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Abstract 

We propose semantics for the manipulation of sample 
values and metadata for scientific data.  Our approach uses 
domain knowledge from an ontology; computational 
knowledge about dimensions, units, coordinate systems, etc; 
and cultural and linguistic norms.  It recombines annotated 
values with specialized operators.  This semantics does 
several types of dynamic error checking and results in “self-
documented computation”. 

1. Introduction 

“Garbage-in, garbage-out.”  Professional computer 
scientists know this and craft software accordingly.  
Beginning computer scientists learn (and if needed, re-
learn) this principle on the path towards professionalism.  
Some lay-public have caught on, and occasionally mock 
software engineering for this. 

What, however, is “garbage”?  On its ways both in and 
out it is the mismatch between how users and systems 
believe the Universe works. 

This paper presents a principled approach to extend the 
knowledge of automated reasoning systems in scientific 
domains.  It makes sample values and metadata an integral 
part of any value.  These metadata tell: 

• the domain of values (including dimensions, limits and 
units) 

• the axis 

• the subject being described 

• the attribute of the described subject 

• when the data hold 

• where they hold 

• who is responsible for it 

• why the value was obtained 

• any instruments used 

• any methodology employed 
 

Our values are annotated far more richly than is 

common in computing systems.  That fact, however, serves 
as a severe indictment of contemporary computing systems 
because practicing scientists use these metadata to decide 
when (and if) to use scientific values. 

Our paper is organized as follows.  The next section 
motivates our work with examples of metadata.  We follow 
with prior work, and discuss how we handle values, 
metadata, and operators.  We discuss the ramifications of 
particular design choices.  Then we conclude. 

2. Motivation 

Computing systems ought to use metadata because 
scientists place significance in reporting it.  Take this 
passage from Bertozzi and Bednarski, 1991. 
 

The solution . . . afford(ed) 17.0 g (73% . .) of a 
colorless oil: mp 210 degrees C; IR (thin film) 2861, 
834, . . . 661 cm-1; 1H NMR (400 MHz, CDCl3)  0.04 
(s, 6 H), 0.87 (s, 9 H) . . . (t, 2 H, J = 5.3); 13C NMR 
(CDCL3)   -5.31, 18.33, . . . 72.62; mass spectrum 
(GC-MS) 305.2 (M -28(N2), 43), . . , Anal. Calcd for 
C14H31O4N3Si: C, 51.04; H, 8.26; N, 12.75.  Found: 
C, 51.56; H, 9.64; N, 12.16. 
 
The melting point (210) has its units (Celsius) given with 

the implicit dimension temperature.  The infrared 
spectroscopy peaks were given along with the technique 
(thin-film) and units (cm-1 is the wavenumber, or the 
inverse of the wavelength, which is another way of 
specifying the frequency of light).  Two forms of nuclear 
magnetic resonance were used: “proton” (1H) and “carbon-
13” (13C).  The 1H was tuned to radio frequency 400 
MHz.  Both had peaks whose offsets (“”) are relative to 
the implicitly understood tetramethylsilane.  Further, for 
proton NMR, the peaks have multiplicity (s = singlet, d = 
doublet, t = triplet, etc.), area (the number of H's) and 
separation between/among the multiple peaks (given by the 
J value).  For NMRs whose frequencies differ from 400 
MHz the -values are constant but the J-values will 



change.  The mass spectrometer technique was listed along 
with the method of separation: GC or “gas 
chromatography” using molecular Nitrogen (N2).  This 
gave peaks including the “molecular ion” one at 305.2 
atomic weights.  Finally, the percent by mass of each type 
of atom was computed theoretically and by chemical 
analysis. 

This example shows metadata's importance in several 
regards.  First, had other chemists analyzed the same 
compound they would expect similar numbers except for 
the J-values, which depend on the frequency of their NMR. 
Second, the units are not uniform: for NMR spectroscopy 
the frequency is in MHz while for infrared spectroscopy it 
is wavenumbers.  Third, a clear distinction is made 
between the theoretical and the found mass percentages. 

