs no link specifier
because the user is explicitly specifying the knowledge base run and the class. The only requirements
are that:

1. The knowledge base run actual defines the named method at the given class, and,
2. That the subject be an instance of the given class.

More generally one may have sp9a find and link with the appropriate method over knowledge base
runs (temporal-inheritance), and in the ontology (ontological inheritance). The general form for this
is:

subject->linkSpecifier:kbRun:methodName.extension(methodArgs)

(There should also be a form for calling a method with both a subject and a justification, perhaps
something like

(subj,just)->linkSpecifier:kbRun:methodName.extension(methodArgs)

if it proves unambiguous.)
The link specifiers are:

1. linkOnlyWith: Means “link only with the knowledge base run given next”. This specifier
must be used with a named knowledge base run. If only a knowledge base run is given then this
is the link option that is used.

2. linkForward: Means “link with the first knowledge base run with a matching method,
starting with the earliest run, baseEnv, and going forward in time”. This option requires no
knowledge base run specified. If a knowledge base run is given, then it is ignored. Without a
knowledge base run, the knowledge base run of the method call is taken as null, which is the
suggested value to be used if a knowledge base run must be given.

3. linkBackward: Means “link with the first knowledge base run with a matching method,
starting with the current run, thisRun, and going back in time”. This approach has the
property of always linking with the most modern definition of a method. If neither link
specifier nor knowledge base run is explicitly given, then this is the default link specification.
As with linkForward, this option requires no knowledge base run specified. If a knowledge
base run is given, then it is ignored. Without a knowledge base run, the knowledge base run of
the method call is taken as null, which is the suggested value to be used if a knowledge base
run must be given.

4. linkForwardUntil: Means “Starting with the first knowledge base run baseEnv and
moving forward in time until (and including) the specified knowledge base run, link with the
first knowledge base run with a matching method”. This option requires that a knowledge base
run be explicitly specified.

5. linkBackwardUntil: Means “Starting with the current knowledge base run thisRun and
moving back in time until (and including) the specified knowledge base run, link with the first
knowledge base run with a matching method”. This option requires that a knowledge base run
be explicitly specified.

6. linkBackwardSince: Means “Starting with the specified knowledge base run and moving
back until (and including) baseEnv, link with the first knowledge base run with a matching
method”. This option requires that a knowledge base run be explicitly specified.

7. linkForwardSince: Means “Starting with the specified knowledge base run and moving
forward until (and including) thisRun, link with the first knowledge base run with a matching
method”. This option requires that a knowledge base run be explicitly specified.

The distinctions among linkForwardUntil, linkBackwardUntil, linkBackwardSince
and linkForwardSince may are shown in the diagram below: “forward” vs. “backward” tells
direction in time, while “until” vs. “since” tells starting point (“until” means start at the
endpoints, while “since” means start at the specified knowledge base run).

Figure 13.1: Until vs. Since, and
Forward vs. Backward

Either, or both, the link specification and knowledge base run specification may be given at run-time

as variables.

Any user-defined method temporally-inherited at a class may be undefined in the current active
knowledge base run by masking it. This is done like the following:

class Whatever
{*
 sub compMeth
 [* hello.str | masked *]
*};

Here, hello.str() is taken to no longer exist in this knowledge base run at class Whatever.
Using linkForward will still find the first hello.str() method defined at Whatever, but
using linkBackward for an instance of Whatever will invoke a hello.str() defined in a
superclass of Whatever (if such a method exists).

This example should illustrate the interplay between ontological-inheritance and temporal-

inheritance. Let two classes exist: Base, and, a class that is derived from it, Derived. Let
derivedInstance be an instance of Derived.

• If in knowledge base run run0, a method foo() is defined in Base, then
linkBackward:derivedInstance->foo() will run run0:Base::foo(), as it is
the only contender.

• If run1 extends run0, and it defines Derived::foo(), then
linkBackward:derivedInstance->foo() will run run1:Derived::foo()
because it belongs to a more proximate class to derivedInstance.

• If run2 extends run1, and it re-defines Derived::foo(), then
linkBackward:derivedInstance->foo() will run run2:Derived::foo()
because it belongs to a later knowledge base than run1:Derived::foo().

• If run3 extends run2, and it masks Derived::foo(), then
linkBackward:derivedInstance->foo() will run run0:Base::foo() because
all methods foo() at Derived have been masked.

• If run4 extends run3, and it defines Derived::foo(), then
linkBackward:derivedInstance->foo() will run run4:Derived::foo()
because now the mask itself has been masked by a new method.

20. Domain-dependent Mathematical Operations

20.1 Introduction
So far the numbers we have seen, instances of Integer, Rational, Real and Complex, have

been nonannotated. That means they have not been given meta-data to describe anything; they are just
numbers.

