

A Proposed Semantics for the Sampled Values and Metadata of Scientific

Values

Joseph Phillips

De Paul University

School of Computing and Digital Media

243 S. Wabash Ave

Chicago, IL 60604, USA

jphillips@cdm.depaul.edu

Abstract

We propose semantics for the manipulation of sample
values and metadata for scientific data. Our approach uses
domain knowledge from an ontology; computational
knowledge about dimensions, units, coordinate systems, etc;
and cultural and linguistic norms. It recombines annotated
values with specialized operators. This semantics does
several types of dynamic error checking and results in “self-
documented computation”.

1. Introduction

“Garbage-in, garbage-out.” Professional computer
scientists know this and craft software accordingly.
Beginning computer scientists learn (and if needed, re-
learn) this principle on the path towards professionalism.
Some lay-public have caught on, and occasionally mock
software engineering for this.

What, however, is “garbage”? On its ways both in and
out it is the mismatch between how users and systems
believe the Universe works.

This paper presents a principled approach to extend the
knowledge of automated reasoning systems in scientific
domains. It makes sample values and metadata an integral
part of any value. These metadata tell:

• the domain of values (including dimensions, limits and
units)

• the axis

• the subject being described

• the attribute of the described subject

• when the data hold

• where they hold

• who is responsible for it

• why the value was obtained

• any instruments used

• any methodology employed

Our values are annotated far more richly than is

common in computing systems. That fact, however, serves
as a severe indictment of contemporary computing systems
because practicing scientists use these metadata to decide
when (and if) to use scientific values.

Our paper is organized as follows. The next section
motivates our work with examples of metadata. We follow
with prior work, and discuss how we handle values,
metadata, and operators. We discuss the ramifications of
particular design choices. Then we conclude.

2. Motivation

Computing systems ought to use metadata because
scientists place significance in reporting it. Take this
passage from Bertozzi and Bednarski, 1991.

The solution . . . afford(ed) 17.0 g (73% . .) of a
colorless oil: mp 210 degrees C; IR (thin film) 2861,
834, . . . 661 cm-1; 1H NMR (400 MHz, CDCl3)  0.04
(s, 6 H), 0.87 (s, 9 H) . . . (t, 2 H, J = 5.3); 13C NMR
(CDCL3)  -5.31, 18.33, . . . 72.62; mass spectrum
(GC-MS) 305.2 (M -28(N2), 43), . . , Anal. Calcd for
C14H31O4N3Si: C, 51.04; H, 8.26; N, 12.75. Found:
C, 51.56; H, 9.64; N, 12.16.

The melting point (210) has its units (Celsius) given with

the implicit dimension temperature. The infrared
spectroscopy peaks were given along with the technique
(thin-film) and units (cm-1 is the wavenumber, or the
inverse of the wavelength, which is another way of
specifying the frequency of light). Two forms of nuclear
magnetic resonance were used: “proton” (1H) and “carbon-
13” (13C). The 1H was tuned to radio frequency 400
MHz. Both had peaks whose offsets (“”) are relative to
the implicitly understood tetramethylsilane. Further, for
proton NMR, the peaks have multiplicity (s = singlet, d =
doublet, t = triplet, etc.), area (the number of H's) and
separation between/among the multiple peaks (given by the
J value). For NMRs whose frequencies differ from 400
MHz the -values are constant but the J-values will

change. The mass spectrometer technique was listed along
with the method of separation: GC or “gas
chromatography” using molecular Nitrogen (N2). This
gave peaks including the “molecular ion” one at 305.2
atomic weights. Finally, the percent by mass of each type
of atom was computed theoretically and by chemical
analysis.

This example shows metadata's importance in several
regards. First, had other chemists analyzed the same
compound they would expect similar numbers except for
the J-values, which depend on the frequency of their NMR.
Second, the units are not uniform: for NMR spectroscopy
the frequency is in MHz while for infrared spectroscopy it
is wavenumbers. Third, a clear distinction is made
between the theoretical and the found mass percentages.

Neglecting metadata has had expensive and catastrophic

outcomes. One example was NASA's Mars Climate
Orbiter (NASA 1999), which was destroyed (in part)
because angular momentum impulse data was in English
(pound-seconds) rather than metric (Newtons). Another
example, also from rocketry, was the first attempted launch
of the European Space Agency's Ariane 5 rocket. Software
from the Ariane 4 was reused, but the Ariane 5's more
powerful engines triggered a bug in the conversion from a
64-bit floating point value to a 16 bit integer (Lions, 1996).

