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● This is Tiffany

● Tiffany loves 
science  . . .



  

● Tiffany loves doing 
research, but wants 
feedback



  

● Ordinary lab notebook 
websites let Tiffany 
record her findings.

● But the 
Scienceomatic gives 
Tiffany feedback and 
suggestions.



  

● The Scienceomatic can 
give feedback because it 
uses knowledge bases.

● Knowledge bases (kbs) 
are consistent, 
computable views of the 
natural world.

● Kbs hold the scientific 
data and knowledge on 
particular topics.



  

● Knowledge bases can 
check things like:
– units and dimensions
– arithmetic and 

equation usage
– statistics and the 

strength of results
– overall consistency



  

● Knowledge bases can 
also create
– tables
– graphs
– charts



  

● Knowledge bases 
cumulatively grow on 
prior knowledge 
bases

● Competing 
worldviews are 
represented by 
competing knowledge 
bases



  

● Now Tiffany wants to 
share her results



  

● She can share her 
revised knowledge 
base with her close 
friends Teddy and 
Shakiya . . .



  

● . . . and if she wants, 
she can publish her 
knowledge base for 
others to use and 
extend.

● When they do so, 
Tiffany will 
automatically get credit



  

● Later, the 
Scienceomatic can 
Tiffany suggesting 
operators to try.



  

Knowledge bases are hierarchical

● Tiffany, Teddy and 
Shakiya all share the 
same
– Standard knowledge
– Common science
– Common chemistry

● Tiffany and Teddy 
share:
– Their university’s 

chemistry kb



  

Knowledge bases can be networked

Knowledge bases 
can be distributed 
across multiple 
computers
– Different 

institutions are 
responsible for 
debugging and 
improving different 
parts of kb



  

Check Out the Website!



  

The Front End

● Technologies:
– Angular
– Bootstrap

● Making RESTful calls to the server side to 
perform  C.R.U.D. commands and update the 
client accordingly 



  

Back End

1 Client requests a page

2 HTTP Server sends request to SOM process dedicated for that 
client

3 SOM process sends JSON response

4 HTTP server formats response as HTML



  

How to Collaborate in the
21st Century?

● How technology can help us
– Use strengths of computers

● Accuracy
● Exhaustive search

– Mechem

● Ability to use lots of data
● Ability to use lots of knowledge

– Networked environments

– Ability to connect humans
● across geographic separation
● across temporal separation

● Not trying to supplant humans!
– Humans and computers have different strengths



  

The Analogy Between How Humans 
and Our System Does Science



  

The Workers:
basic scientific computation

● The Virtual Machine:
– Serves as: Knowledge of how to do basic 

reasoning (e.g. modus ponens, arithmetic)
– Serves as: Textbook procedural knowledge: 

when to use algebra, statistics, etc.

● Knowledge base
– Purpose: hold declarative knowledge

● charge of electron
● mammalian phylogenetic tree(s)

– Serves as: “factual” textbook knowledge
– Composed of kb runs that cumulatively build 

on each other

● Auxiliary programs
– Purpose: Specialize algorithm running
– Serves as: Knowledge of how to do algebra, 

statistics, etc.



  

The Primary Scientists:
the idea generators

● Production System
– Purpose: Question asking
– Serves as: “the literature” + 

heuristics of what to try next

● Bypass-able
– Can passively watch user, 

records results
– In passive mode can say 

“You’ve already tried that! 
These are the results . . .”



  

The Funding Agency:
the resource allocators

● Resource allocator
– Purpose: Allocates (scarce?) 

computing resources
– Serves as: Funding agency

● Authenticates user processes
● Allocates resources

– Computational time
– Memory
– Access to data
– Network access to remote 

resources



  

Society and Its Goals:
Telling What is Important

● User
– Purpose: Sets 

goals/policy for 
production system

– Serves as: Society

● Can choose what to 
do under direct 
control



  

Towards a Better Architecture

● Circa 2012 – present
● A historically accurate account

– rational way to do it
– but I lucked upon it

● Design trajectory
1 Requirements for science

2 Memory model

3 Language

4 Virtual Machine

5 Overall architecture



  