Annotated values have meta-data to describe what the numbers mean, and how they can properly be
used. Annotated values are instances of AnnotatedValue. An example of an AnnotatedValue
instance is the one below for equatorial radius of the Earth:

21. Scienceomatic Environmental Support

21.1 Introduction
Although Struct Proc may be used as a stand-alone programming environment, it was designed to be

an integral part of the larger Scienceomatic knowledge representation and reasoning environment.
Within this environment it was designed to play a dominant role in the representation of symbolic
knowledge (as opposed to procedural knowledge, like which statistical tests should be applied when, or
media data, like the storage of images, videos or audio files). It was also meant to meaningful, but
incomplete, role in reasoning with symbolic knowledge (e.g. it is expected that the Scienceomatic
environment will call on more specialized programs to solve non-trivial equations, do specialized linear
algebra problems, apply statistical tests, etc.)

Struct Proc supports this larger environment with a variety of methods.

obtainStdPropertiesAndArbitraryAttrs() of Idea: The purpose of this method is to
return the readily-accessible properties of the subject on which the method is called. It may be run on
any ontological entity and has no parameters. It returns a VectorList instance of VectorList
instances. Each inner VectorList instance has 3 members: the first is the attribute, the second is the
first listed value of that attribute, and the third is the justification corresponding to the attribute and
justification. If no value is listed then the holder value unknown is given. The “justification”
byNonsense corresponds to any unknown or null value.

SP9a1 :) [1] 1->obtainStdPropertiesAndArbitraryAttrs();
[[instanceOf,Integer,byDefinition],
[mayBeDestroyedA,false,byDefinition],
[isImmutableA,true,byDefinition]]
SP9a1 :) [1] "Greetings"->obtainStdPropertiesAndArbitraryAttrs();
[[instanceOf,String,byDefinition],
[mayBeDestroyedA,false,byDefinition],
[isImmutableA,true,byDefinition]]

getInfoForNavigationPage() of Idea: The purpose of this method is to return the
ontological neighbors of @thisSubj, to facilitate navigation through the knowledge base. It may
be run on any ontological entity and has no parameters. It returns a VectorList instance of with 5
arguments. The first is the just the @thisSubj, the thing being described. The second is the first
listed class of @thisSubj. The third is the first listed superclass of @thisSubj, or is null if
@thisSubj is not a class. The fourth is a VectorList of immediate subclasses of @thisSubj,
or is an empty VectorList if @thisSubj is not a class. The fifth and last is a VectorList of
immediate instances of @thisSubj, or is an empty VectorList if @thisSubj is not a class.

SP9a1 :) [1] 1->getInfoForNavigationPage();
^SOMNavigationPage[*1,Integer,null,[],[]*]
SP9a1 :) [1] Idea->getInfoForNavigationPage();
[]

	1. About StructProc, and About this Document.
	2. How to start StructProc, and how to leave.
	3. Non-Annotated Boolean, String and Numeric Constants
	4. Basic Knowledge Assertion
	5. Basic Querying
	6. Intermediate Knowledge Assertion.
	7. Constructors and Implicit Construction
	8. Anonymous and Single-Distinct Identities
	9. Annotated Values
	10. Introduction to Arguments, Justifications and Attacks
	Let the assertion state:
	Although this assertion may have justification and attack instances directly attached to it concerning the validity of the data X and Y, and with the validity of the means by which the least-squares was computed, let us first deal with two attack patterns that could be associated with the least-squares fit. Two attacking patterns could be:
	(1) The independent variable had a range from 1.0 to 10.0. Thus, any attempt to use this linear fit for values far outside this range is not supported by this limited range.
	(2) The R-squared error is 0.9995.
	When we use this assertion to compute Y at X = 9.0 we get 90.3. To this answer we apply both attack patterns and generate two attack instances: (1) Hey! The source data for X had a limited range from only 1.0 to 10.0! (2) Hey! R-squared error is 0.9995!
	In this particular case both (1) and (2) may be considered irrelevant. Our X = 9.0 is in [1.0, 10.0], and an R-squared error of 0.9995 is considered very close to linear. Therefore, in this particular case, our the attacking instances generated by both (1) and (2) would themselves be attacked by two additional attacking instances! The purpose of keeping all these attacks is to show “Yes, we are aware of problems with least-squared fits in general. For this particular case, however, we have shown that they are not applicable.”
	11. A Calculus of Justifications
	In general, a justification instance is a tree of justifying nodes. Each node has its own attributes, which in terms of the tree should not be considered leaves, but just structure within the node itself. For example, a node may group together the subject (Joe Phillips), attribute (mass) and annotated value (80.51 kg). However, when a justifying node has another justifying node as one of its values, then it becomes an internal node of some overall justification tree.
	Much like for grouping and scaling multiplication, for grouping and scaling division the attribute that results depends upon what was divided.
	12. Scientific Knowledge Representation
	13. Hypothetical Knowledge
	14. Justifications
	15. Knowledge Base Runs
	16. Variables and Flow Control
	15. Iterators, Part 1
	16. Data-Structures: Vector Lists, Node Lists, Bags and Maps
	17. User-Defined Methods
	20. Domain-dependent Mathematical Operations
	21. Scienceomatic Environmental Support