Clearly one lesson from these incidents is that metadata
ought to be an integral part of a value rather than merely a
label in some comment, buried in the user manual, or
(worse) left in the minds of the programmers. Further,
computing systems should properly carry this metadata
through operations. Doing so can prevent or catch a host
of errors related to dimensional analysis, unit conversion,
range checking and general semantic integrity.

Proper metadata usage requires more knowledge. Some
of this knowledge can be “built-in” to the definitions of our
operators, but we will also require an annotated ontology
and linguistic and cultural information.

A further complication about measurements is that they

are often repeated. Several contemporary computing
systems require scientists to substitute a rich distribution
with a single value like a mean, weighted mean, median or
mode. This, however, loses the variation (or the
confidence of knowing the uniformity) of the distribution.

We address this issue by explicitly representing
measurements as distribution vectors of floating point
values, rationals or symbols. Values derived from
measurements become (in principle) N-dimensional
distribution matrices that have one dimension for each
measurement that went into their formation.

The carrying forward and manipulation of distribution
vectors and matrices will necessarily take more time and
space. The growth in size becomes a significant concern
and we outline a dynamic sampling technique to address it.

 For the metadata apart from the distribution we believe
the space is also the primary concern, but for a different
reason. Although one important usage for the metadata is

automatic error-checking, another is as “self-documenting
computation” for the benefit of the user. The amount of
computer-generated metadata annotation should be
minimized (consistent with the mandate to sufficiently
document) to lessen the burden on those who read it. The
computation may be internally consistent but mismatch
with some aspect of the world of which the system was not
informed. Users will be relied upon to catch some external
inconsistencies, and identifying the most salient metadata
will help hold their attention.

3. Prior Work

This work is relevant to many areas but perhaps the closest
is Computational Scientific Discovery (CSD). From the
beginning CSD researchers have incorporated scientific
knowledge into their programs. Classic examples include
mass spectroscopy knowledge in meta-Dendral (Buchanan
1978), medical knowledge in Mycin (Buchanan 1984), and
chemical reaction knowledge in Mechem (Valdés-Pérez
1992, 1993). Since these early programs researchers have
either considered adding meta-data to their programs like
Inductive Process Modeling (Bridewell et al, 2008), or
have actually added basic knowledge of dimensions, units
and limits in Scienceomatic V (Phillips 2003).

The situation for mathematical packages and simulation
languages is similarly spotty. Mathematica, for example,
can be made aware of dimensions and their units (Wolfram
Research 2010). Matlab, however, needs an added
package and has a quirky syntax (deCarvalho 2006).

With the rise of collaborative tools such as the World

Wide Web, grid computing and other online services,
many researchers have studied how to work with metadata
at the level of simulations and whole experiments (e.g.
Yang et al 2002).

The existence of these metadata integration schemes
complement our efforts. After a computing system
translates metadata from an XML schema into its own
internal format the metadata must be accurately carried
through its calculations. Only this will allow us to be
more certain that the data coming out of the system is as
accurate as the data going in.

4. Values

We distinguish four different types of values.
(1) Naturally important values are believed to have a

priori importance because of their mathematical or
other properties. Examples include the non-negative
integers,  and e. Integers and rationals can be
represented with arbitrary precision limited only by
the availability of memory. Irrational values can be
represented symbolically with full precision.

(2) Culturally important values are defined to be
important. One example is conversions, e.g. 100
centimeters in 1 meter. A special case concerns when

phenomena are believed to interrelate dimensions in a
fundamental fashion. For example the speed of light
is defined to be 299,792,458 meters/second. Given
that 1 second has a physically-based definition, this
serves to define the length of a meter. Culturally-
defined values are generally integers and can be
stored with arbitrary precision.

(3) Measurements are readings of some aspect of the
Universe. In principle they are limited only by the set
of Turing-computable numbers. However, in practice
they come from machines that read and store them in
common IEEE floating point formats.

(4) Derived values result from computations. Values
derived from the naturally and culturally important
values may be expressed with arbitrary precision as
symbolic operations upon rationals and symbols (e.g.
sqrt(2)). However, as soon as a floating point value is
used in the calculation such arbitrary precision is
wasted due to the uncertainty inherent in the
measurement.