 
Neglecting metadata has had expensive and catastrophic 

outcomes.  One example was NASA's Mars Climate 
Orbiter (NASA 1999), which was destroyed (in part) 
because angular momentum impulse data was in English 
(pound-seconds) rather than metric (Newtons). Another 
example, also from rocketry, was the first attempted launch 
of the European Space Agency's Ariane 5 rocket.  Software 
from the Ariane 4 was reused, but the Ariane 5's more 
powerful engines triggered a bug in the conversion from a 
64-bit floating point value to a 16 bit integer (Lions, 1996). 

Clearly one lesson from these incidents is that metadata 
ought to be an integral part of a value rather than merely a 
label in some comment, buried in the user manual, or 
(worse) left in the minds of the programmers.  Further, 
computing systems should properly carry this metadata 
through operations.  Doing so can prevent or catch a host 
of errors related to dimensional analysis, unit conversion, 
range checking and general semantic integrity. 

Proper metadata usage requires more knowledge.  Some 
of this knowledge can be “built-in” to the definitions of our 
operators, but we will also require an annotated ontology 
and linguistic and cultural information. 

 
A further complication about measurements is that they 

are often repeated.  Several contemporary computing 
systems require scientists to substitute a rich distribution 
with a single value like a mean, weighted mean, median or 
mode.  This, however, loses the variation (or the 
confidence of knowing the uniformity) of the distribution. 

We address this issue by explicitly representing 
measurements as distribution vectors of floating point 
values, rationals or symbols.  Values derived from 
measurements become (in principle) N-dimensional 
distribution matrices that have one dimension for each 
measurement that went into their formation. 

The carrying forward and manipulation of distribution 
vectors and matrices will necessarily take more time and 
space.  The growth in size becomes a significant concern 
and we outline a dynamic sampling technique to address it. 

 For the metadata apart from the distribution we believe 
the space is also the primary concern, but for a different 
reason.  Although one important usage for the metadata is 

automatic error-checking, another is as “self-documenting 
computation” for the benefit of the user.  The amount of 
computer-generated metadata annotation should be 
minimized (consistent with the mandate to sufficiently 
document) to lessen the burden on those who read it.  The 
computation may be internally consistent but mismatch 
with some aspect of the world of which the system was not 
informed.  Users will be relied upon to catch some external 
inconsistencies, and identifying the most salient metadata 
will help hold their attention. 

3. Prior Work 

This work is relevant to many areas but perhaps the closest 
is Computational Scientific Discovery (CSD).  From the 
beginning CSD researchers have incorporated scientific 
knowledge into their programs.  Classic examples include 
mass spectroscopy knowledge in meta-Dendral (Buchanan 
1978), medical knowledge in Mycin (Buchanan 1984), and 
chemical reaction knowledge in Mechem (Valdés-Pérez 
1992, 1993).  Since these early programs researchers have 
either considered adding meta-data to their programs like 
Inductive Process Modeling (Bridewell et al, 2008), or 
have actually added basic knowledge of dimensions, units 
and limits in Scienceomatic V (Phillips 2003).  

The situation for mathematical packages and simulation 
languages is similarly spotty.   Mathematica, for example, 
can be made aware of dimensions and their units (Wolfram 
Research 2010).  Matlab, however, needs an added 
package and has a quirky syntax (deCarvalho 2006). 

 
With the rise of collaborative tools such as the World 

Wide Web, grid computing and other online services, 
many researchers have studied how to work with metadata 
at the level of simulations and whole experiments (e.g. 
Yang et al 2002). 

The existence of these metadata integration schemes 
complement our efforts.  After a computing system 
translates metadata from an XML schema into its own 
internal format the metadata must be accurately carried 
through its calculations.  Only this will allow us to be 
more certain that the data coming out of the system is as 
accurate as the data going in. 

4. Values 

We distinguish four different types of values. 
(1) Naturally important values are believed to have a 

priori importance because of their mathematical or 
other properties. Examples include the non-negative 
integers,  and e.  Integers and rationals can be 
represented with arbitrary precision limited only by 
the availability of memory.   Irrational values can be 
represented symbolically with full precision. 

(2) Culturally important values are defined to be 
important.  One example is conversions, e.g. 100 
centimeters in 1 meter.  A special case concerns when 



phenomena are believed to interrelate dimensions in a 
fundamental fashion.  For example the speed of light 
is defined to be 299,792,458 meters/second.  Given 
that 1 second has a physically-based definition, this 
serves to define the length of a meter.  Culturally-
defined values are generally integers and can be 
stored with arbitrary precision. 

