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Abstract

In this paper we present improved exact and parameterized algorithms for the maximum
satisfiability problem. In particular, we give an algorithm that computes a truth assignment for
a boolean formula F satisfying the maximum number of clauses in time O(1.3247m|F |), where
m is the number of clauses in F , and |F | is the sum of the number of literals appearing in
each clause in F . Moreover, given a parameter k, we give an O(1.3695k + |F |) parameterized
algorithm that decides whether a truth assignment for F satisfying at least k clauses exists.
Both algorithms improve the previous best algorithms by Bansal and Raman for the problem.
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1 Introduction

The maximum satisfiability problem, abbreviated Max-Sat, is to compute for a given boolean
formula F in conjunctive normal form, a truth assignment that satisfies the largest number of
clauses in F . In the parameterized maximum satisfiability problem, we are given an additional
parameter (positive integer) k, and we are asked to decide if F has a truth assignment that satisfies
at least k clauses. It is easy to see that both Max-Sat and parameterized Max-Sat are NP-hard
since they generalize the satisfiability problem [24]. According to the theory of NP-completeness
[24], these problems cannot be solved in polynomial time unless P = NP.

The above fact does not diminish the need for solving these problems for their practical im-
portance. Due to its close relationship to the satisfiability problem (Sat), Max-Sat has many
applications in artificial intelligence, combinatorial optimization, expert-systems, and database-
systems [5, 8, 23, 27, 28, 32, 36, 37]. Many approaches have been employed in dealing with the
NP-hardness of the Max-Sat problem including approximation algorithms [3, 4, 9], heuristic al-
gorithms [8, 9, 10, 36], and exact and parameterized algorithms [7, 12, 25, 31, 33].

In this paper we focus our attention on finding exact solutions for the Max-Sat problem. Ac-
knowledging the apparent inevitability of an exponential time complexity for NP-hard problems,
this line of research seeks designing efficient exponential time algorithms that improve significantly
on the straightforward exhaustive search algorithms. Numerous NP-hard combinatorial problems
were studied from this point of view. Examples of exponential time algorithms for NP-hard opti-
mization problems include the Independent Set problem [11, 35], Dantsin et al.’s O(1.481n) time
deterministic algorithm for the 3-Sat problem [17] (n is the number of variables in the formula),
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and Eppstein’s O(1.3289n) time algorithm for the 3-Coloring problem [21] (n is the number of
vertices in the graph). A closely related line of research to the above one that has been receiving
a lot of attention recently, is the area of fixed-parameter tractability [19], which has found many
applications in fields like databases, artificial intelligence, logic, and computational biology [20].
A famous problem that belongs to this category is the Vertex Cover problem. Recently, there
has been extensive research done aiming at improving the complexity of parameterized algorithms
that solve the Vertex Cover problem [6, 15, 16]. Other examples of parameterized problems
include Planar Dominating Set [1, 2], k-Dimensional Matching [13, 19], and Constraint

Bipartite Vertex Cover [14, 22].
The Max-Sat problem has played a significant role in both these lines of research. Considerable

efforts have been paid trying to lower the worst-case complexity for the problem. Cai and Chen
[12] presented an algorithm of running time O(22ckcm) for the Max-c-Sat problem. Mahajan and
Raman [31] improved on that bound by presenting an algorithm of running time O(cm+ckφk) (φ =
(1+

√
5)/2 ≈ 1.618). Mahajan and Raman also gave an algorithm of running time O(|F |+k2φk) for

the parameterized Max-Sat problem. They described how their algorithm for parameterized Max-

Sat implies an algorithm for the parameterized Max-Cut problem. Niedermeier and Rossmanith
[33] presented an algorithm of running time O(1.3995kk2 + |F |) for parameterized Max-Sat. For
Max-Sat they gave algorithms of running time O(1.3803m|F |) and O(1.1272|F ||F |), where m and
|F | are as defined above. Bansal and Raman [7] improved Niedermeier and Rossmanith’s result
and presented algorithms of running time O(1.3802kk2 + |F |) for parameterized Max-Sat, and
O(1.341294m|F |) and O(1.105729|F ||F |) for Max-Sat. Recently, Gramm et al. [25, 26] considered
the Max-2-Sat problem, a special case of the Max-Sat problem. They gave an O(1.148699m|F |)
algorithm for the problem. Their algorithm also implies better algorithms for the parameterized
Max-Cut problem.

In this paper, we further improve on Bansal and Raman’s algorithms. More specifically, we
give an O(1.3247m|F |) algorithm for the Max-Sat problem, and an O(1.3695k + |F |) algorithm for
the parameterized Max-Sat problem. Our techniques are basically similar to the previous ones
in the careful case-by-case analysis, which seems unavoidable when designing exact algorithms for
NP-hard problems using the search tree method [6, 7, 11, 14, 15, 16, 22, 25, 33, 35]. However, we
add a number of nice observations to show how to make use of certain structures in the formula to
yield more efficient algorithms and reduce the case-by-case combinatorial analysis. For instance,
it has been observed before that when an instance of the Max-Sat problem contains a literal
with few occurrences, the case can be handled more efficiently. For this purpose, during a certain
phase of our algorithm, we try to enforce the invariant that the formula contains a literal with
few occurrences by using a subroutine that we call Create-Low-Literal. This results in a more
efficient running time for that phase and for the whole algorithm as well. Also, we introduce
a branching rule, BranchRule 2, that captures uniformly and systematically several branching
cases, and renders them more efficient.

The paper is organized as follows. In Section 2, we present the basic notations, definitions,
and transformation rules. In Section 3, we present our algorithm for the parameterized Max-Sat

problem. In Section 4, we give an algorithm for the Max-Sat problem based on the algorithm in
Section 3 for parameterized Max-Sat, and a new technique that we introduce in Section 4. We
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conclude the discussion in Section 5 with some remarks and further research directions.

