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Abstract

It has been a challenging open problem whether there is a polynomial time approximation
algorithm for the Vertex Cover problem whose approximation ratio is bounded by a constant
less than 2. In this paper, we study the Vertex Cover problem on graphs with perfect
matching (shortly, VC-PM). We show that if the VC-PM problem has a polynomial time
approximation algorithm with approximation ratio bounded by a constant less than 2, then so
does the Vertex Cover problem on general graphs. Approximation algorithms for VC-PM

are developed, which induce improvements over previously known algorithms on sparse graphs.
For example, for graphs of average degree 5, the approximation ratio of our algorithm is 1.414,
compared with the previously best ratio 1.615 by Halldórsson and Radhakrishnan.
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1 Introduction

Approximation algorithms for NP-hard optimization problems have been a very active research in
recent years. In particular, the study of approximability for certain famous NP-hard optimization
problems has achieved great success. For example, now it is known that the polynomial time
approximability for the Max-3Sat problem is exactly 8/7, based on the lower bound derived by
H̊astad [9], and the fact that a random truth assignment satisfies, on average, 7/8 of the optimal
number of satisfiable clauses [13].

On the other hand, some other famous NP-hard optimization problems still resist stubbornly
improvements. A well-known example is the Vertex Cover problem. A very simple approx-
imation algorithm based on maximal matchings gives an approximation ratio 2 for the Vertex
Cover problem. However, despite long time efforts, no significant progress has been made on this
ratio bound. It has become an outstanding open problem whether there is a polynomial time ap-
proximation algorithm for the Vertex Cover problem whose approximation ratio is bounded by
a constant less than 2. On the other hand, the best lower bound for the ratio is 10

√
5−21 ≈ 1.360,

which was derived by Dinur and Safra [5].
Considerable efforts have been made on trying to improve the upper bound on the approxima-

bility for the Vertex Cover problem. Hochbaum [10] presented an algorithm of approximation
ratio 2 − 2/d for graphs of degree bounded by d. Monien and Speckenmeyer [15] improved this
bound to 1−(log log n)/(2 log n). The same bound was also achieved independently by Bar-Yehuda
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and Even [1], whose result is also applicable to the weighted vertex cover problem. However, no
further progress has been made on this bound for the last one and a half decades. For the Vertex
Cover problem on sparse graphs, Berman and Fujito [2] presented an approximation algorithm for
graphs of degree bounded by 3, whose approximation ratio is bounded by 7/6 + ε. Halldórsson [7]
developed an algorithm of ratio 2− log d/d(1+ ε) for graphs of degree bounded by d. On graphs of
average degree d̄, Hochbaum [10] has studied the approximation algorithms for the Independent
Set problem. Halldórsson and Radhakrishnan [8] further improved Hochbaum’s algorithm. Under
the assumption that a minimum vertex cover of the input graph contains at least half of the vertices
in the graph, Halldórsson and Radhakrishnan’s algorithm implies an algorithm of approximation
ratio (4d̄+ 1)/(2d̄+ 3) for the Vertex Cover problem on graphs of average degree d̄.

For general graphs, no polynomial time approximation algorithms have been developed for
the Vertex Cover problem whose approximation ratios are bounded by a constant less than 2.
Hochbaum has once conjectured that no such approximation algorithm exists [10]. Motivated by
these facts, we study in the current paper the Vertex Cover problem on graphs with perfect
matching (or shortly, the VC-PM problem). The Vertex Cover problem and graph matching
are closely related. In fact, the maximum matching problem is the dual problem of the minimum
vertex cover problem when they are given in their integer linear programming forms. We first
show that unless P = NP, the VC-PM problem cannot be approximated in polynomial time to
a ratio 5

√
5 − 10 − ε ≈ 1.180 − ε for any constant ε > 0. We then show that if the VC-PM

problem has a polynomial time approximation algorithm with approximation ratio bounded by a
constant less than 2, then so does the Vertex Cover problem on general graphs. Approximation
algorithms for the VC-PM problem are then investigated, with its close relation to theMax-2Sat
problem. A polynomial time approximation algorithm is developed for the VC-PM problem, which
induces improvements over previous algorithms for the Vertex Cover problem on sparse graphs.
For example, for graphs of average degree 5, the approximation ratio of our algorithm is 1.414,
compared with the previously best ratio 1.615 by Halldórsson and Radhakrishnan [8].

