

Artificial Intelligence AND
Distributed Systems!

Applied Philosophy of Science’s
Research On A Networked Science

Education System

By Joe Phillips, Jasmine Farley
and Ismael Cuevas

2021 November 10/11
for the Computer Science Society

of DePaul University

● This is Tiffany

● Tiffany loves
science . . .

● Tiffany loves doing
research, but wants
feedback

● Ordinary lab notebook
websites let Tiffany
record her findings.

● But the
Scienceomatic gives
Tiffany feedback and
suggestions.

● The Scienceomatic can
give feedback because it
uses knowledge bases.

● Knowledge bases (kbs)
are consistent,
computable views of the
natural world.

● Kbs hold the scientific
data and knowledge on
particular topics.

● Knowledge bases can
check things like:
– units and dimensions
– arithmetic and

equation usage
– statistics and the

strength of results
– overall consistency

● Knowledge bases can
also create
– tables
– graphs
– charts

● Knowledge bases
cumulatively grow on
prior knowledge
bases

● Competing
worldviews are
represented by
competing knowledge
bases

● Now Tiffany wants to
share her results

● She can share her
revised knowledge
base with her close
friends Teddy and
Shakiya . . .

● . . . and if she wants,
she can publish her
knowledge base for
others to use and
extend.

● When they do so,
Tiffany will
automatically get credit

● Later, the
Scienceomatic can
Tiffany suggesting
operators to try.

Knowledge bases are hierarchical

● Tiffany, Teddy and
Shakiya all share the
same
– Standard knowledge
– Common science
– Common chemistry

● Tiffany and Teddy
share:
– Their university’s

chemistry kb

Knowledge bases can be networked

Knowledge bases
can be distributed
across multiple
computers
– Different

institutions are
responsible for
debugging and
improving different
parts of kb

Check Out the Website!

The Front End

● Technologies:
– Angular
– Bootstrap

● Making RESTful calls to the server side to
perform C.R.U.D. commands and update the
client accordingly

Back End

1 Client requests a page

2 HTTP Server sends request to SOM process dedicated for that
client

3 SOM process sends JSON response

4 HTTP server formats response as HTML

How to Collaborate in the
21st Century?

● How technology can help us
– Use strengths of computers

● Accuracy
● Exhaustive search

– Mechem

● Ability to use lots of data
● Ability to use lots of knowledge

– Networked environments

– Ability to connect humans
● across geographic separation
● across temporal separation

● Not trying to supplant humans!
– Humans and computers have different strengths

The Analogy Between How Humans
and Our System Does Science

The Workers:
basic scientific computation

● The Virtual Machine:
– Serves as: Knowledge of how to do basic

reasoning (e.g. modus ponens, arithmetic)
– Serves as: Textbook procedural knowledge:

when to use algebra, statistics, etc.

● Knowledge base
– Purpose: hold declarative knowledge

● charge of electron
● mammalian phylogenetic tree(s)

– Serves as: “factual” textbook knowledge
– Composed of kb runs that cumulatively build

on each other

● Auxiliary programs
– Purpose: Specialize algorithm running
– Serves as: Knowledge of how to do algebra,

statistics, etc.

The Primary Scientists:
the idea generators

● Production System
– Purpose: Question asking
– Serves as: “the literature” +

heuristics of what to try next

● Bypass-able
– Can passively watch user,

records results
– In passive mode can say

“You’ve already tried that!
These are the results . . .”