2 Definitions and background

2.1 Definitions and notations

We assume familiarity with the basic concepts of propositional logic, and we use a notation that
is similar to that of [33]. The formula F is assumed to be given as a set of clauses in conjunctive
normal form (CNF). Each clause is a disjunction of literals, where each literal is a variable or its
negation. A variable will be denoted by an alphabetical character (e.g., x), its negation by its
name with bar on the top of it (e.g., x̄), and a literal by the variable name with a tilde sign on
the top of it (e.g., x̃). A literal x̃ occurs positively (resp. negatively) in a clause C if x (resp. x̄)
occurs in C. Two occurrences of a literal x̃ have opposite signs, if in one of the occurrences x̃ occurs
positively, and negatively in the other; otherwise, the two occurrences have the same sign. A literal
x̃ is said to occur with another literal ỹ, if there is a clause C in F containing both x̃ and ỹ. A
literal x̃ is said to be dominated by a literal ỹ if all occurrences of x̃ are with ỹ (we also say that
ỹ dominates x̃). A truth assignment to F is a function that assigns every variable in F a boolean
value true or false. For simplicity, we will denote from now on the boolean value true by 1 and
false by 0. A partial assignment τ to F is an assignment to a subset of the variables in F . If τ is a
partial assignment to the variables {x1, . . . , xr} in F , and if τ assigns the value 1 to the variables
{x1, . . . , xi}, and the value 0 to the variables {xi+1, . . . , xr}, where i ≤ r, we denote by F/τ , or
F [x1, . . . , xi][xi+1, . . . , xr], the formula resulting from F by replacing the variables in {x1, . . . , xi}
in F by the value 1 and xi+1, . . . , xr by the value 0, and eliminating from F all clauses whose values
have been determined upon that assignment.

The maximum number of simultaneously satisfiable clauses in F will be denoted by maxsat(F ).
We call a partial assignment τ safe, if there is a truth assignment τ

′
to F such that τ and τ

′
agree

on the variables {x1, . . . , xr} and τ
′

satisfies maxsat(F ) clauses. In such case we also call the
formula F/τ a safe formula.

A subformula H of F is a subset of clauses of F . A subformula H is said to be closed if no
literal in H appears outside H. The length of a clause C is simply the number of literals in C,
denoted |C|. The length of F , denoted |F |, is

∑
C∈F |C|. If a clause C has length r then C is called

an r-clause. A literal l̃ is called an (i, j) literal, if l̃ occurs exactly i times positively and j times
negatively. Similarly, l̃ is an (i+, j+) literal if it occurs at least i times positively and at least j

times negatively. We can define in a similar fashion (i−, j−), (i, j+), (i, j−), (i+, j), (i+, j−), (i−, j),
(i−, j+) literals. Without loss of generality, we can assume that each literal l̃ in F occurs at least
as many times positively as negatively. If this is not the case, the literal l̃ can be renamed so that
the above statement holds (i.e., if l̃ does not satisfy the above statement, we substitute l̃ with l̃′,
where l′ = l̄, and now l̃′ satisfies the above statement). A formula F is called simple, if negative
literals occur only in 1-clauses, and each pair of variables occurs together in at most one clause.
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2.2 Transformation rules

A transformation rule is a rule that is applied to a formula F to transform it into a simpler
formula G such that a solution of G can be mapped back to a solution of F . We describe next
some standard transformation rules that can be carried in linear time, most of them appear in the
literature [7, 31, 33], and their correctness can be easily verified.
TransRule 1. Pure literal
If x̃ is an (i, 0) (resp. (0, i)) variable in F , let G be the formula resulting from F by assigning x the
value 1 (resp. 0) and eliminating all satisfied clauses. Work on G with maxsat(G) = maxsat(F )−i.
TransRule 2. Dominating unit-clause
If an (i, j) literal x̃ occurs positively (resp. negatively) i′ times, where j ≤ i′ ≤ i (resp. i ≤ i′ ≤ j),
in unit clauses, assign x the value 1 (resp. the value 0), eliminate all clauses containing x (resp.
x̄), and work on the remaining formula G with maxsat(G) = maxsat(F )− i (resp. maxsat(G) =
maxsat(F )− j).
TransRule 3. Resolution
If F = (x ∨ p1 ∨ . . . ∨ pr) ∧ (x̄ ∨ q1 ∨ . . . ∨ qs) ∧ H, where H does not contain x̃, then work on
G = (p1 ∨ . . . ∨ pr ∨ q1 ∨ . . . ∨ qs) ∧H, with maxsat(G) = maxsat(F )− 1.
TransRule 4. Reduction to problem kernel [31]
Given a formula F and a positive integer k, then in linear time, we can compute a formula G and a
positive integer k′ ≤ k with |G| ∈ O(k′2), such that F has an assignment satisfying at least k clauses
if and only if G has an assignment satisfying at least k′ clauses. Moreover, such an assignment for
F is computable from an assignment for G in linear time.

We describe briefly how the reduction to problem kernel method works. Let F be a formula
with m clauses and k a positive integer. It is well known that if m ≥ 2k then an assignment
to F satisfying at least k clauses always exists, and can be found in O(|F |) time (see for instance
Proposition 5 in [31]). Thus, we can assume that m ≤ 2k. Let F1 be the subformula of F consisting
of all clauses that contain more than k literals. Suppose that F1 contains b clauses. Let F2 be the
set of remaining clauses in F . Instead of working on the instance F trying to satisfy k clauses, we
can equivalently work on the instance F2 and try to satisfy k − b clauses. To see why this is true,
observe that if k clauses can be satisfied in F then k− b clauses can be satisfied in F2. Conversely,
suppose that we satisfied k − b clauses in F2, then, without loss of generality, we can assume that
there are at most k − b literals that have been assigned truth values in F2. Now F1 contains b

clauses each containing at least k− (k− b) = b unassigned literals. It is easy to see that all clauses
in F1 can be satisfied in this case. Simply, pick a literal in the first clause in F1 and assign it a
value so that to satisfy the clause. Then repeat this process until the last clause is reached. Since
each clause contains at least b literals and there are b clauses in F1, we will always find a literal in
the next clause that have not been assigned any value yet. The above reduction can be carried out
in linear time with the use of a suitable data structure. (For a more detailed proof see Lemma 2
in [31].) Finally, note that since F2 contains at most 2k clauses each containing at most k literals,
we have |F2| = O(k2).
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3 An algorithm for parameterized Max-Sat