We make two assumptions about the values in the

distribution vector of a measurement value.
(1) Although measurements are repeated, there is the

expectation that the values will fall within a relatively
narrow range. This is the case when, for example, a
presumably “static” thing is measured multiple times,
or when a “dynamic” thing is measured simultaneously
with several measurers. We explicitly assume that the
variance among values in the same distribution vector
will be “small.” When this expectation does not hold it
is proper to split the value up into distribution vectors
small enough that the expectation does hold.

(2) Further, we expect that values in measurement value
distribution vectors are “representative” and not
systematically skewed somehow.

5. Value Metadata

Metadata require a language. We use symbols as unique
nominal values to represent concepts which have
properties. One such property is the standard
isA/instanceOf relationship among sets and their members
used to build ontologies. Symbols may be organized in
lists.

Sets have two additional properties. First, there exists a
symbol unique to each set that means “unspecified
member” of that set. If symbol set represents some set
then unspecMbr(set) represents its unspecified member.
Second, sets are either labeled as having all of their
members be functionally interchangeable with each other
(e.g. as with pieces of equipment off the same assembly
line that functionally differ only by serial number), or not.
This is given with the boolean property over set symbols
areMembersInterchangeable().

Members also have a binary relation. The function
commonOverlap(member1,member2) returns a member
symbol that represents the overlap that members member1

and member2 share. For example, if member1 is
twentiethCentury and member2 is year1967CE then
commonOverlap() would return year1967CE.

We also define three functions that dynamically create
new symbols or map to existing ones based upon cultural
and linguistic norms.

The function collection(memberList) takes a list of
symbols representing members and returns a member
symbol representing a collection of those members. The
collection is not a formal ontological set for purposes of
organization, but just a bunch of things that happen to be
lumped together for some reason or another.

The function composite(memberList) also takes a list of
symbols representing members. It returns a member
symbol that represents a new object with structural and/or
functional integrity1 that results from their grouping. For
example, attaching a “horse” to a “buggy” conceptually
yields a new object with its own integrity, even while
being compositionally created.

The function resultingAttr(op,member) (and
resultingAttr(memberL,op,memberR)) return the symbol
for the attribute that results from applying unary (or
binary) operator op on the given member(s). As with
composite(memberList) it is expected that there will be
significant cultural and linguistic content in the definition
of these functions. For example, in English we call length
times length “area”, length times area “volume”, etc.

The metadata associated with each value is inspired by

the basic questions in journalism: who, what, when, where,
why and how. To this list we add domain, axis, which
aspect, and using what.
(1) Domains are composite objects that may have three

properties: dimensions, units and limits. Dimensions
are represented as a list of dimension symbols raised to
integer powers2. Associated with each numeric
dimension is one primary unit symbol. Secondary
units of the dimension have a linear conversion3 to the
dimension's main units.

 There are six notions of limits associated with
each numeric domain.
(a) loRangeLimit and hiRangeLimit define hard logical

endpoints for a domain. For example, latitude is
defined to be between -90 to +90 degrees.

(b) loSystemLimit and hiSystemLimit define the
endpoints of the system being measured. For

1 But not necessarily touching.

2For non-complex numbers there are some special cases of

expressions that have non-integer powers, like the

exponents of reagent concentrations in chemical

reaction rate equations. These, however, tend to be an

anomaly and may be approximations. Concentrations,

after all, are based on volumes which are lengths raised

to the third power.

3In y=mx+b format, in most cases b will be 0. One

important exception is temperature: C=1*K + 273.15.

example, a certain swimming pool can contain
between 0 to 25,000 liters.

(c) loDetectLimit and hiDetectLimit define the range
outside which phenomena cannot be detected.

(d) loSaturateLimit and hiSaturateLimit define the
range inside which phenomena empirically lie,
even though in principle it could go more extreme.

(e) loReliableLimit and hiReliableLimit define a softer
limit on detection than loDetectLimit and
hiDetectLimit. Outside that range values are not
reliably detected.

(f) loObservedLimit and hiObservedLimit define the
most extreme range inside of which phenomena
actually have been observed.