(3) Measurements are readings of some aspect of the 
Universe.  In principle they are limited only by the set 
of Turing-computable numbers.  However, in practice 
they come from machines that read and store them in 
common IEEE floating point formats. 

(4) Derived values result from computations.  Values 
derived from the naturally and culturally important 
values may be expressed with arbitrary precision as 
symbolic operations upon rationals and symbols (e.g. 
sqrt(2)).  However, as soon as a floating point value is 
used in the calculation such arbitrary precision is 
wasted due to the uncertainty inherent in the 
measurement. 

 
We make two assumptions about the values in the 

distribution vector of a measurement value. 
(1) Although measurements are repeated, there is the 

expectation that the values will fall within a relatively 
narrow range.  This is the case when, for example, a 
presumably “static” thing is measured multiple times, 
or when a “dynamic” thing is measured simultaneously 
with several measurers.  We explicitly assume that the 
variance among values in the same distribution vector 
will be “small.”  When this expectation does not hold it 
is proper to split the value up into distribution vectors 
small enough that the expectation does hold. 

(2) Further, we expect that values in measurement value 
distribution vectors are “representative” and not 
systematically skewed somehow. 

5. Value Metadata 

Metadata require a language.  We use symbols as unique 
nominal values to represent concepts which have 
properties.  One such property is the standard 
isA/instanceOf relationship among sets and their members 
used to build ontologies. Symbols may be organized in 
lists. 

Sets have two additional properties.  First, there exists a 
symbol unique to each set that means “unspecified 
member” of that set.  If symbol set represents some set 
then unspecMbr(set) represents its unspecified member.  
Second, sets are either labeled as having all of their 
members be functionally interchangeable with each other 
(e.g. as with pieces of equipment off the same assembly 
line that functionally differ only by serial number), or not.  
This is given with the boolean property over set symbols 
areMembersInterchangeable(). 

Members also have a binary relation.  The function 
commonOverlap(member1,member2) returns a member 
symbol that represents the overlap that members member1 

and member2 share.  For example, if member1 is 
twentiethCentury and member2 is year1967CE then 
commonOverlap() would return year1967CE. 

We also define three functions that dynamically create 
new symbols or map to existing ones based upon cultural 
and linguistic norms. 

The function collection(memberList) takes a list of 
symbols representing members and returns a member 
symbol representing a collection of those members.  The 
collection is not a formal ontological set for purposes of 
organization, but just a bunch of things that happen to be 
lumped together for some reason or another. 

The function composite(memberList) also takes a list of 
symbols representing members.  It returns a member 
symbol that represents a new object with structural and/or 
functional integrity1 that results from their grouping.  For 
example, attaching a “horse” to a “buggy” conceptually 
yields a new object with its own integrity, even while 
being compositionally created. 

The function resultingAttr(op,member) (and 
resultingAttr(memberL,op,memberR)) return the symbol 
for the attribute that results from applying unary (or 
binary) operator op on the given member(s).  As with 
composite(memberList) it is expected that there will be 
significant cultural and linguistic content in the definition 
of these functions.  For example, in English we call length 
times length “area”, length times area “volume”, etc. 

 
The metadata associated with each value is inspired by 

the basic questions in journalism: who, what, when, where, 
why and how.  To this list we add domain, axis, which 
aspect, and using what. 
(1) Domains are composite objects that may have three 

properties: dimensions, units and limits.  Dimensions 
are represented as a list of dimension symbols raised to 
integer powers2.  Associated with each numeric 
dimension is one primary unit symbol.  Secondary 
units of the dimension have a linear conversion3 to the 
dimension's main units. 

   There are six notions of limits associated with 
each numeric domain. 
(a) loRangeLimit and hiRangeLimit define hard logical 

endpoints for a domain.  For example, latitude is 
defined to be between -90 to +90 degrees. 

(b) loSystemLimit and hiSystemLimit define the 
endpoints of the system being measured.  For 

                                                 
1 But not necessarily touching. 

2For non-complex numbers there are some special cases of 

expressions that have non-integer powers, like the 

exponents of reagent concentrations in chemical 

reaction rate equations.  These, however, tend to be an 

anomaly and may be approximations.  Concentrations, 

after all, are based on volumes which are lengths raised 

to the third power. 