Recall that in the parameterized Max-Sat problem we are given a boolean formula F and a
positive integer k, and we are asked to decide if there is a truth assignment for F satisfying at least
k clauses. By TransRule 4, we can assume that |F | = O(k2). We will also assume that no clause
contains more than one occurrence of each literal. This assumption is justified since if a literal
occurs in a clause C more than once, then either all occurrences of the literal have the same sign,
or at least two of them have opposite signs. In the former case all the occurrences can be removed
and replaced with a single occurrence, and the resulting formula is equivalent to the original one.
In the latter case the clause C will always be satisfied, so C can be removed, and the formula and
the parameter can be updated accordingly.

The execution of our algorithm is recursive and is depicted by a search tree (branching
tree). A node in the search tree represents a boolean formula and its children are the boolean
formulas resulting from applying to the formula the first branching case that applies. By
branching at a formula F in the search tree we mean replacing F with formulas of the form
F [x1

1, . . . , x
1
r1

][y1
1, . . . , y

1
s1

], . . . , F [xl
1, . . . , x

l
ri

][yl
1, . . . , y

l
si

], according to one of the branching rules of
the algorithm, and then working on each of the formulas recursively. This technique is similar to
the Davis-Putnam procedure [18]. If at any time in the algorithm F becomes empty while the
parameter k is still positive, then we stop and report that no truth assignment for F satisfying k

clauses exists. Also, at the beginning of each stage the algorithm applies the above transformation
rules until they are no longer applicable.

Let C(k) be the number of leaves in the search tree of our algorithm looking for an assignment
satisfying k or more clauses in F . If we branch at a certain node x in the search tree by reducing
the parameter k′ by k′

1, k′
2, . . ., k′

r, in each branch respectively, where k′
1 ≤ k′

2 ≤ . . . ≤ k′
r, then the

following recurrence relation for the size of the search tree C(k′) rooted at x holds:

C(k′) =
r∑

i=1

C(k′ − k′
i)

It is well known that the solution to the above recurrence (see for instance [30]) is C(k′) =
O(αk′), where α is the unique positive root of the characteristic polynomial p(x) = xk′r − xk′r−k′1 −
. . .−xk′r−k′r−1 −1. Now the size of the whole search tree will be O(αk

max), where αmax is the largest
root among all roots of the characteristic polynomials resulting from the branching cases of the
algorithm. The running time of the algorithm will be O(αk

maxk2 + |F |), since O(|F |) time is needed
to reduce |F | to a boolean formula whose length is O(k2), and along each root-leaf path in the
searching tree we spend O(k2) time. Using a technique introduced by Niedermeier and Rossmanith
[34], we can get rid of the size of the kernel in the running time of the algorithm. The running time
of the algorithm becomes O(αk

max + |F |).
The following general branching rules prove to be useful in our algorithm.
BranchRule 1. If x̃ is an (i, 1) literal, and p1, . . . , pr, q̄1, . . . , q̄s occur with x̄ in a clause C,

then branch as F [x][] and F [q1, . . . , qs][x, p1, . . . , pr].
To see why the above branching rule is correct, observe that if the formula F [pi][] (1 ≤ i ≤ r)

or F [][qj ] (1 ≤ j ≤ s) is safe, then so is F [x, pi][] or F [x][qj ] for any i or j, which are subbranches
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of the branch F [x][]. Hence when we branch as F [][x], we can assume that pi = 0 and qj = 1, and
branch as F [q1, . . . , qs][x, p1, . . . , pr].

BranchRule 2. Let τ1 be a partial assignment to F satisfying i clauses such that F/τ1 = C1∧
. . .∧Cr∧G, and τ2 be a partial assignment to F satisfying j clauses such that F/τ2 = C

′
1∧. . .∧C

′
s∧G,

where i ≥ s + j and G is the maximal common subformula between F/τ1 and F/τ2. If there is a
branching rule in which we branch as F/τ1 and F/τ2, then it suffices to branch as F/τ1.

Proposition 3.1 BranchRule 2 is correct.

Proof. To prove the proposition it suffices to prove that if F/τ2 is safe then so is F/τ1. Suppose
that F/τ2 is safe and let τ be a truth assignment to F satisfying maxsat(F ) clauses that agrees
with τ2. Suppose that τ satisfies l clauses in G. Then τ satisfies at most l + s + j clauses in F ,
and hence, maxsat(F ) ≤ l + s + j. Now consider the truth assignment τ

′
to F that agrees with τ

on G and agrees with τ1 (it does not matter what τ
′
assigns to the other variables in F ). Now τ

′

satisfies at least l + i clauses. Since i ≥ j + s, τ
′
satisfies at least l + j + s ≥ maxsat(F ) clauses.

It follows that τ
′
is a truth assignment to F satisfying maxsat(F ) clauses that agrees with τ1, and

τ1 is safe.

The skeleton of the algorithm is described in Figure 1. We assume that after each application of
a transformation rule or a branching case the formula F , the parameter k, and the truth assignment
τ , are updated accordingly. In Step 4, the algorithm picks the first branching case among Case
3.1-Case 3.13, given below, that applies. The requirement that the cases should be considered in
the given order plays a crucial role in the correctness of the algorithm. For the sake of clarity, for
each branching case we will write the recurrence relation resulting from that case next to it.