The following conditions (and their high-limit
equivalents) hold among the limits:
 (a) loRangeLimit <= loSystemLimit <=

loSaturateLimit;
 (b) loRangeLimit <= loDetectLimit <=

loReliableLimit;
(c1) loSystemLimit <= loObservedLimit;
(c2) loDetectLimit <= loObservedLimit;
Condition (a) is the system constraint. Condition (b) is
the instrument constraint. Conditions (c1) and (c2) are
the data constraints.

(2) Axes allow conversion between values whose origins
have different translations and rotations in some
coordinate system.

(3) Subject answers “What?” with a list of symbols. The
value 299,792,458 meters/second for the speed of light
has symbol unspecMbr(photonSet) in its subject list.

(4) Attribute answers “Which aspect?” with a list of
symbols. The value 299,792,458 meters/second for the
speed of light has symbol speed in its attribute list.

(5) State answers “When?” with a list of symbols.
Associated with each is (a) a duration, (b) a midpoint
time, and (c) a time axis (e.g. for conversion between
different calendars).

(6) Location answers “Where?” with a list of symbols
representing a place.

(7) Authorship answers “Who?” with a list of symbols.
Each represents a person or organization deemed
responsible for the value's measurement, computation,
etc.

(8) Reason answers “Why?” with a list of symbols. For
culturally important and measurement values these
represent the (presumed) motivations of the members
of the authorship in obtaining the value. For derived
values these represent the “union” of the reasons that
went into the calculation of the derived value. (The
algorithm for computing unions is given below.)

(9) Equipment answers “Using what?” with a list of
symbols. Each represents a significant piece of
equipment used to obtain the value.

(10) Method answers “How?” with a list of symbols.
Each represents a computational or experimental
technique for used to obtain the value.

One could ask “How much metadata should be given?”

We defer to the norms that scientists already follow, but
suggest that now because metadata can be tracked
automatically, more can be stated.

One could also ask “Why use lists of symbols as opposed
to sets?” Although our algorithm makes minimal use of
the ordering information, scientists might place importance
on the order in which they give symbols. For example, the
author who is listed first on a paper is generally considered
the one who put the most work into it.

Rules for combining sample values

The rules for combining the sample portion of values rely
on vector sources. A vector source is a symbol that
identifies and gives information on a vector of values, e.g.
by identifying the trials used in a measurement. A total
ordering exists over vector sources so that lists of them
may be sorted.

Consider a simple experiment in which a weight is
dropped three times. Each time it has its mass taken (it is
“weighed”) and its velocity upon impact is measured. This
yields two measurement vectors: one of masses <m1, m2,
m3>, and one of velocities <v1, v2, v3>. Both
measurement vectors came from the same trials thus both
have the same vector source.

Having the same vector source lessens the multitude of
values by preventing unobserved combinations. Say we
want to multiply the mass by the velocity to compute the
momentum. That both vectors have the same source
means that we get the 3-numbered vector <m1v1, m2v2,
m3v3> (also with the same vector source) instead of the 9-
numbered cross product matrix.

A unary operation applied to a vector or matrix gives a
vector or matrix of equal dimensions and the same vector
source(s) as the operand.

Binary operators are more complicated. Let the first
operand be an M-dimensional matrix with an ordered list
L1 of M distinct vector sources. Let the second operand be
an N-dimensional matrix with an ordered list L2 of N
distinct vector sources. Let L1 and L2 have O vector
sources in common listed in LC. The resulting matrix has
M+N-O dimensions whose vector sources are the ordered
merging of L1 and L2 with the duplicates given in LC
removed.

Even when duplicates are removed dimensionality and
the size of the matrices is expected to grow. There are two
approaches for dealing with this. One is when it becomes
“too big” (where “too big” is defined by users and/or the
implementing system) the matrix may be sampled to yield
a reasonably-sized vector. This sampled vector gets a
unique vector source, and associated with this source may
be details associated with the sampling.

The other approach is to forgo the creation of matrices in
favor of demand-driven sampling.

One purpose of the metadata discussed in the next

section is to trap illegal values (e.g. divide-by-zero, square
root of a negative number, etc.). If some values in a
sample vector or matrix are illegal then they are

represented by the null symbol. Subsequent operations on
that value will carry the null symbol forward. When it is
believed that the value is inherently illegal in and of itself
(rather than just the victim of an inappropriate operator)
then that particular value can be noted as illegal within its
vector source. This information can then be pushed
forward to all values that directly and indirectly use the
vector source, or can be dynamically checked by new
operators as they are done.

