Artificial Intelligence AND Distributed Systems!

Applied Philosophy of Science's
Research On A Networked Science Education System

By Joe Phillips, Jasmine Farley and Ismael Cuevas
2021 November 10/11
for the Computer Science Society of DePaul University

- This is Tiffany

- Tiffany loves science

- Tiffany loves doing research, but wants feedback

- Ordinary lab notebook websites let Tiffany record her findings.
- But the Scienceomatic gives Tiffany feedback and suggestions.

A correlation is a good idea . . . then do a scatter plot.

- The Scienceomatic can give feedback because it uses knowledge bases.
- Knowledge bases (kbs) are consistent, computable views of the natural world.
- Kbs hold the scientific data and knowledge on particular topics.

- Knowledge bases can check things like:
- units and dimensions
- arithmetic and equation usage
- statistics and the strength of results
- overall consistency

Adding meters and centimeters makes sense. Adding meters and seconds does not.

- Knowledge bases can also create
- tables
- graphs
- charts

- Knowledge bases cumulatively grow on prior knowledge bases
- Competing worldviews are represented by competing knowledge bases

Physics:

Aristotelian
\downarrow
Newtonian

Relativity Quantum

- Now Tiffany wants to share her results

- She can share her revised knowledge base with her close friends Teddy and Shakiya...

- . . . and if she wants, she can publish her knowledge base for others to use and extend.
- When they do so, Tiffany will automatically get credit
- Later, the Scienceomatic can Tiffany suggesting operators to try.

Say, why don't you try: scatter plot, least squares fit, ...

Knowledge bases are hierarchical

Std Common Chemistry Std Common Science Standard Knowledge

- Tiffany, Teddy and Shakiya all share the same
- Standard knowledge
- Common science
- Common chemistry
- Tiffany and Teddy share:
- Their university's chemistry kb

Knowledge bases can be networked

 Knowledge bases can be distributed across multiple computers

- Different institutions are Std Common Chemistry responsible for debugging and improving different parts of kb

Check Out the Website!

The Front End

- Technologies:
- Angular
- Bootstrap
- Making RESTful calls to the server side to perform C.R.U.D. commands and update the client accordingly

Back End

${ }_{1}$ Client requests a page
2 HTTP Server sends request to SOM process dedicated for that client

з SOM process sends JSON response
${ }_{4}$ HTTP server formats response as HTML

How to Collaborate in the $21^{\text {st }}$ Century?

- How technology can help us
- Use strengths of computers
- Accuracy
- Exhaustive search
- Mechem
- Ability to use lots of data
- Ability to use lots of knowledge
- Networked environments
- Ability to connect humans
- across geographic separation
- across temporal separation
- Not trying to supplant humans!
- Humans and computers have different strengths

The Analogy Between How Humans and Our System Does Science

Society and its goals

Funding agency\quadFunding agency

The Workers:

basic scientific computation

Society and its goals

Funding agency\quadFunding agency

Primary

- The Virtual Machine:
- Serves as: Knowledge of how to do basic reasoning (e.g. modus ponens, arithmetic)
- Serves as: Textbook procedural knowledge: when to use algebra, statistics, etc.
- Knowledge base
- Purpose: hold declarative knowledge
- charge of electron
- mammalian phylogenetic tree(s)
- Serves as: "factual" textbook knowledge
- Composed of kb runs that cumulatively build on each other
- Auxiliary programs
- Purpose: Specialize algorithm running
- Serves as: Knowledge of how to do algebra, statistics, etc.

The Primary Scientists: the idea generators

Society and its goals

Funding agency\quadFunding agency

Primary

- Production System
- Purpose: Question asking
- Serves as: "the literature" + heuristics of what to try next
- Bypass-able
- Can passively watch user, records results
- In passive mode can say "You've already tried that! These are the results . . ."