Algorithm. Parameterized Max-Sat

Input: a boolean formula F containing m clauses and a positive integer k

Output: a truth assignment τ satisfying at least k clauses in F
or report that no such a truth assignment exists

1. if m > 2k then

1.1. let τ be any assignment to the variables in F ;

1.2. if τ satisfies ≥ k clauses then return τ

else return τ ′, where τ ′ assigns the variable x 1 if and only if τ assigns x the value 0;

2. τ = ∅;
3. apply TransRule 4 to F ;

4. while (F 6= ∅) and (τ satisfies < k clauses in F ) do

if any of TransRule 1-3 is applicable then apply it to F

else branch according to the first case in Case 3.1-Case 3.13 that applies;

5. if τ satisfies fewer than k clauses then

report that no assignment to F satisfies ≥ k clauses;

else return(τ);

Figure 1: An algorithm for parameterized Max-Sat
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Case 3.1. There is an (i, j) literal x̃ with i+ j ≥ 6, or i+ j = 5 and i, j > 1. Branch as F [x][]
and F [][x]. This gives a worst case recurrence C(k) ≤ C(k − 1) + C(k − 5).

Case 3.2. There is a (3, 1) or (4, 1) literal x̃ such that x̄ does not occur as a unit clause. Let
ỹ be a literal occurring with x̄, and suppose that y occurs with x̄ (the analysis in the other case is
the same). By BranchRule 1, branch as F [x][] and F [][x, y]. C(k) ≤ C(k − 3) + C(k − 2)

Excluding Case 3.1 and Case 3.2, we can assume that the formula contains only (2, 2) literals
and (4−, 1−) literals, and all (4, 1) and (3, 1) literals have their negations as unit clauses.

Case 3.3. There is a (2, 2) literal ỹ that occurs with a (2, 1) literal x̃. Assume that y occurs
with x (the case is the same if y occurs with x̄). Branch as F [y][] and apply either TransRule 1
or TransRule 3 to x̃, and F [][y]. C(k) ≤ C(k − 3) + C(k − 2)

Case 3.4. There are two (2, 1) literals x̃ and ỹ such that ȳ occurs with x̄. Branch as F [x][]
and F [y][x]. C(k) ≤ C(k − 2) + C(k − 3)

Case 3.5. There is a (2, 1) literal x̃ such that x̄ does not occur as a unit clause. Let C be
the clause containing x̄. We distinguish the following subcases.

Subcase 3.5.1 |C| ≥ 3. If there is a (3+, 1) literal ỹ that occurs in C, let t̃ be another literal
that occurs in C. Assume that t occurs in C (the analysis is the same in the case t̄ occurs in C).
Since ỹ is a (3+, 1) literal, by Case 3.2, y occurs with x̄. By BranchRule 1, we can branch as
F [x][] and F [][x, y, t]. Noting that ȳ occurs as a singleton, and hence, in a different clause than t̄,
we branch with recurrence C(k) ≤ C(k − 2) + C(k − 3). If there is no (3+, 1) literal occurring in
C, then all literals in C must be (2, 1) literals. Moreover, since Case 3.4 was excluded, all (2, 1)
literals except x occur positively in C. Let r̃ and s̃ be two (2, 1) literals such that r and s occur in
C. By BranchRule 1, we can branch as F [x][] and F [][x, r, s]. Since Case 3.4 was eliminated, r̄

and s̄ occur in different clauses. C(k) ≤ C(k − 2) + C(k − 3)
Subcase 3.5.2. C is a 2-clause. Let ỹ be the literal occurring with x̄. Since all the previous

cases were excluded, it must be the case that y occurs with x̄. Observe that when y = 1, x becomes
a pure variable, and hence can be assigned the value 1. It follows that branch F [y][] is equivalent
to F [y, x][]. Moreover, since ỹ is a (2+, 1) literal, by BranchRule 2, the two branches F [y, x][] and
F [x][y] reduce to F [y, x][]. Since we can always branch as F [y][] and F [x][y] and F [][x, y], and since
F [y][] reduces to F [y, x][], and F [y, x][] and F [x][y] reduce to F [y, x][] (from the above discussion),
it follows that we can always branch as F [y, x][] and F [][x, y]. C(k) ≤ C(k − 3) + C(k − 2)

Case 3.6. For every (2, 1) literal x̃, x̄ ocurs as a unit clause. We distinguish the following
subcases.

Subcase 3.6.1 There is a (4, 1) literal ỹ that occurs with x. Since Case 3.2 was excluded, y

has to occur with x. Branch as F [y][] and apply TransRule 1 or TransRule 3 to x̃, and F [][y].
C(k) ≤ C(k − 5) + C(k − 1)

Subcase 3.6.2 There is a (2+, 1) literal ỹ that occurs with x. Since Case 3.2 and Case
3.5 were excluded, y occurs with x. Let C be a clause containing x and y. If C is a 2-clause,
branch as F [y][] and apply TransRule 1 or TransRule 3 to x̃, and F [x][y]. This is correct since
by BranchRule 2, branching as F [][x, y] and F [x][y] reduces to branching as F [x][y]. Thus, we
branch with the recurrence relation C(k) ≤ C(k− 3)+C(k− 3). Observe that since TransRule 2
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was applied, no clause containing x can be a unit clause. Thus, we can assume at this point that
both clauses containing x have cardinality at least three. Now let t be another variable occurring
with x in C and let z be another variable occurring with x in the other clause. Note that since all
the previous cases were excluded, we must have ȳ, t̄, and z̄ occurring as unit clauses. Branch as
F [][x] and F [x][z, t, y]. To see why this is true, note that by BranchRule 2, branching as F [x, l][]
and F [l][x], where l ∈ {y, t, z}, reduces to branching as F [l][x] which is a subbranch of F [][x].
C(k) ≤ C(k − 1) + C(k − 5)

Now we can assume that we do not have any (2, 1) literals. Note that in the previous cases
when we had a (2, 1) literal, we were always able to branch with a worst case recurrence relation
C(k) ≤ C(k − 1) + C(k − 5). Suppose that there is a (4, 1) literal x̃. Clearly, since Case 3.2 was
excluded, x̄ occurs as a unit clause.