3In y=mx+b format, in most cases b will be 0.  One 

important exception is temperature: C=1*K + 273.15. 



example, a certain swimming pool can contain 
between 0 to 25,000 liters. 

(c) loDetectLimit and hiDetectLimit define the range 
outside which phenomena cannot be detected.   

(d) loSaturateLimit and hiSaturateLimit define the 
range inside which phenomena empirically lie, 
even though in principle it could go more extreme. 

(e) loReliableLimit and hiReliableLimit define a softer 
limit on detection than loDetectLimit and 
hiDetectLimit.  Outside that range values are not 
reliably detected. 

(f) loObservedLimit and hiObservedLimit define the 
most extreme range inside of which phenomena 
actually have been observed. 

The following conditions (and their high-limit 
equivalents) hold among the limits: 
 (a) loRangeLimit <= loSystemLimit <= 

loSaturateLimit; 
 (b) loRangeLimit <= loDetectLimit <= 

loReliableLimit; 
(c1) loSystemLimit <= loObservedLimit; 
(c2) loDetectLimit <=  loObservedLimit; 
Condition (a) is the system constraint.  Condition (b) is 
the instrument constraint.  Conditions (c1) and (c2) are 
the data constraints. 

(2) Axes allow conversion between values whose origins 
have different translations and rotations in some 
coordinate system. 

(3) Subject answers “What?” with a list of symbols.  The 
value 299,792,458 meters/second for the speed of light 
has symbol unspecMbr(photonSet) in its subject list. 

(4) Attribute answers “Which aspect?” with a list of 
symbols.  The value 299,792,458 meters/second for the 
speed of light has symbol speed in its attribute list. 

(5) State answers “When?” with a list of symbols.  
Associated with each is (a) a duration, (b) a midpoint 
time, and (c) a time axis (e.g. for conversion between 
different calendars). 

(6) Location answers “Where?” with a list of symbols 
representing a place. 

(7) Authorship answers “Who?” with a list of symbols.  
Each represents a person or organization deemed 
responsible for the value's measurement, computation, 
etc. 

(8) Reason answers “Why?” with a list of symbols.  For 
culturally important and measurement values these 
represent the (presumed) motivations of the members 
of the authorship in obtaining the value.  For derived 
values these represent the “union” of the reasons that 
went into the calculation of the derived value.  (The 
algorithm for computing unions is given below.)  

(9) Equipment answers “Using what?” with a list of 
symbols.  Each represents a significant piece of 
equipment used to obtain the value. 

(10) Method answers “How?” with a list of symbols.  
Each represents a computational or experimental 
technique for used to obtain the value. 

One could ask “How much metadata should be given?”  

We defer to the norms that scientists already follow, but 
suggest that now because metadata can be tracked 
automatically, more can be stated. 

One could also ask “Why use lists of symbols as opposed 
to sets?”  Although our algorithm makes minimal use of 
the ordering information, scientists might place importance 
on the order in which they give symbols.  For example, the 
author who is listed first on a paper is generally considered 
the one who put the most work into it. 

Rules for combining sample values 

The rules for combining the sample portion of values rely 
on vector sources.  A vector source is a symbol that 
identifies and gives information on a vector of values, e.g. 
by identifying the trials used in a measurement.  A total 
ordering exists over vector sources so that lists of them 
may be sorted. 

Consider a simple experiment in which a weight is 
dropped three times.  Each time it has its mass taken (it is 
“weighed”) and its velocity upon impact is measured.  This 
yields two measurement vectors: one of masses <m1, m2, 
m3>, and one of velocities <v1, v2, v3>. Both 
measurement vectors came from the same trials thus both 
have the same vector source. 

Having the same vector source lessens the multitude of 
values by preventing unobserved combinations.  Say we 
want to multiply the mass by the velocity to compute the 
momentum.  That both vectors have the same source 
means that we get the 3-numbered vector <m1v1, m2v2, 
m3v3> (also with the same vector source) instead of the 9-
numbered cross product matrix. 

A unary operation applied to a vector or matrix gives a 
vector or matrix of equal dimensions and the same vector 
source(s) as the operand. 