Rules for combining metadata

Domains and axes have their own combination rules, and
attributes try the resultingAttr() functions first, but the
default algorithm for the other seven metadata fields is the
same. We believe this uniformity follows from the nature
of the questions, all eight of which ask for some
description answerable by listing an individual that result
from intersection, union, or a generalizing union.

(We emphasize that this is the default algorithm for
computing metadata. The next chapter will show how
specific operators override this algorithm in specific
circumstances.)

All three combining approaches are required.
Intersection is often needed for the state and location
metadata. For example, consider a skinny antenna
mounted atop a tall building. In one sense the whole
building is now taller. However, more specifically it is the
area on which the antenna stands, the intersection of the
cross-sections of both building and antenna, that is now
taller. Other cross-sectional area of the building remain the
same height. The authorship metadata show the need for
union. Bertozzi and Bednarski are unique individuals, both
of whom created the compound data above, so their names
should be listed individually. Lastly, the equipment
metadata shows the need for a more generalizing notion of
union. All 400 MHz NMRs are expected to yield very
similar - and J-values. Indeed, specifying the make,
model and serial number of the NMR may be seen as
obfuscating detail, so all 400 MHz NMRs should be
identified by their set.

An algorithm and subroutine are listed below.

SymbolList symbolListUnion
 (SymbolList symList1, SymbolList symList2)

SymbolList retList := [];
Symbol commonSym := null;
foreach symbol syml in symList1:
 if (matchSymbol(syml,retList,f) <> null)
 continue;
 commonSym := matchSymbol(syml,symList2,t);
 if (commonSym = null)
 retList.append(syml);
 else
 retList.append(commonSym);
 endif
endforeach;

foreach symbol syml in symList2:
 commonSym := matchSymbol(syml,retList,f);
 if (commonSym = null)
 retList.append(syml);
endforeach;

return retList;

Symbol matchSymbol (Symbol matchSym, SymbolList
symList, boolean shouldRemove)

int bestDist := -1;
int setDist := -1;
Symbol bestSym := null;
Symbol set := null;
Symbol removeSym := null;

foreach symbol symL in symList:
 if (combineType() = intersection)
 bestSym := commonOverlap(matchSym,symL)
 if (bestSym <> null)
 removeSym := symL;
 breakforeach;
 endif
 else if (combineType() = union)
 if (matchSym = symL)
 removeSym := bestSym := symL;
 breakforeach;
 endif
 else if (combineType() = generalize)
 set := mostSpecificCommonSet(matchSym,symL);

 if(set<>null AND areMembersInterchangeable(set))
 setDist := ontologyDist(set, matchSym)
 + ontologyDist(set, symL);

 if (bestDist = -1 OR setDist < bestDist)
 bestSym := unspecMbr(set);
 bestDist := setDist;
 removeSym := symL;
 endif
 endif
 endif

 endforeach

if (shouldRemove AND removeSym <> null)
 symList.remove(removeSym);
endif

return bestSym;

The functions unspecMbr(set),

commonOverlap(mem1,mem2), and
areMembersInterchangeable(set) are described above.
The ontology function mostSpecificCommonSet(mbr1,
mbr2) takes two symbols representing set members and

returns a most specific set that includes both, or null if no
such set exists. The ontology function
ontologyDist(set,mbr) returns the smallest distance in the
ontology graph between set and member. The function
combineType() tells the type of combining to do based on
the operator and metadata type.

For extension-addition (described below) matchSymbol()
will return the time and space for when and where an
antenna mounted on top of a building exists. However, it
does other combinations for other metadata. For example,
when told that all 400 MHz NMRs are interchangeable
symbolListUnion([varian400MHzNMR],[bruker400MHzN
MR]) returns unspecMbr(n400MHzNMRset). However,
when told that people are unique
symbolListUnion([bertozziCarolyn], [bednarskiMark])
returns [bertozziCarolyn, bednarskiMark].

Combining domains entails combining their three

properties: dimensions, units and limits. Dimensions are
combined by conventional dimensional analysis. Units are
similarly combined with unit conversion. Limits are
combined by applying the specified operator on the given
limit, and using the more general limits to further constrain
the result. For example, doubling an angle value
representing latitude with hiReliableLimit = 89.5 degrees
and hiRangeLimit = 90 degrees yields a value with
hiReliableLimit = 90 degrees (instead of 2*89.5 = 179
degrees) so as not to violate the instrument constraint.