Case 3.7. There is a literal ỹ occurring with x such that either ỹ is a (3, 1) literal, or
a (4, 1) literal that has multiple occurrences with x, or a (2, 2) literal that is not dominated by
x. Branch as F [x][] and F [][x]. In the first branch four clauses are satisfied and y becomes a
(2−, 1−) literal allowing a further branch with a recurrence relation C(k) ≤ C(k − 1) + C(k − 5)
according to one of the cases Case 3.3-Case 3.6. In the second branch one clause is satisfied.
C(k) ≤ C(k − 5) + C(k − 9) + C(k − 1)

Case 3.8. There is a (2, 2) literal y that is dominated by x. Branch as F [y][] and F [][y]
and in both branches x̃ becomes a (2, 1) literal allowing a further branch with a recurrence C(k) ≤
C(k − 1) + C(k − 5). C(k) ≤ 2C(k − 3) + 2C(k − 7)

Excluding Case 3.7 and Case 3.8, no (2, 2) or (3, 1) literal occurs with a (4, 1) literal, and
every two (4, 1) literals can have at most one common occurrence.

Case 3.9. All literals are (4, 1) literals and the formula is simple. Let x̃ be a (4, 1) literal
and let C1 be the clause with minimum cardinality containing x. Let i = |C1|. We distinguish two
subcases.

Subcase 3.9.1. i ≤ 5. Let y1, . . . , yi−1 be the variables occurring with x in C1. Note that
by BranchRule 2, F [x][] and F [][x, y1, . . . , yi−1] reduce to F [x][]. Thus, we can branch as F [x][]
and F [y1][x] and F [y2][x, y1] and . . . and F [yi−1][x, y1, . . . , yi−2]. We get a worst case recurrence
C(k) ≤ C(k − 4) + C(k − 5) + C(k − 6) + C(k − 7) + C(k − 8).

Subcase 3.9.2. i > 5. Let C1, . . ., C4 be the clauses containing x, and suppose that besides
x, C1 contains the variables x1

1, . . . , x
p
1, C2 the variables x1

2, . . . , x
q
2, C3 the variables x1

3, . . . , x
r
3,

and C4 the variables x1
4, . . . , x

s
4, where p, q, r, s > 4. Branch as F [][x] and F [x][x1

1, . . . , x
p
1] and

F [x][x1
2, . . . , x

q
2] and F [x][x1

3, . . . , x
r
3, x

1
4, . . . , x

s
4]. To justify the above branch, note that if three

variables other than x in three distinct clauses in C1, . . . , C4 have the value 1, then by BranchRule
2, we can safely set x to 0, and the branch becomes a subbranch of F [][x]. Thus, either we branch
as F [][x], or F [x][] and no three clauses among C1, . . . , C4 have variables other than x set to 1.
That is, we branch as F [][x] and F [x][x1

1, . . . , x
p
1] (i.e., x = 1 but no other variable in C1 is 1), and

F [x][x1
2, . . . , x

q
2] (i.e., x = 1 and no other variable in C2 is 1), and F [x][x1

3, . . . , x
r
3, x

1
4, . . . , x

s
4] (in

this case we know that at least one variable in C1 is set to 1 and at least one variable in C2 is set
to 1, and hence, by our assumption, the variables that occur with x in C3 and C4 can be set to
0). Since all the negations of the variables occur in unit clauses, we get a worst case recurrence
C(k) ≤ C(k − 1) + 2C(k − 8) + C(k − 12).
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Now we can assume that the resulting formula does not contain (2, 1) and (4, 1) literals.
Case 3.10. There is a (2, 2) literal x̃. Clearly since TransRule 2 was applied, not both

occurrences of x or x̄ are in unit clauses. Branch as F [x][] and F [][x]. Since not both occurrences
of x are in unit clauses, there must exist a literal ỹ that occurs with x. When we branch as F [x][],
the number of occurrences of ỹ is reduced by at least 1 and at most 2. Thus, ỹ becomes a (2−, 1−)
literal in the resulting formula allowing either one of TransRule 1 through TransRule 3 to be
applied, or a further branch with a recurrence C(k) ≤ C(k − 1) + C(k − 5) according to one of
the cases Case 3.3-Case 3.6. The case is similar when we branch as F [][x]. We get a worst case
recurrence C(k) ≤ 2C(k − 3) + 2C(k − 7).

Now we can assume that all literals are (3, 1) literals.
Case 3.11. There are two literals x̃ and ỹ that occur three times together. Since by

BranchRule 2 F [x][y] and F [y][x] reduce to F [x][y], we can branch as F [x][] and apply TransRule
1 to ỹ, and F [][x, y]. C(k) ≤ C(k − 4) + C(k − 2)

Case 3.12. There are two literals x̃ and ỹ that occur twice together. Let C be the clause that
contains y and does not contain x. Let t be a variable that occurs with y in C. Since TransRule
2 was applied, such a variable must exist; otherwise, there will be two unit clauses one containing y

and the other ȳ (such case has been already taken care of by TransRule 2). Branch as F [][y] and
F [y][x, t]. The reason is that by BranchRule 2, F [y][] and F [y][x] reduce to F [y][x] and F [t, x][y]
and F [y, t][x] reduce to F [t, x][y] which is a subbranch of F [][y]. C(k) ≤ C(k − 1) + C(k − 5)

Case 3.13. F is a simple formula. Let x̃ be a (3, 1) literal and let C1 be the clause with
minimum cardinality containing x. Let i = |C1|. As in Case 3.9, we distinguish two subcases.

Subcase 3.13.1. i ≤ 3. Let yi, yi−1 be the variables occurring with x in C1. Branch as F [x][]
and F [yi−1][x] and F [yi][x, yi−1] (in case yi exists). C(k) ≤ C(k − 3) + C(k − 4) + C(k − 5)

Subcase 3.13.2. i > 3. Let C1, C2, C3 be the clauses containing x, and suppose that besides
x, C1 contains the variables x1

1, . . . , x
p
1, C2 the variables x1

2, . . . , x
q
2, and C3 the variables x1

3, . . . , x
r
3,

where p, q, r > 2. Branch as F [][x] and F [x][x1
1, . . . , x

p
1] and F [x][x1

2, . . . , x
q
2, x

1
3, . . . , x

r
3]. Basically,

this case is similar to Subcase 3.9.2. If two variables other than x in two distinct clauses in
C1, . . . , C3 have the value 1, then by BranchRule 2, we can safely set x to 0, and the branch
becomes a subbranch of F [][x]. Thus, either we branch as F [][x], or F [x][] and no two clauses
among C1, . . . , C3 have variables other than x set to 1. C(k) ≤ C(k − 1) + C(k − 6) + C(k − 9)

Theorem 3.2 Given a boolean formula F and a parameter k, then in time O(1.3695k + |F |) we
can either compute a truth assignment for F satisfying at least k clauses, or we can report that
such assignment does not exist.