We note that after the publication of a preliminary version of this paper, there was a very recent
improvement on these results by Chleb́ık and Chleb́ıková [3], who showed that the Vertex Cover
problem and the VC-PM problem have the same inapproximability threshold (Theorem 1, [3]).

2 Preliminaries

We briefly review the related terminologies and previous results used in this paper. Let G = (V,E)
be a graph. A vertex cover C for G is a set of vertices in G such that every edge in E has at least
one endpoint in C. An independent set I in G is a set of vertices in G such that no two vertices
in I are adjacent. It is easy to see that a set C ⊆ V is a vertex cover for G if and only if the
complement set V − C is an independent set in G. The Vertex Cover problem is to construct
for a given graph a vertex cover of the minimum number of vertices, and the Independent Set
problem is to construct for a given graph an independent set of the maximum number of vertices.
Both Vertex Cover and Independent Set are well-known NP-hard problems [12].

A matching M in a graph G = (V,E) is a set of edges in G such that no two edges in M
share a common endpoint. A vertex is matched if it is an endpoint of an edge in M , and is
unmatched otherwise. A matching M in G is maximal if no edge can be added to M to make a
larger matching. A matchingM is maximum if no matching in G is larger thanM . TheMaximum
Matching problem is to construct for a given graph a maximum matching. A graph G of n vertices
has a perfect matching if G has a matching of n/2 edges. Given a matching M in a graph G, an
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augmenting path in G (with respect to M) is a simple path {u0, u1, . . . , u2k+1} of odd length such
that u0 and u2k+1 are unmatched, and the edges [u2i−1, u2i], i = 1, . . . , k, are in the matching M .
It is well-known that a matching M is maximum if and only if there is no augmenting path in G
with respect to M . The Maximum Matching problem can be solved in time O(m

√
n) [14]. In

particular, it can be tested in time O(m
√
n) whether a graph has a perfect matching.

The current paper will concentrate on the Vertex Cover problem on graphs with perfect
matching. Formally, the VC-PM problem is, for a graph G with perfect matching, to construct
a minimum vertex cover for G. It is not difficult to prove, via a standard reduction from the
4-Satisfiability problem, that the VC-PM problem is NP-hard.

Let G = (V,E) be a graph. For a subset V ′ ⊆ V of vertices in G, denote by G(V ′) the subgraph
induced by V ′. That is, the vertex set of the subgraph G(V ′) is V ′, and an edge e in G is in G(V ′)
if and only if both endpoints of e are in V ′. We denote by Opt(G) the size of the minimum vertex
cover for the graph G. The importance of the following proposition, due to Nemhauser and Trotter
[16], to the approximation of the Vertex Cover problem was first observed by Hochbaum [10].

Proposition 2.1 (NT-Theorem) Given a graph G, there is an O(m
√
n) time algorithm that

partitions the vertex set of G into three subsets I0, C0, and V0 such that
(1) Opt(G(V0)) ≥ |V0|/2; and
(2) for any vertex cover C of G(V0), C ∪ C0 is a vertex cover of G satisfying

|C ∪ C0|
Opt(G)

≤ |C|
Opt(G(V0))

.

According to the NT-Theorem, the approximation ratio on vertex cover for the graph G(V0)
implies an equally good approximation ratio on vertex cover for the original graph G. Thus, we only
need to concentrate on approximating vertex cover for the graph G(V0), for which the minimum
vertex cover has a lower bound |V0|/2.

We say that a graph G is everywhere k-sparse if for any subset V ′ of vertices in G, the number
of edges in the induced subgraph G(V ′) is bounded by k|V ′|. For a graph G of n vertices and m
edges, we define the average degree d̄ of G by d̄ = 2m/n.