The Funding Agency: the resource allocators

Society and its goals

Funding agency\quadFunding agency

- Resource allocator
- Purpose: Allocates (scarce?) computing resources
- Serves as: Funding agency
- Authenticates user processes
- Allocates resources
- Computational time
- Memory
- Access to data
- Network access to remote resources

Society and Its Goals: Telling What is Important

Society and its goals

- User
- Purpose: Sets goals/policy for production system
- Serves as: Society
- Can choose what to do under direct control

Towards a Better Architecture

- Circa 2012 - present
- A historically accurate account
- rational way to do it
- but I lucked upon it
- Design trajectory

1 Requirements for science
2 Memory model
3 Language
4 Virtual Machine
5 Overall architecture

Requirement: Annotated Values

- Have values
- units
- dimensions
- Limiting domains
- Examples
- 9.8(*metersPerSecSqr*)
- 299792458(*metersPerSecond*)
- 6.022140e+23 (*inverseMol*)
- 273.2(*kelvin*)
- Can't be less than 0! (limit on domain)

Requirement: Justified Values

- Justifications keep track of where values came from:
- Observation (e.g. "What is Joe's mass?")
- By definition (e.g. $100 \mathrm{~cm}=1$ meter)
- Calculation
- Calculation:
- Truth preserving: (e.g. modus ponens, arithmetic)

```
JoeTellsJoesMass2020Jan22
[ * ByMeasurementl
    Joseph Phillips`,
    Mass,
    `Joseph Phillips`,
    ^Date{ * 2020,1,22*},
        `Joe's master bathrm`,
`Conair Corp Model WW404GD
scale`*];
```

80.51 (* kgDomain*) <~
joeTellsJoesMass2020Jan22;

- Non-truth preserving (e.g. abduction)

Requirement: Multiple Values

- Estimates of Age of the Earth
- 6000 years (Ussher)
- 75 Kya (Buffon)
- "several billion" (de Maillet, Buffon)
$-\infty$? (Hutton, Lyell)
- 100 Mya (Lord Kelvin)
- 20-40 Mya (Lord Kelvin)
- 3.4 Gya (Rutherford)
- 4.6 Gya (Meyer)
- 4.5 ± 0.3 Gya (Houterman)
- Potentially multiple answers per attribute
- List from most believed to least so
- Represent true multi-valued attributes as lists of lists

Requirement: When in doubt, generalize

- Rationals > Integers
- Complex > Real
- Maps > Arrays
- Bags > Sets
- Iterators > Integer indices

Memory model: Monotonic Knowledge Base

Language: Frame System

- In A.I. since 1970s
- Now really popular:
- Object-Oriented

Programming Languages

- XML, JSON
- Even represents loops, conditionals and functions:
- Need to represent anonymous objects

Language

```
`Mercury (planet)`
{*
    instanceOf->assertZ(Planet);
    ^SummaryTextA[ *toEnglish*] ->
        assertZ("Mercury (0.4 AU from the Sun)...");
    imageFilenameListA->
        assertZ ([ "mercury.jpg"]);
    massA->
        assertZ(3.3022e+23(* kilograms*) );
    aphelionA->
        assertZ(69816900 (* kilometers*));
    perihelionA->
        assertZ(46001200 (* kilometers*)) ;
    orbitalPeriodA->
        assertZ(87.9691 (* days*));
*} ;
```


Language

Virtual Machine: machine word

Virtual machine: stack frame

- Stack-based
- Similar to Java Virtual Machine
- Value Stack
- grows up
- unaware of address stack
- Instructions can only get values above the stack
- impossible to get data from who called you
- kb as a whole acts as heap

Specialized Programs: Follow the Procedure

- For use when this with established procedure
- Call specialized algorithm
- Statistics
- Algebra
- Plotting

Production System: What questions follow from the last result?

- For question asking
- Inspired by SOAR
- Generalization of human (and robot) computation
- Our issues are a little different

Production System: What questions follow from the last result?

- Working memory
- Traditionally:
- what you hold in your consciousness
- For Us: "the literature"
- Memory of what has been tried, and how well or poorly it worked

Production System: What questions follow from the last result?

- Rule memory
- Traditionally and For Us: New idea generators
- Heuristics about what is worth researching

Production System: What questions follow from the last result?

- A robot can only commit to one path at a time

We'll fund both of you!

- Funding agencies can (and do) try multiple paths simultaneously