Proof. At each stage of the algorithm, either one of the above transformation rules, or one
of the cases Case 3.1-Case 3.13 is applicable to F . It takes linear time to apply one of the
transformation rules or to update F after applying a branching rule. In all the above branching
rules we branch with a recurrence relation not worse than C(k) ≤ 2C(k−3)+2C(k−7). Thus, the
size of the branching tree is not larger than O(αk) where α ≈ 1.3695 is the unique positive root of the
characteristic polynomial x7−2x4−2 associated with the recurrence C(k) ≤ 2C(k−3)+2C(k−7).
From the above discussion, the running time of the algorithm is O(1.3695kk2 + |F |). Using the
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Create-Low-Literal

Precondition: F only contains (2, 2) and (3, 1) literals with at least one (2, 2) literal
such that TransRule 1 through TransRule 3 are not applicable

Postcondition: F contains a (2−, 1−) literal

1. let ỹ be a (2, 2) literal;

2. branch as F [y][] and F [][y];

Figure 2: The subroutine Create-Low-Literal

technique introduced in [34], the running time of the algorithm becomes O(1.3695k + |F |).

Theorem 3.2 is an improvement on Bansal and Raman’s O(1.3802kk2 + |F |) algorithm for
parameterized Max-Sat [7].

4 An algorithm for Max-Sat

We say a literal has low occurrence if it is a (2−, 1−) literal. From the above discussion we can
observe the importance of having literals with low occurrences. Basically, if we have a literal with
low occurrence, then either the literal is a (1−, 1−) literal and we can apply one of the transformation
rules to reduce the parameter directly (like TransRule 1 or TransRule 3), or the literal is a (2, 1)
literal, and we can always branch with a worst case recurrence C(k) ≤ C(k−1)+C(k−5). For the
non-parameterized case (i.e., for the general Max-Sat problem where the parameter is the total
number of clauses), this recurrence becomes C(m) ≤ C(m−1)+C(m−5). Note that the difference
between the parameterized Max-Sat and Max-Sat, is that in the parameterized Max-Sat the
parameter is reduced by i only when i clauses are satisfied. However, for the Max-Sat problem,
the parameter m is reduced by i when i clauses are eliminated (that is, their values have been
determined). Hence, a branch of the form C(k) ≤ C(k − i) + C(k − j) for the parameterized case
implies directly a branch of the form C(m) ≤ C(m− i) + C(m− j) for the general Max-Sat. The
idea then becomes to take advantage of literals of low occurrences. Since the existence of a literal
with low occurrence is not always guaranteed, we try to enforce it after each branching case of
our algorithm. To do that, we will use a subroutine called Create-Low-Literal. This subroutine
assumes that the formula contains only (3, 1) and (2, 2) literals, with at least one (2, 2) literal, such
that none of TransRule 1 through TransRule 3 is applicable, and it guarantees that a (2−, 1−)
literal exists in F after its termination. We give this subroutine in Figure 2.

Proposition 4.1 If the subroutine Create-Low-Literal is called on a formula F containing only
(2, 2) and (3, 1) literals, with at least one (2, 2) literal, such that TransRule 1 through TransRule
3 are not applicable, then when the subroutine terminates, the invariant that F contains a (2−, 1−)
literal is satisfied. Moreover, the subroutine branches with the recurrence C(m) ≤ 2C(m− 2).
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Proof. It is easy to see the correctness of the above proposition. The subroutine Create-
Low-Literal works by picking a (2, 2) literal ỹ and branching at it. The existence of such a literal
is guaranteed by the precondition of the subroutine. Since TransRule 2 is not applicable, we
know that both y and ȳ occur with other literals say r̃ and s̃, respectively. Now when we branch
as F [y][] two clauses are satisfied and r̃ becomes a (2−, 1−) literal. Similarly, when we branch as
F [][y], s̃ becomes a (2−, 1−) literal. Thus, the invariant is always maintained at the end of the
subroutine Create-Low-Literal. The branch in Step 2 is described by the recurrence relation
C(m) ≤ 2C(m− 2). The proof follows.

Our algorithm is divided into two phases. In the first phase we apply Case 3.1 and Case 3.2
of the algorithm in Section 3 to eliminate all literals (i, j) where i+ j ≥ 6 or i+ j = 5 with i, j > 1,
and all (3, 1) and (4, 1) literals whose negations do not occur as unit clauses. Case 3.1 and Case
3.2 guarantee a recurrence relation C(k) ≤ C(k − 1) + C(k − 5) for the parameterized case, and
hence a recurrence relation C(m) ≤ C(m−1)+C(m−5) for the non-parameterized case. Now if F

contains a (4, 1) literal x̃, then x̄ has to occur as a unit clause, and we branch as F [x][] and F [][x].
In the first branch four clauses are satisfied and one is eliminated (the unit clause containing x̄),
and in the second branch one clause is satisfied. Hence, we branch with the recurrence relation
C(m) ≤ C(m− 1)+C(m− 5). After this phase of the algorithm, we know that F does not contain
any (i, j) literal where i+j ≥ 5, and all (3, 1) literals have their negations occurring as unit clauses.