3 On the inapproximability of VC-PM

Theorem 3.1 Unless P = NP, the VC-PM problem has no polynomial time approximation algo-
rithm with ratio 5

√
5− 10− ε ≈ 1.180− ε for any constant ε > 0.

Proof. Suppose to the contrary that there is a polynomial time approximation algorithm Apm

of ratio r = 5
√
5− 10− ε for the VC-PM problem, where ε > 0 is a constant. We show that this

would imply a polynomial time approximation algorithm of ratio 10
√
5 − 21 − δ for the Vertex

Cover problem on general graphs for some constant δ > 0, which, using [5], would imply that P
= NP.

Let G be a graph with n vertices. By the NT-Theorem, we can assume that Opt(G) ≥ n/2.
Construct a maximal matching M for G. Let I be the set of the unmatched vertices. Then I is an
independent set in G. Let s = |I|. Since Opt(G) ≥ n/2, we have s ≤ n/2. Introduce a new clique
Q of s vertices (Q is disjoint with G). Pair the vertices in Q and the vertices in I arbitrarily, and
connect each pair by a new edge. Let the resulting graph be G+. The graph G+ has n+ s vertices,
and has a perfect matching. Moreover, it is easy to verify that

Opt(G) + s− 1 ≤ Opt(G+) ≤ Opt(G) + s. (1)
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Now apply the approximation algorithm Apm on the graph G+, we get a vertex cover C+ for
the graph G+. By our assumption, |C+|/Opt(G+) ≤ r. Remove all vertices in C+ ∩ Q from C+,
we get a vertex cover C for the graph G. Since C+ contains at least s − 1 vertices and at most s
vertices in Q, we have

|C|+ s− 1 ≤ |C+| ≤ |C|+ s. (2)

Consider the approximation ratio for the vertex cover C for the graph G:

|C|
Opt(G)

≤ |C+| − s+ 1

Opt(G+)− s
= 1 +

|C+| −Opt(G+) + 1

Opt(G+)− s

= 1 +
(|C+|/Opt(G+))− 1 + (1/Opt(G+))

1− (s/Opt(G+))

≤ 1 +
r − 1 + (1/Opt(G+))
1− (s/Opt(G+))

≤ 1 +
r − 1 + (1/Opt(G+))

1− ((Opt(G+)− n/2 + 1)/Opt(G+)

= 1 +
(r − 1 + (1/Opt(G+))) ·Opt(G+)

(n/2)− 1

≤ 1 +
(r − 1 + (1/Opt(G+))) · n

(n/2)− 1

= 1 +
(r − 1 + (1/Opt(G+)))(2n)

n− 2

= 1 +
(r − 1 + (1/Opt(G+)))(2n− 4)

n− 2 +
4(r − 1 + (1/Opt(G+)))

n− 2

= 1 + 2(r − 1) + 2

Opt(G+)
+
4(r − 1 + (1/Opt(G+)))

n− 2 . (3)

The first inequality follows from the relations (2) and (1), the second inequality is true due to
the assumption |C+|/Opt(G+) ≤ r. The third inequality follows from (1) since we have s ≤
Opt(G+) − Opt(G) + 1, and from our assumption Opt(G) ≥ n/2. The fourth inequality is true
because the vertices in Q plus the vertices in M obviously make a vertex cover for the graph G+,
so Opt(G+) ≤ 2|M |+ |Q| = n.

Since r = 5
√
5−10− ε, we have 1+2(r−1) = 10

√
5−21−2ε. Now for n sufficiently large, and

observing that Opt(G+) ≥ n/2+ s− 1, we conclude from (3) that |C|/Opt(G) ≤ 10
√
5− 21− δ for

some constant δ > 0. This, according to [5], would imply that P = NP.

Similar results to those of Theorem 3.1 also hold for the VC-PM problem on graphs of bounded
degree and on everywhere sparse graphs.