Combining axes is done in accordance to the coordinate
system of which the axes are a part. This may involve
translation of origins, rotations, and switching coordinate
systems (e.g. among Cartesian, polar, spherical, etc.).4

6. Operators

The combination of values has been considered
generically, but we require that our operators also preserve
the desired metadata semantics. In this section we look at
operator-specific metadata transformations.

Our analysis will be simplified by considering a small
basis set of operator types, namely: addition,
multiplication, exponentiation to rational powers, and
metadatacasting. We follow the computer algebra tradition
of defining subtraction as addition where the subtrahend
has been multiplied by -1 (Cohen 2002). Similarly, we
define division as multiplication where the divisor has been
raised to the power of -1. Common functions that are

4Of course in an N-dimensional space it is common to

convert from N values in the old system to N values in

the new as a group rather than individually. Such a

conversion could be done with operators that worked

on vectors of values (where the term “vector” now

groups what we have considered sample vectors and

matrices) instead of individual scalars. This is

considered an implementation issue that is beyond the

scope of this work.

mathematically smooth5 (e.g. sine, inverse cosine, etc.)
may be defined in terms of these operators by techniques
like the Taylor Series.

There are four addition operators: grouping-addition,
delta-grouping-addition, extension-addition and delta-
extension-addition. All four “add” identically to yield the
same digits; they differ in how they treat their metadata.

Grouping-addition represents the increase (or decrease
for subtraction or addition of negative numbers) in the size
of some set. The resulting sum has subject metadata being
collection() applied to the subjects of both addends.
Grouping-addition creates the state and location of the sum
by generalizing that of its addends.

Delta-grouping-addition is like grouping-addition in that
it represents the increase (or decrease) in the size of some
set. In this case, however, the first addend is taken as the
dominant contributor both numerically and semantically,
and the sum’s subject becomes the first addend’s subject.
For example, increasing the mass of water in a large,
nearly full swimming pool by pouring 0.5 liters of water in
it gives you the same body of water, slightly modified.

Extension-addition represents the further lengthening (or
shortening for subtraction or addition of negative values)
along some axis. The resulting sum has subject metadata
equal to the composite() of the subjects of both addends.
Extension-addition creates the state and location of the sum
by intersecting that of its addends. Only the portions held
in common get extended.

 Last is delta-extension-addition which is like extension-
addition in that it also represents the further lengthening
(or shortening) along some axis. In this case, however, the
first addend is taken as the dominant contributor both
numerically and semantically, and the sum has the same
subject as it. Going back to the antenna atop tall building
example, you get the same building, slightly modified.

Grouping-addition and delta-grouping-addition are
appropriate when the addition represents increasing (or
decreasing) the size of a set-like collection of items that
may or may not have any relation to each other, other than
all belonging to the same collection. Thus, grouping-
addition should be used for averages and standard
deviations. Grouping-adding the masses of ten distinct
weights and dividing by ten gives an idea how much mass
a “typical” weight has.

By contrast, extension-addition and delta-extension-
addition are appropriate when the addition represents the
creation (or removal from) a composite object. Extension-
adding the masses of our weights creates (if only in our
minds and our computers’ memories) a “superweight” that
is the collection of all of them acting together6.

Delta-grouping-addition and delta-extension-addition

5The function itself and all of its derivatives are

continuous.

6 The subjects do not necessarily have to touch. To other

planets the Earth and Moon have the same gravitational

effect as a “superplanet” whose mass is their sum.

implicitly consider the first addend to be the larger. The
sum may be intolerably inaccurate when it is not because
the second (“delta”) addend may itself be an
approximation. Making the “delta”-additions distinct
operators gives us the opportunity to apply domain
knowledge to see if the delta addend is “too big” to be
trusted.

Unlike addition there is only one multiplication operator.
It relies upon the default rules given in the previous chapter
and uses intersection for state and location.

Similarly, there is one exponentiation operator. It is

more restrictive than exponentiation in most computing
systems because (1) the power must be a sample with a
single value, and (2) that single value must be a
dimensionless rational number. (Thus 0.3333333 is illegal;
one must use 1/3.) The resulting value gets the domain’s
dimension and attribute from specific domain information
like resultingAttr() (so that length3 -> volume, and
volume1/3 -> length) but otherwise, because the power is
dimensionless, the base will provide the majority of the
metadata to the result. It also uses intersection.