The next phase of the algorithm works in stages. The algorithm at each stage picks the first
branching rule that applies and uses it. Also, at the beginning of each stage we will maintain the
following invariant: The formula F has a (2−, 1−) literal or all literals are (3−, 1−) literals (i.e., no
(2, 2) literal exists). The way we keep this invariant is by guaranteeing that after each branching
case, if F does not consist solely of (3−, 1−) literals, then either a (2−, 1−) literal remains in the
formula, or we can create one by applying the Create-Low-Literal subroutine. We can assume,
without loss of generality, that a (2−, 1−) literal exists in the first stage of the algorithm. Otherwise,
we can introduce a new unit clause containing a new variable x and increase the parameter m by
1. It can be easily seen that the running time of the algorithm will not increase by more than
a multiplicative constant. Before calling Create-Low-Literal, we apply TransRule 1 through
TransRule 3 as long as they are applicable, then we check that a (2, 2) literal exists in the
remaining formula. Otherwise, Create-Low-Literal is not called. The algorithm is described in
Figure 3. We assume that after each application of a transformation rule or a branching case, the
formula F and the truth assignment τ are updated accordingly. In the else statement in Step 5,
the algorithm picks the first branching case of branching cases Case 4.1-4.12, given below, that
applies. We can assume, without loss of generality, that before the application of any branching
case the formula F does not contain any closed subformula H of small size (bounded by 10, for
instance). Otherwise, an assignment satisfying the maximum number of clauses in H can be
computed in constant time, and the reduction in the parameter can be used to create a (2−, 1−)
literal using Create-Low-Literal. This case needs to be considered since at the beginning of the
algorithm we can create a (2−, 1−) literal (in case it does not exist) at the expense of increasing
the running time by a multiplicative constant. However, we cannot afford doing that all the time.
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So if at a certain point all the (2−, 1−) literals are contained in a closed subformula H, we want to
make sure that if we branch and H becomes empty, a (2−, 1−) literal still remains in the formula.
Thus, if the size of H becomes small (bounded by a constant), we can solve H easily without any
branching, and use this reduction in the parameter to create a (2−, 1−) literal in the remaining
formula. Again, we emphasize that the requirement that the cases below should be considered in
the given order plays a crucial role in the correctness of the algorithm.

Algorithm. Max-Sat

Input: a boolean formula F containing m clauses

Output: a truth assignment τ satisfying the maximum number of clauses in F

1. τ = ∅;
2. while (F 6= ∅) and (any of Case 3.1-3.2 is applicable) then

apply it to F ;

3. while (F 6= ∅) and (F contains a (4, 1) literal x̃) do

branch as F [x][] and F [][x];

4. if (F 6= ∅) and (F does not contain a (2−, 1−) literal) then

F = F ∧ (w) where w is a new variable;

5. while (F 6= ∅) do

if F contains only (3−, 1−) literals then

if any of TransRule 1-3 is applicable then apply it to F

else apply Case 4.0

else if F contains a closed subformula H of size ≤ 10 then

solve H and call Create-Low-Literal;

else branch according to the first branch in Case 4.1-4.12 that applies;

6. return τ ;

Figure 3: An algorithm for Max-Sat

Case 4.0. F contains only (3−, 1−) literals. In this case either a (2−, 1−) literal exists, or
the formula consists of only (3, 1) literals. In the former case one of TransRule 1-3 or one of
the cases Case 3.4 through Case 3.6 must apply, hence branching with a worst case recurrence
C(m) ≤ C(m − 1) + C(m − 5). In the latter case one of cases Case 3.11 through Case 3.13
applies. Now observing that the recurrence relation in Subcase 3.13.2 becomes C(m) ≤ C(m −
1) + C(m − 7) + C(m − 10) for the non-parameterized case (since when x = 1 the unit clause
containing x̄ will be eliminated), we conclude that in these cases we can branch with a worst case
recurrence relation C(m) ≤ C(m− 1) + C(m− 5).

Case 4.1. Any of TransRule 1 through TransRule 3 is applicable. Apply the transforma-
tion rule and then Create-Low-Literal if necessary. C(m) ≤ 2C(m− 3)

Let ỹ be a (2, 2) literal and x̃ be a (2, 1) literal. Note that a (2, 1) literal must exist at this
point since the invariant guarantees the existence of a (2−, 1−) literal, and Case 4.1 takes care of
all the other possibilities.

Case 4.2. y or ȳ occurs as a unit clause. Assume, without loss of generality, that y occurs as
a unit clause. Branch as F [y][] and F [][y]. In both branches at least one occurrence of the literal
x̃ remains, and hence, the invariant is satisfied. C(m) ≤ C(m− 2) + C(m− 3)
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Now assume that ỹ occurs with x̃. Without loss of generality, suppose that y occurs with x̃.
Case 4.3. y occurs only with x̄. Branch as F [y][] and apply TransRule 1 to x, and

then Create-Low-Literal, and F [][y]. Note that in the second branch a (2−, 1−) literal remains
(namely x̃). C(m) ≤ 2C(m− 6) + C(m− 2)

Case 4.4. There is a literal r̃ that occurs with y such that r̃ occurs also outside y and x̃.
Branch as F [y][] and apply TransRule 1 or TransRule 3 to x̃, and F [][y]. In the first branch r̃

becomes a (2−, 1−) literal, and in the second x̃. C(m) ≤ C(m− 3) + C(m− 2)
Case 4.5. The other occurrence of y is outside x̃. Let r̃ be a literal that occurs with y outside

x̃. Since Case 4.4 was excluded, all other occurrences of r̃ have to be with x̃. Branch as F [y][] and
apply TransRule 1 or TransRule 3 to x̃ and r̃, and apply Create-Low-Literal, and F [][y]. In
the second branch x̃ remains. C(m) ≤ 2C(m− 6) + C(m− 2)

Now both occurrences of y are with x̃. Also, both occurrences of ȳ are outside x̃, otherwise, by
symmetry, we can apply one of the above cases with y exchanged with ȳ.