Theorem 3.2 For any constant ε > 0, there is a constant B such that unless unlikely consequences
occur in complexity theory, there is no polynomial time approximation algorithm with ratio 13/12−ε
for the VC-PM problem on graphs of degree bounded by B nor on everywhere B-sparse graphs.

Proof. By Clementi and Trevisan [4], for any ε > 0, there is a constant Bε such that unless P =
NP, there is no polynomial time approximation algorithm with ratio 7/6−ε for the Vertex-Cover
problem on graphs of degree bounded by Bε, and that unless NP = co-RP, there is no polynomial
time approximation algorithm with ratio 7/6 − ε for the Vertex-Cover problem on everywhere
Bε-sparse graphs.
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The proof now goes in exactly the same logic as that for Theorem 3.1 except that instead of
introducing a single new clique Q of size s, here we introduce s/Bε cliques of size Bε. It is easy to
see that if the original graph is of degree bounded by Bε (resp. everywhere Bε-sparse), then the
new graph G+ is of degree bounded by Bε+1 (resp. everywhere (Bε+1)-sparse). The analysis for
the approximation ratio goes through with straightforward modifications.

4 Vertex Cover and VC-PM

In this section, we study the relation between approximating the VC-PM problem and approxi-
mating the Vertex Cover problem on general graphs. We show that in order to overcome the
bound 2 approximability barrier of the Vertex Cover problem for general graphs, it suffices to
overcome this barrier for the VC-PM problem.

Theorem 4.1 If the VC-PM problem has a polynomial time approximation ratio r ≤ 2, then the
Vertex Cover problem on general graphs has a polynomial time approximation ratio (r + 2)/2.

Proof. Suppose that there is a polynomial time approximation algorithm Apm of approximation
ratio r for the VC-PM problem.

Given a graph G = (V,E), where |V | = n, according to the NT-Theorem, we can assume
Opt(G) ≥ n/2. Pick any maximal matching M in G. Let VM be the set of vertices that are
endpoints of the edges in M , and let I = V − VM . Since M is a maximal matching, I is an
independent set and VM is a vertex cover for G. Moreover, it is also easy to see that if CM is a
vertex cover for the graph G(VM ), then CM ∪ I is a vertex cover for the graph G.

Let c = (2 − r)/4. Consider the following algorithm: if |I| ≥ cn, then return VM , while if
|I| < cn then call the algorithm Apm on the graph with perfect matching G(VM ) to get a vertex
cover CM for the graph G(VM ) and return CM ∪ I.

This algorithm obviously constructs a vertex cover C for the graph G. In case |I| ≥ cn, we have

|C|
Opt(G)

=
|VM |

Opt(G)
=

n− |I|
Opt(G)

≤ n− cn

n/2
= 2− 2c = r + 2

2
.

On the other hand in case |I| < cn, since Opt(G(VM )) ≤ Opt(G), we have

|C|
Opt(G)

=
|CM |+ |I|
Opt(G)

≤ |CM |
Opt(G(VM ))

+
|I|

Opt(G)
≤ r +

cn

n/2
= r + 2c =

r + 2

2
.

This completes the proof.

In particular, if theVC-PM problem has a polynomial time approximation ratio r < 2 for a con-
stant r, then the Vertex Cover problem on general graphs has a polynomial time approximation
ratio (r + 2)/2 < 2.

In the following, we present a better approximation algorithm for the Vertex Cover problem
via approximating the VC-PM problem, which will also be used when we consider approximating
the Vertex Cover problem on everywhere sparse graphs.

Let M be a maximum matching in a graph G. For each matched vertex u in M , we will denote
by u′ the partner of u in M (i.e., [u, u′] ∈ M). Note that the set IM of the unmatched vertices is
an independent set in G.

Definition Let M be a maximum matching in a triangle-free graph G, and let IM be as above.
Define the following sets.
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Figure 1: Illustration of the sets I ′M , I
′′
M , Γ(I

′
M ), Γ

′(I ′M ), N(I
′′
M ), and N

′(I ′′M )

• I ′M is the subset of unmatched vertices w in IM such that there are two edges [u, u′] and [v, v′]
in M and (w, u, u′, v′, v, w) is a 5-cycle.