Binary operators are more complicated.  Let the first 
operand be an M-dimensional matrix with an ordered list 
L1 of M distinct vector sources.  Let the second operand be 
an N-dimensional matrix with an ordered list L2 of N 
distinct vector sources.  Let L1 and L2 have O vector 
sources in common listed in LC.  The resulting matrix has 
M+N-O dimensions whose vector sources are the ordered 
merging of L1 and L2 with the duplicates given in LC 
removed. 

Even when duplicates are removed dimensionality and 
the size of the matrices is expected to grow.  There are two 
approaches for dealing with this.  One is when it becomes 
“too big” (where “too big” is defined by users and/or the 
implementing system) the matrix may be sampled to yield 
a reasonably-sized vector.  This sampled vector gets a 
unique vector source, and associated with this source may 
be details associated with the sampling. 

The other approach is to forgo the creation of matrices in 
favor of demand-driven sampling. 

 
One purpose of the metadata discussed in the next 

section is to trap illegal values (e.g. divide-by-zero, square 
root of a negative number, etc.).  If some values in a 
sample vector or matrix are illegal then they are 



represented by the null symbol.  Subsequent operations on 
that value will carry the null symbol forward.  When it is 
believed that the value is inherently illegal in and of itself 
(rather than just the victim of an inappropriate operator) 
then that particular value can be noted as illegal within its 
vector source.  This information can then be pushed 
forward to all values that directly and indirectly use the 
vector source, or can be dynamically checked by new 
operators as they are done. 

Rules for combining metadata 

Domains and axes have their own combination rules, and 
attributes try the resultingAttr() functions first, but the 
default algorithm for the other seven metadata fields is the 
same.  We believe this uniformity follows from the nature 
of the questions, all eight of which ask for some 
description answerable by listing an individual that result 
from intersection, union, or a generalizing union. 

(We emphasize that this is the default algorithm for 
computing metadata.  The next chapter will show how 
specific operators override this algorithm in specific 
circumstances.) 

All three combining approaches are required.  
Intersection is often needed for the state and location 
metadata.  For example, consider a skinny antenna 
mounted atop a tall building.  In one sense the whole 
building is now taller.  However, more specifically it is the 
area on which the antenna stands, the intersection of the 
cross-sections of both building and antenna, that is now 
taller.  Other cross-sectional area of the building remain the 
same height.  The authorship metadata show the need for 
union.  Bertozzi and Bednarski are unique individuals, both 
of whom created the compound data above, so their names 
should be listed individually.  Lastly, the equipment 
metadata shows the need for a more generalizing notion of 
union.  All 400 MHz NMRs are expected to yield very 
similar - and J-values.  Indeed, specifying the make, 
model and serial number of the NMR may be seen as 
obfuscating detail, so all 400 MHz NMRs should be 
identified by their set. 

An algorithm and subroutine are listed below. 
 
SymbolList symbolListUnion 
 (SymbolList symList1, SymbolList symList2) 

 
SymbolList retList := []; 
Symbol commonSym := null; 
foreach symbol syml in symList1: 
    if (matchSymbol(syml,retList,f) <> null) 
        continue; 
    commonSym := matchSymbol(syml,symList2,t); 
    if  (commonSym = null) 
        retList.append(syml); 
    else  
        retList.append(commonSym); 
    endif 
endforeach; 
 

foreach symbol syml in symList2: 
    commonSym := matchSymbol(syml,retList,f); 
    if (commonSym = null) 
        retList.append(syml); 
endforeach; 
 
return retList; 

 
 
 

Symbol matchSymbol  (Symbol matchSym, SymbolList 
symList, boolean shouldRemove) 

 
int bestDist := -1; 
int setDist := -1; 
Symbol bestSym := null; 
Symbol set := null; 
Symbol removeSym := null; 
 
foreach symbol symL in symList: 
    if  (combineType() = intersection ) 
        bestSym := commonOverlap(matchSym,symL) 
        if  (bestSym <> null) 
            removeSym := symL; 
            breakforeach; 
        endif 
    else if  (combineType() = union ) 
        if  (matchSym = symL) 
            removeSym := bestSym := symL; 
            breakforeach; 
        endif 
    else if  (combineType() = generalize ) 
        set := mostSpecificCommonSet(matchSym,symL); 
 
       if(set<>null AND areMembersInterchangeable(set)) 
            setDist :=    ontologyDist(set, matchSym) 
                            + ontologyDist(set, symL); 
 
            if  (bestDist = -1 OR setDist < bestDist) 
                bestSym := unspecMbr(set); 
                bestDist := setDist; 
                removeSym := symL; 
            endif 
        endif 
    endif 

   endforeach 
 
if  (shouldRemove AND removeSym <> null) 
    symList.remove(removeSym); 
endif 
 
return bestSym; 