The last basic operator is metadatacasting.

Metadatacasting is like typecasting in that it allows the
user to explicitly tell the computing system that they think
it is okay to change the metadata in some specific fashion.
For example, Bertozzi and Bednarski obtained their 1H
NMR data one day in 1990 from an NMR in the basement
of Latimer Hall on the campus of the University of
California Berkeley on planet Earth. However, they (and
most chemists) probably believe that their spectrograph
was not an artifact of that particular place and time. They
may change the state of their measurements from
unspec(dayInYear1990CE) to allTime and their location
from basementOfLatimerHall to allSpace by explicitly
casting.

Other operations can be defined using these. For

example, trigonometric and inverse trigonometric functions
can be defined that numerically compute with Taylor series
and that check and change metadata like dimensions, units
and attributes with metadatacasting. Trigonometric
functions would take values with dimension angle and
return values with dimension dimensionless. Inverse
trigonometric ones would do the opposite. In both cases
units (radians or degrees) become a non-issue because
they are an inherent aspect of the value itself.

7. Discussion

We believe this computational paradigm to be distinctive
enough that there are many issues to discuss.

(1) We want as many operators as needed to properly
manipulate metadata and no more. Addition
ballooned to four operators (or perhaps eight if
you make the floating point vs. integer

distinction). However, we believe they are all
needed. “Delta”-addition vs. non-delta-addition
lets users state when the right addend is
semantically negligible. Grouping-addition vs.
extension-addition lets users state whether a
semantically new entity has been created as
opposed to just another collection.

Similar distinctions exist for multiplication.
Multiplication could mean “repeated addition”
(e.g. 4 boxes of candy x 10 candies per box = 40
candies). It could mean “rescaling” where the
right-hand-side has more semantic content and the
left-hand-side is just a scale factor (e.g. E=h;
where E is the energy of a specific photon,  is the
frequency of a specific photon and h is a
frequency-to-energy conversion factor common to
all photons)7. It could also mean “rescaling”
where the left-hand-side has more semantic
content and the right-hand-side is just a scale
factor (e.g. (m1 + m2) / 2 = (m1 + m2) * 2-1 =
mave; mave clearly comes from m1 and m2, the 2
is just a normalization factor).

Rather than define three or more different
multiplication operators we rely on the default
metadata combining algorithm to compute the
metadata appropriately.

(2) We can do more than just distinguish the
theoretical and observed mass ratios in the
Bertozzi and Bednarski data, we can say how they
were calculated or were observed with the method
metadata. The same “value” may be computed by
the same simulator with different parameters, by
different simulators of the same family, or by
different families (e.g. ab initio, empirical-fitting
or mixed approaches). Having this distinguishing
metadata around is necessary if we want to keep
all of it in the same knowledge base. We face a
similar issue when storing multiple measurements
taken with different resolutions or at different
times. Scientists and philosophers of science tell
us that all data assume some theory.

(3) If the average amount of metadata in a value is M
and if we do N operations on N+1 values (as in v1
+ v2 + . . . + vN+1) then the metadata can grow to
O(MN). This is intolerably large but not expected
to be the case for most scientific applications. The
O(MN) size assumes that each new operand adds
more unique semantic content. This would be the
case if we were computing with semantically
unrelated values. In real life planetary data is used
with other planetary data, evolutionary biological
data with other evolutionary biological data, etc.

(4) If the distribution matrices become intolerably
large then instead of computing them an
expression could return a stochastic lambda

7 Reciprocal inversions are another example of left-scaling

multiplications.

function whose structure mirrors the expression’s
parse tree. Running the function will
stochastically return a value as in a Monte Carlo
simulation. This function could be called many
times to build a distribution.

(5) We have introduced several types of error
checking. To this add checking the variance of
values in distribution matrices. Because we
assume a small variance in raw measurements,
large variances, bimodal distributions, etc., in
calculations may indicate the numeric instability
of the expression. We may also add checks where
the same (or overlapping) symbols appear both in
the subject and authorship pieces of metadata.
This signifies that a subject has reported on his-
/her-/it-self. Depending on the attribute there may
be questions about how objective this reporting is.

(6) We acknowledge that this approach will be several
times slower than simply encoding numbers as
floating point values and integers. We hope that
this is CPU time well spent to create a documented
computation.