The Funding Agency:
the resource allocators

● Resource allocator
– Purpose: Allocates (scarce?)

computing resources
– Serves as: Funding agency

● Authenticates user processes
● Allocates resources

– Computational time
– Memory
– Access to data
– Network access to remote

resources

Society and Its Goals:
Telling What is Important

● User
– Purpose: Sets

goals/policy for
production system

– Serves as: Society

● Can choose what to
do under direct
control

Towards a Better Architecture

● Circa 2012 – present
● A historically accurate account

– rational way to do it
– but I lucked upon it

● Design trajectory
1 Requirements for science

2 Memory model

3 Language

4 Virtual Machine

5 Overall architecture

Requirement: Annotated Values

● Have values
– units
– dimensions
– Limiting domains

● Examples
– 9.8(*metersPerSecSqr*)
– 299792458(*metersPerSecond*)
– 6.022140e+23 (*inverseMol*)
– 273.2(*kelvin*)

● Can’t be less than 0! (limit on domain)

Requirement: Justified Values

● Justifications keep track of
where values came from:
– Observation (e.g. “What is

Joe’s mass?”)
– By definition (e.g. 100 cm = 1

meter)
– Calculation

● Calculation:
– Truth preserving: (e.g. modus

ponens, arithmetic)
– Non-truth preserving (e.g.

abduction)

JoeTellsJoesMass2020Jan22
[*ByMeasurement|
 `Joseph Phillips`,
 Mass,
 `Joseph Phillips`,
 ^Date{*2020,1,22*},
 `Joe’s master bathrm`,
`Conair Corp Model WW404GD
scale`*];

80.51(*kgDomain*) <~
joeTellsJoesMass2020Jan22;

Requirement: Multiple Values

● Estimates of Age of the Earth
– 6000 years (Ussher)
– 75 Kya (Buffon)
– “several billion” (de Maillet, Buffon)

–∞? (Hutton, Lyell)

– 100 Mya (Lord Kelvin)
– 20-40 Mya (Lord Kelvin)
– 3.4 Gya (Rutherford)
– 4.6 Gya (Meyer)
– 4.5±0.3 Gya (Houterman)

● Potentially multiple answers per attribute
– List from most believed to least so
– Represent true multi-valued attributes as

lists of lists

Requirement:
When in doubt, generalize

● Rationals > Integers
● Complex > Real
● Maps > Arrays
● Bags > Sets
● Iterators > Integer

indices

Memory model:
Monotonic Knowledge Base

Language: Frame System

● In A.I. since 1970s
● Now really popular:

– Object-Oriented
Programming Languages

– XML, JSON

● Even represents loops,
conditionals and
functions:
– Need to represent

anonymous objects

`Mercury (planet)`
{*
 instanceOf->assertZ(Planet);
 ^SummaryTextA[*toEnglish*]->
 assertZ("Mercury (0.4 AU from the Sun)...");
 imageFilenameListA->
 assertZ(["mercury.jpg"]);
 massA->
 assertZ(3.3022e+23(*kilograms*));
 aphelionA->
 assertZ(69816900(*kilometers*));
 perihelionA->
 assertZ(46001200(*kilometers*));
 orbitalPeriodA->
 assertZ(87.9691(*days*));
*};

Language

^Do
[*[
 ^VarDecl[*@i,Rational*],
 ^For
 [*
 @i := 0,
 @i < 10,
 stdOut->printLn(@i),
 @i := @i + 1
 *]
]*];

Language

Virtual Machine: machine word

Virtual machine: stack frame

● Stack-based
– Similar to Java Virtual Machine

● Value Stack
– grows up
– unaware of address stack

● Instructions can only get
values above the stack
– impossible to get data from

who called you

● kb as a whole acts as heap

Specialized Programs:
Follow the Procedure

● For use when this with
established procedure

● Call specialized algorithm
– Statistics
– Algebra
– Plotting

Production System: What questions
follow from the last result?

● For question asking
● Inspired by SOAR

– Generalization of
human (and robot)
computation

● Our issues are a little
different

Production System: What questions
follow from the last result?

● Working memory
● Traditionally:

– what you hold in your consciousness

● For Us: “the literature”
– Memory of what has been tried, and how well or poorly it worked

Production System: What questions
follow from the last result?

● Rule memory
● Traditionally and For Us: New idea generators

– Heuristics about what is worth researching

Production System: What questions
follow from the last result?

● Funding agencies can
(and do) try multiple
paths simultaneously

● A robot can only
commit to one path at
a time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