 
The functions unspecMbr(set), 

commonOverlap(mem1,mem2), and 
areMembersInterchangeable(set) are described above.  
The ontology function mostSpecificCommonSet(mbr1, 
mbr2) takes two symbols representing set members and 



returns a most specific set that includes both, or null if no 
such set exists.  The ontology function 
ontologyDist(set,mbr) returns the smallest distance in the 
ontology graph between set and member.  The function 
combineType() tells the type of combining to do based on 
the operator and metadata type. 

For extension-addition (described below) matchSymbol() 
will return the time and space for when and where an 
antenna mounted on top of a building exists.  However, it 
does other combinations for other metadata.  For example, 
when told that all 400 MHz NMRs are interchangeable 
symbolListUnion([varian400MHzNMR],[bruker400MHzN
MR]) returns unspecMbr(n400MHzNMRset).  However, 
when told that people are unique 
symbolListUnion([bertozziCarolyn], [bednarskiMark]) 
returns [bertozziCarolyn, bednarskiMark]. 

 
Combining domains entails combining their three 

properties: dimensions, units and limits.  Dimensions are 
combined by conventional dimensional analysis.  Units are 
similarly combined with unit conversion.  Limits are 
combined by applying the specified operator on the given 
limit, and using the more general limits to further constrain 
the result.  For example, doubling an angle value 
representing latitude with hiReliableLimit = 89.5 degrees 
and hiRangeLimit = 90 degrees yields a value with 
hiReliableLimit = 90 degrees (instead of 2*89.5 = 179 
degrees) so as not to violate the instrument constraint. 

Combining axes is done in accordance to the coordinate 
system of which the axes are a part.  This may involve 
translation of origins, rotations, and switching coordinate 
systems (e.g. among Cartesian, polar, spherical, etc.).4 

6. Operators 

The combination of values has been considered 
generically, but we require that our operators also preserve 
the desired metadata semantics.  In this section we look at 
operator-specific metadata transformations. 

Our analysis will be simplified by considering a small 
basis set of operator types, namely: addition, 
multiplication, exponentiation to rational powers, and 
metadatacasting.  We follow the computer algebra tradition 
of defining subtraction as addition where the subtrahend 
has been multiplied by -1 (Cohen 2002). Similarly, we 
define division as multiplication where the divisor has been 
raised to the power of -1.  Common functions that are 

                                                 
4Of course in an N-dimensional space it is common to 

convert from N values in the old system to N values in 

the new as a group rather than individually.  Such a 

conversion could be done with operators that worked 

on vectors of values (where the term “vector” now 

groups what we have considered sample vectors and 

matrices) instead of individual scalars.  This is 

considered an implementation issue that is beyond the 

scope of this work. 

mathematically smooth5 (e.g. sine, inverse cosine, etc.) 
may be defined in terms of these operators by techniques 
like the Taylor Series. 

There are four addition operators: grouping-addition, 
delta-grouping-addition, extension-addition and delta-
extension-addition.  All four “add” identically to yield the 
same digits; they differ in how they treat their metadata. 

Grouping-addition represents the increase (or decrease 
for subtraction or addition of negative numbers) in the size 
of some set.  The resulting sum has subject metadata being 
collection() applied to the subjects of both addends.  
Grouping-addition creates the state and location of the sum 
by generalizing that of its addends. 

Delta-grouping-addition is like grouping-addition in that 
it represents the increase (or decrease) in the size of some 
set.  In this case, however, the first addend is taken as the 
dominant contributor both numerically and semantically, 
and the sum’s subject becomes the first addend’s subject.  
For example, increasing the mass of water in a large, 
nearly full swimming pool by pouring 0.5 liters of water in 
it gives you the same body of water, slightly modified. 