(7) One problem with this approach is the hard
distinction between the “delta”-addition operators
and the non-“delta”-addition operators. For
example consider filling an empty swimming pool
a liter at time. Initially this appears to be an
extension-addition operation, with the mass of the
water increasing by relatively large amounts with
each new liter. Towards the end, however, the
pool is nearly full and just one more liter makes
very little difference making this a delta-
extension-addition. When exactly did extension-
addition morph into delta-extension-addition?

Perhaps a better way of thinking about this is
that there is only grouping-addition and
extension-addition, and that they both may be
more or less “delta”-like depending on the
circumstances. What those circumstances are,
and what their concrete ramifications for metadata
manipulation are, are beyond the scope of this
paper.

8. Conclusion

We have introduced a manner for handling vectors of
distributions, metadata, and operators to apply to them
appropriate for scientific data. This work was motivated
by ongoing scientific representation and reasoning that is a
continuation of Phillips 2009. Applications for this work,
however, go beyond scientific reasoning to include
constructive induction, data cleaning, and educational
software for science and engineering.

Unfinished work includes how to handle comparisons
such as less-than, less-than-or-equal-to, equal-to, etc and
how to handle symbolic values (as needed in rules and
decision trees). We could also consider handling complex
numbers (used in some physics and engineering domains),

and the simultaneous manipulation of related values (e.g.
x, y and z coordinates).

References

[1] Bertozzi, C. R. and Bednarski, M. D. 1991. “The
Synthesis of Heterobifunctional Linkers for the
Conjugation of Ligands to Molecular Probes.” J. Org.
Chem. 56, 4326-4329.
[2] Bridewell, Will; Langley, Pat; Todorovski, Ljupčo;
Džeroski, Sašo. 2008. “Inductive process modeling.”
Machine Learning. 71. p 1-32.
[3] Buchanan, B.G. & Feigenbaum, E. A. 1978.
"DENDRAL and Meta-DENDRAL: Their Applications
Dimension," Artificial Intelligence. 11:5-24.
[4] Buchanan, Bruce G. and Shortliffe, E. H. (eds.) 1984.
Rule-Based Expert Systems: The MYCIN Experiments of
the Stanford Heuristic Programming Project. Reading,
MA: Addison-Wesley.
[5] Cohen, Joel S. 2002. Computer Algebra and Symbolic
Computation: Elementary Algorithms. A. K. Peters.
Natick, Massachusetts.
[6] deCarvalho, Rob. 2006. “Simple Units and Dimensions
for
Matlab”http://www.mathworks.com/matlabcentral/fileexch
ange /9873. Originally appeared Feb 2, updated Mar 3.
[7] Garfinkel, Simson. 2005. “History's Worst Software
Bugs” Wired Magazine. Originally appeared November 8.
Lions, J. L. 1996. Ariane 5 Flight 501 Failure, Report by
the Inquiry Board Report. Paris. July 19.
[8] National Aeronautics and Space Administration. 1999.
Mars Climate Orbiter Mishap Investigation Board Phase I
Report. November 10.
[9] Phillips, Joseph. 2003. “Scilog: A Language for
Scientific Processes and Scales.” Discovery Science.
Sapporo, Hokkaido, Japan, November. p 442-451.
[10] Phillips, Joseph. 2009. “Integrated Scientific
Reasoning in the Scienceomatic 7B”. 20

th
 Midwest

Artificial Intelligence and Cognitive Science Conference.
Indiana University-Purdue University Fort Wayne. p 146-
152.
[11] Wolfram Research. 2010. “How Do I Use Units in
Mathematica?” http://library.wolfram.com/howtos/units/.
2010 March 1.
[12] Valdés-Pérez, Raúl. 1992. “Algorithm to generate
reaction pathways for computer-assisted elucidation”. J.
Computational Chemistry. Vol 13, No. 9, p 1079-1088.
Valdés-Pérez, Raúl. 1993. “Algorithm to Test the
Structural Plausibility of a Proposed Elementary
Reaction”. J. Computational Chemistry. Vol 14, No. 12, p
1454-1459.
[13] Yang, Ruixin. Kafatos, Menas. Wang, X. Sean. 2002.
“Managing Scientific Metadata Using XML” IEEE
Internet Computing. Vol 6., Issue 4. p 52-59. July.