Requirement: Annotated Values

● Have values
– units
– dimensions
– Limiting domains

● Examples
– 9.8(*metersPerSecSqr*)
– 299792458(*metersPerSecond*)
– 6.022140e+23 (*inverseMol*)
– 273.2(*kelvin*)

● Can’t be less than 0! (limit on domain)



  

Requirement: Justified Values

● Justifications keep track of 
where values came from:
– Observation (e.g. “What is 

Joe’s mass?”)
– By definition (e.g. 100 cm = 1 

meter)
– Calculation

● Calculation:
– Truth preserving: (e.g. modus 

ponens, arithmetic)
– Non-truth preserving (e.g. 

abduction)

JoeTellsJoesMass2020Jan22 
[*ByMeasurement|
 `Joseph Phillips`,
 Mass,
 `Joseph Phillips`,
  ^Date{*2020,1,22*},
  `Joe’s master bathrm`,
`Conair Corp Model WW404GD 
scale`*];

80.51(*kgDomain*) <~ 
joeTellsJoesMass2020Jan22;



  

Requirement: Multiple Values

● Estimates of Age of the Earth
– 6000 years (Ussher)
– 75 Kya (Buffon)
– “several billion” (de Maillet, Buffon)

–∞? (Hutton, Lyell)

– 100 Mya (Lord Kelvin)
– 20-40 Mya (Lord Kelvin)
– 3.4 Gya (Rutherford)
– 4.6 Gya (Meyer)
– 4.5±0.3 Gya (Houterman)

● Potentially multiple answers per attribute
– List from most believed to least so
– Represent true multi-valued attributes as 

lists of lists



  

Requirement:
When in doubt, generalize

● Rationals > Integers
● Complex > Real
● Maps > Arrays
● Bags > Sets
● Iterators > Integer 

indices



  

Memory model: 
Monotonic Knowledge Base



  

Language: Frame System

● In A.I. since 1970s
● Now really popular:

– Object-Oriented 
Programming Languages

– XML, JSON

● Even represents loops, 
conditionals and 
functions:
– Need to represent 

anonymous objects



  

`Mercury (planet)`
{*
  instanceOf->assertZ(Planet);
  ^SummaryTextA[*toEnglish*]->
    assertZ("Mercury (0.4 AU from the Sun)...");
  imageFilenameListA->
    assertZ(["mercury.jpg"]);
  massA->
    assertZ(3.3022e+23(*kilograms*) );
  aphelionA->
    assertZ(69816900(*kilometers*));
  perihelionA->
    assertZ(46001200(*kilometers*));
  orbitalPeriodA->
    assertZ(87.9691(*days*));
*};

Language



  

^Do
[*[
  ^VarDecl[*@i,Rational*],
  ^For
  [*
    @i := 0,
    @i <  10,
    stdOut->printLn(@i),
    @i := @i + 1
  *]
]*];

Language



  

Virtual Machine: machine word



  

Virtual machine: stack frame

● Stack-based
– Similar to Java Virtual Machine

● Value Stack
– grows up
– unaware of address stack

● Instructions can only get 
values above the stack
– impossible to get data from 

who called you

● kb as a whole acts as heap



  

Specialized Programs:
Follow the Procedure

● For use when this with 
established procedure

● Call specialized algorithm
– Statistics
– Algebra
– Plotting



  

Production System: What questions
follow from the last result?

● For question asking
● Inspired by SOAR

– Generalization of 
human (and robot) 
computation

● Our issues are a little 
different



  

Production System: What questions
follow from the last result?

● Working memory
● Traditionally: 

– what you hold in your consciousness

● For Us: “the literature”
– Memory of what has been tried, and how well or poorly it worked



  

Production System: What questions
follow from the last result?

● Rule memory
● Traditionally and For Us: New idea generators

– Heuristics about what is worth researching



  

Production System: What questions
follow from the last result?

● Funding agencies can 
(and do) try multiple 
paths simultaneously

● A robot can only 
commit to one path at 
a time
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