Extension-addition represents the further lengthening (or 
shortening for subtraction or addition of negative values) 
along some axis.  The resulting sum has subject metadata 
equal to the composite() of the subjects of both addends. 
Extension-addition creates the state and location of the sum 
by intersecting that of its addends.  Only the portions held 
in common get extended. 

 Last is delta-extension-addition which is like extension-
addition in that it also represents the further lengthening 
(or shortening) along some axis.  In this case, however, the 
first addend is taken as the dominant contributor both 
numerically and semantically, and the sum has the same 
subject as it.  Going back to the antenna atop tall building 
example, you get the same building, slightly modified. 

Grouping-addition and delta-grouping-addition are 
appropriate when the addition represents increasing (or 
decreasing) the size of a set-like collection of items that 
may or may not have any relation to each other, other than 
all belonging to the same collection.  Thus, grouping-
addition should be used for averages and standard 
deviations.  Grouping-adding the masses of ten distinct 
weights and dividing by ten gives an idea how much mass 
a “typical” weight has. 

By contrast, extension-addition and delta-extension-
addition are appropriate when the addition represents the 
creation (or removal from) a composite object.  Extension-
adding the masses of our weights creates (if only in our 
minds and our computers’ memories) a “superweight” that 
is the collection of all of them acting together6. 

Delta-grouping-addition and delta-extension-addition 

                                                 
5The function itself and all of its derivatives are 

continuous. 

6 The subjects do not necessarily have to touch.  To other 

planets the Earth and Moon have the same gravitational 

effect as a “superplanet” whose mass is their sum. 



implicitly consider the first addend to be the larger.  The 
sum may be intolerably inaccurate when it is not because 
the second (“delta”) addend may itself be an 
approximation.  Making the “delta”-additions distinct 
operators gives us the opportunity to apply domain 
knowledge to see if the delta addend is “too big” to be 
trusted. 
 

Unlike addition there is only one multiplication operator.  
It relies upon the default rules given in the previous chapter 
and uses intersection for state and location. 

 
Similarly, there is one exponentiation operator.  It is 

more restrictive than exponentiation in most computing 
systems because (1) the power must be a sample with a 
single value, and (2) that single value must be a 
dimensionless rational number.  (Thus 0.3333333 is illegal; 
one must use 1/3.)  The resulting value gets the domain’s 
dimension and attribute from specific domain information 
like resultingAttr() (so that length3 -> volume, and 
volume1/3 -> length) but otherwise, because the power is 
dimensionless, the base will provide the majority of the 
metadata to the result.  It also uses intersection. 

 
The last basic operator is metadatacasting.  

Metadatacasting is like typecasting in that it allows the 
user to explicitly tell the computing system that they think 
it is okay to change the metadata in some specific fashion.  
For example, Bertozzi and Bednarski obtained their 1H 
NMR data one day in 1990 from an NMR in the basement 
of Latimer Hall on the campus of the University of 
California Berkeley on planet Earth.  However, they (and 
most chemists) probably believe that their spectrograph 
was not an artifact of that particular place and time.  They 
may change the state of their measurements from 
unspec(dayInYear1990CE) to allTime and their location 
from basementOfLatimerHall to allSpace by explicitly 
casting. 

 
Other operations can be defined using these.  For 

example, trigonometric and inverse trigonometric functions 
can be defined that numerically compute with Taylor series 
and that check and change metadata like dimensions, units 
and attributes with metadatacasting.  Trigonometric 
functions would take values with dimension angle and 
return values with dimension dimensionless.  Inverse 
trigonometric ones would do the opposite.  In both cases 
units (radians or degrees) become a non-issue because 
they are an inherent aspect of the value itself. 

7. Discussion 

We believe this computational paradigm to be distinctive 
enough that there are many issues to discuss. 

(1) We want as many operators as needed to properly 
manipulate metadata and no more.  Addition 
ballooned to four operators (or perhaps eight if 
you make the floating point vs. integer 

distinction).  However, we believe they are all 
needed.  “Delta”-addition vs. non-delta-addition 
lets users state when the right addend is 
semantically negligible.  Grouping-addition vs. 
extension-addition lets users state whether a 
semantically new entity has been created as 
opposed to just another collection. 