• I ′′M = IM − I ′M .

• Γ(I ′M ) is the set of matched vertices u such that a vertex w in I ′M and two edges [u, u′] and
[v, v′] in M make a 5-cycle (w, u, u′, v′, v, w).

• N(I ′′M ) is the set of matched vertices u such that [z, u] is an edge in G for some z ∈ I ′′M .

• Γ′(I ′M ) = {u′ | [u, u′] ∈M and u ∈ Γ(I ′M )}.

• N ′(I ′′M ) = {u′ | [u, u′] ∈M and u ∈ N(I ′′M )}.

See Figure 1 for illustration, where thicker lines are edges in the matching M .

We first list a number of properties for these sets. Note that since the matchingM is maximum,
there is no augmenting path in the graph G with respect to M .

Fact 1. The six sets I ′M , I
′′
M , Γ(I

′
M ), Γ

′(I ′M ), N(I
′′
M ), and N

′(I ′′M ) are mutually disjoint.
By the definitions, each of the sets I ′M , I

′′
M is mutually disjoint with all the other five sets. For

a vertex u in Γ(I ′M ) with a 5-cycle (w, u, u
′, v′, v, w), where w ∈ I ′M , we show that vertex u cannot

be in any other set: (1) u ∈ N(I ′′M ) would imply an augmenting path (w, v, v
′, u′, u, z), for some

z ∈ I ′′M ; (2) u ∈ N ′(I ′′M ) implies that u
′ ∈ N(I ′′M ) and (w, u, u

′, z) would be an augmenting path,
for some z ∈ I ′′M ; and (3) u ∈ Γ′(I ′M ) implies u′ ∈ Γ(I ′M ) so (w, u, u′, w′) would be an augmenting
path, for some w′ ∈ I ′M (note that w′ 6= w since the graph G is triangle-free). Summarizing all
these, we conclude that the set Γ(I ′M ) is disjoint with all the other five sets. Similarly, we can show
that each of the sets Γ′(I ′M ), N(I

′′
M ), and N

′(I ′′M ) is disjoint with all the other five sets.
Fact 2. Let w1 ∈ I ′M with a 5-cycle C1 = (w1, u1, u

′
1, v

′
1, v1, w1) and w2 ∈ I ′M with a 5-cycle

C2 = (w2, u2, u
′
2, v

′
2, v2, w2). If w1 6= w2 then the 5-cycles C1 and C2 are disjoint.

This is true because, for example, if u1 = u2, then there would be an augmenting path
(w1, u1, u

′
1, v

′
2, v2, w2).

Fact 3. 2|I ′M | ≤ |Γ(I ′M )| = |Γ′(I ′M )|, and |N(I ′′M )| = |N ′(I ′′M )|.
The equalities |Γ(I ′M )| = |Γ′(I ′M )| and |N(I ′′M )| = |N ′(I ′′M )| follow from the definitions and the

disjointness of the sets, and 2|I ′M | ≤ |Γ(I ′M )| follows from Fact 2.
Fact 4. The sets I ′′M , Γ(I

′
M ), and N

′(I ′′M ) are all independent sets in G.
The set I ′′M is an independent set since I ′′M is a subset of the independent set IM . Let

u1 ∈ Γ(I ′M ) with a 5-cycles C1 = (w1, u1, u
′
1, v

′
1, v1, w1) and let u2 ∈ Γ(I ′M ) with a 5-cycle

C2 = (w2, u2, u
′
2, v

′
2, v2, w2), where w1, w2 ∈ I ′M . If [u1, u2] is an edge, then w1 6= w2 since the

graph G is triangle-free. By Fact 2, the two cycles C1 and C2 are disjoint. Thus, there would
be an augmenting path (w1, v1, v

′
1, u

′
1, u1, u2, u

′
2, v

′
2, v2, w2). This contradiction shows that the set
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Algorithm. VC-Apx.