Case 4.6. There is a literal r̃ that occurs simultaneously with x̃ and outside x̃. Branch as
F [y][] and apply TransRule 1 to x̃, and F [][y]. In the first r̃ becomes a (2−, 1−) literal, and in
the second x̃ remains. C(m) ≤ C(m− 3) + C(m− 2)

Case 4.7. There is a literal r̃ distinct from y that occurs with x̃. Since the previous case was
excluded, r̃ can only occur with x̃, and hence it must be a (2, 1) literal. In this case a safe partial
assignment that satisfies the three clauses containing x̃ and r̃ can be easily computed, and we can
apply Create-Low-Literal to create a (2−, 1−) literal in the resulting formula. C(m) ≤ 2C(m−5)

Case 4.8. y is the only variable that occurs with x̃ and x̄ occurs as a unit clause. By
BranchRule 2, branch F [x][y] and F [][y, x] reduce to F [x][y]. Thus, we branch as F [y][] and
apply TransRule 1 to x̃, then apply Create-Low-Literal, and F [x][y] and apply Create-Low-
Literal. C(m) ≤ 2C(m− 5) + 2C(m− 7)

Now we can assume that no (2, 2) literal occurs with a (2, 1) literal.
Case 4.9. The (2, 1) literals form a closed subformula. Let H be the closed subformula

consisting of the (2, 1) literals. Since closed subformulas of size ≤ 10 have been taken care of, we
can assume that |H| > 10. Now we can apply one of the cases Case 3.4 through Case 3.6. In
this case we branch with recurrence relation C(m) ≤ C(m − 1) + C(m − 5), and the remaining
formula of H will contain a (2−, 1−) literal. The last statement is true since the number of clauses
in H is chosen to be large enough so that none of the branches in Case 3.4 through Case 3.6 can
eliminate all the clauses in H, thus leaving at least one (2−, 1−) literal.

Now we must have a (3, 1) literal ỹ occurring with a (2, 1) literal x̃ or else the (2, 1) literals
would form a closed subformula. Note that all (3, 1) literals have their negative occurrences as unit
clauses.

Case 4.10. x̃ is dominated by ỹ. Now branch F [][y] contains F [x][y]. By BranchRule
2, F [x][y] and F [y][x] reduce to F [x][y]. Also F [x][y] and F [x, y][] reduce to F [x][y]. Thus, in
this case we branch as F [][y] and x̃ remains in the resulting formula. We get recurrence relation
C(m) = C(m− 1).

Case 4.11. y and x̃ occur twice together. Note that if we do not have a literal r̃ that occurs
with x̃ or ỹ and that has at least one occurrence outside the clauses containing x̃ or ỹ, then the
clauses containing x̃ or ỹ would form a closed subformula of F containing at most five clauses. So we
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can assume that such a literal r̃ exists. Branch as F [y][] and apply TransRule 1 to x̃, and F [][y].
In the first branch r̃ becomes a (2−, 1−), and in the second x̃ remains. C(m) ≤ C(m−5)+C(m−1)

Case 4.12. y occurs exactly once with x̃. We distinguish two subcases.
Subcase 4.12.1. y occurs with x. By TransRule 2, none of the occurrences of y can be in

a unit clause. Now let r̃ be a literal different from x̃ that occurs with y. Since the previous two
cases were eliminated, r̃ must occur outside y (if r̃ is a (3, 1) literal, this condition is automatically
satisfied). Branch as F [y][] and apply TransRule 3 to x̃, and F [][y]. In the first branch r̃ becomes
a (2−, 1−) literal, and in the second x̃ remains. C(m) ≤ C(m− 5) + C(m− 1)

Subcase 4.12.2. y occurs with x̄. Branch as F [y][] and TransRule 1 to x̃ then apply
Create-Low-Literal, and F [][y]. In the second branch x̃ remains. C(m) ≤ 2C(m−8)+C(m−1)

Theorem 4.2 Given a boolean formula F of m clauses then in time O(1.3247m|F |) we can compute
a truth assignment to F satisfying the largest number of clauses.

Proof. It is easy to see that the above cases are comprehensive in the sense that they cover all
possible situations. The size of the branching tree is the largest when we branch with the recurrence
relation C(m) ≤ C(m − 1) + C(m − 5). This gives a tree size of O(αm) where α ≈ 1.3247 is the
unique positive root of the polynomial x5−x4− 1. Along each root-leaf path in the branching tree
we spend O(|F |) time. Hence, the running time of the algorithm is O(1.3247m|F |).

The above algorithm is an improvement on Bansal and Raman’s O(1.341294m|F |) algorithm
for the Max-Sat problem [7].

5 Concluding remarks

In this paper we presented two exact algorithms for the Max-Sat problem. Both algorithms induce
improvements on the previously best algorithms by Bansal and Raman for the problem. Basically
the technique used in this paper is a variation of the search tree technique which has been widely
employed in designing exact algorithms for NP-hard problems [6, 7, 11, 14, 15, 16, 22, 25, 33, 35].
Although case-by-case analysis seems unavoidable when using the search tree method to solve
such problems, reducing the number of cases by introducing new techniques that either enable the
classification of multiple cases into a general case, or exploit the structure of the combinatorial
problem by looking more carefully at its nature, is always desirable. Such techniques like the
“vertex folding” and the “iterative branching” introduced in [15], the “struction” in [11], and the
Create-Low-Literal subroutine introduced in this paper, have reduced significantly the number
of cases in the problems considered.

The general open question that is posed is to what extent we can keep improving these upper
bounds? Using the results in [29], one can easily show that if the Max-Sat problem can be solved
in sub-linear exponential time (i.e., O(2o(m)p(n)), where m is the number of clauses, n the number
of variables, and p a polynomial), then so can a family of problems including k-SAT, Independent

Set, and Vertex Cover. This means that it is unlikely that the Max-Sat problem admits a
sub-linear exponential time algorithm, and hence, it seems very likely that there exists a constant
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c > 0, such that Max-SAT has no algorithm of running time O((1 + c)mp(n)). How close are we
to this constant c remains an open question.

Finally, we note that even though the algorithms for such NP-hard problems tend to be based
on case-by-case analysis, these cases are easy to distinguish, and hence can be implemented easily.
The remaining question would be how well these algorithms can perform in practice in comparison
with their theoretical upper bounds and other existing heuristics for the problems.
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