Similar distinctions exist for multiplication.  
Multiplication could mean “repeated addition” 
(e.g. 4 boxes of candy x 10 candies per box = 40 
candies).  It could mean “rescaling” where the 
right-hand-side has more semantic content and the 
left-hand-side is just a scale factor (e.g. E=h; 
where E is the energy of a specific photon,  is the 
frequency of a specific photon and h is a 
frequency-to-energy conversion factor common to 
all photons)7.  It could also mean “rescaling” 
where the left-hand-side has more semantic 
content and the right-hand-side is just a scale 
factor (e.g. (m1 + m2) / 2 = (m1 + m2) * 2-1 =  
mave; mave clearly comes from m1 and m2, the 2 
is just a normalization factor). 

Rather than define three or more different 
multiplication operators we rely on the default 
metadata combining algorithm to compute the 
metadata appropriately. 

(2) We can do more than just distinguish the 
theoretical and observed mass ratios in the 
Bertozzi and Bednarski data, we can say how they 
were calculated or were observed with the method 
metadata.  The same “value” may be computed by 
the same simulator with different parameters, by 
different simulators of the same family, or by 
different families (e.g. ab initio, empirical-fitting 
or mixed approaches).  Having this distinguishing 
metadata around is necessary if we want to keep 
all of it in the same knowledge base.  We face a 
similar issue when storing multiple measurements 
taken with different resolutions or at different 
times.  Scientists and philosophers of science tell 
us that all data assume some theory. 

(3) If the average amount of metadata in a value is M 
and if we do N operations on N+1 values (as in v1 
+ v2 + . . . + vN+1) then the metadata can grow to 
O(MN).  This is intolerably large but not expected 
to be the case for most scientific applications.  The 
O(MN) size assumes that each new operand adds 
more unique semantic content.  This would be the 
case if we were computing with semantically 
unrelated values.  In real life planetary data is used 
with other planetary data, evolutionary biological 
data with other evolutionary biological data, etc. 

(4) If the distribution matrices become intolerably 
large then instead of computing them an 
expression could return a stochastic lambda 

                                                 
7 Reciprocal inversions are another example of left-scaling 

multiplications. 



function whose structure mirrors the expression’s 
parse tree.  Running the function will 
stochastically return a value as in a Monte Carlo 
simulation.  This function could be called many 
times to build a distribution. 

(5) We have introduced several types of error 
checking.  To this add checking the variance of 
values in distribution matrices.  Because we 
assume a small variance in raw measurements, 
large variances, bimodal distributions, etc., in 
calculations may indicate the numeric instability 
of the expression.  We may also add checks where 
the same (or overlapping) symbols appear both in 
the subject and authorship pieces of metadata.  
This signifies that a subject has reported on his-
/her-/it-self.  Depending on the attribute there may 
be questions about how objective this reporting is. 

(6) We acknowledge that this approach will be several 
times slower than simply encoding numbers as 
floating point values and integers.  We hope that 
this is CPU time well spent to create a documented 
computation. 

(7) One problem with this approach is the hard 
distinction between the “delta”-addition operators 
and the non-“delta”-addition operators.  For 
example consider filling an empty swimming pool 
a liter at time.  Initially this appears to be an 
extension-addition operation, with the mass of the 
water increasing by relatively large amounts with 
each new liter.  Towards the end, however, the 
pool is nearly full and just one more liter makes 
very little difference making this a delta-
extension-addition.  When exactly did extension-
addition morph into delta-extension-addition? 

Perhaps a better way of thinking about this is 
that there is only grouping-addition and 
extension-addition, and that they both may be 
more or less “delta”-like depending on the 
circumstances.  What those circumstances are, 
and what their concrete ramifications for metadata 
manipulation are, are beyond the scope of this 
paper. 

8. Conclusion 

 
We have introduced a manner for handling vectors of 
distributions, metadata, and operators to apply to them 
appropriate for scientific data.  This work was motivated 
by ongoing scientific representation and reasoning that is a 
continuation of Phillips 2009.  Applications for this work, 
however, go beyond scientific reasoning to include 
constructive induction, data cleaning, and educational 
software for science and engineering. 

Unfinished work includes how to handle comparisons 
such as less-than, less-than-or-equal-to, equal-to, etc and 
how to handle symbolic values (as needed in rules and 
decision trees).  We could also consider handling complex 
numbers (used in some physics and engineering domains), 

and the simultaneous manipulation of related values (e.g. 
x, y and z coordinates). 
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