Input: a triangle-free graph G = (V, E) with |V | = n and Opt(G) ≥ n/2.

Output: a vertex cover for the graph G.

1. construct a maximum matching M in G, let VM be the set of matched vertices;

2. construct the sets I ′M , I ′′M , Γ(I ′M ), Γ′(I ′M ), N(I ′′M ), and N ′(I ′′M ) given in the Definition;

3. c = (2− r)/3 + |I ′M |/n;

4. if |I ′M |+ |I
′′
M |+ |N

′(I ′′M )|+ |Γ(I ′M )| ≥ cn

then return C1 = V − (I ′′M ∪N ′(I ′′M ) ∪ Γ(I ′M ))

else let S be the set of minimum cardinality among I ′′M and N(I ′′M );

apply the algorithm Apm to G(VM ) and let C be the vertex cover returned by Apm;

return C2 = C ∪ S ∪ I ′M .

Figure 2: The algorithm VC-Apx

Γ(I ′M ) must be an independent set. Finally, let u
′
1, u

′
2 ∈ N ′(I ′′M ), and [u

′
1, u

′
2] is an edge in G,

then (z1, u1, u
′
1, u

′
2, u2, z2), where z1, z2 ∈ I ′′M , would be an augmenting path (note z1 6= z2 since

otherwise z1 = z2 would be a vertex in I
′
M ). Thus, the set N

′(I ′′M ) must be an independent set.
Fact 5. The set I ′′M ∪N ′(I ′′M ) ∪ Γ(I ′M ) is an independent set in G.
By Fact 4, it suffices to prove that there is no edge between the sets I ′′M , N

′(I ′′M ), and Γ(I
′
M ).

Let z be a vertex in I ′′M , u be a vertex in Γ(I
′
M ) with a 5-cycle (w, u, u

′, v′, v, w), where w ∈ I ′M , and
x′ be a vertex in N ′(I ′′M ) such that [x, x

′] ∈M and [x, y] is an edge where y ∈ I ′′M . The edge [u, x
′]

would imply an augmenting path (y, x, x′, u, u′, v′, v, w). The edge [z, u] implies u ∈ N(I ′′M ) and
the edge [z, x′] implies x′ ∈ N(I ′′M ), both contradicting the disjointness of the sets Γ(I

′
M ), N(I

′′
M )

and N ′(I ′′M ) proved in Fact 1.

Theorem 4.2 If the VC-PM problem has a polynomial time approximation algorithm of ratio r,
then the Vertex Cover problem on general graphs has a polynomial time approximation algorithm
of ratio max{1.5, (2r + 2)/3}.

Proof. Let Apm be an approximation algorithm of ratio r for the VC-PM problem.
We first assume that the input graph G of n vertices is triangle-free and satisfies Opt(G) ≥ n/2.

Consider the algorithm VC-Apx given in Figure 2.
We analyze the approximation ratio for the algorithm VC-Apx.
If |I ′M | + |I ′′M | + |N ′(I ′′M )| + |Γ(I ′M )| ≥ cn, then the set C1 = V − (I ′′M ∪ N ′(I ′′M ) ∪ Γ(I ′M ))

is returned. By Fact 5, the set I ′′M ∪ N ′(I ′′M ) ∪ Γ(I ′M ) is an independent set in G so the set
C1 is a vertex cover for G. Moreover, from |I ′M | + |I ′′M | + |N ′(I ′′M )| + |Γ(I ′M )| ≥ cn, we have
|I ′′M |+ |N ′(I ′′M )|+ |Γ(I ′M )| ≥ cn−|I ′M |, hence |C1| ≤ n− (cn−|I ′M |). Since Opt(G) ≥ n/2, we have:

|C1|
Opt(G)

≤ n− (cn− |I ′M |)
n/2

= 2− 2c+ 2|I
′
M |
n

=
2r + 2

3
.

Consider now the case |I ′M | + |I ′′M | + |N ′(I ′′M )| + |Γ(I ′M )| < cn. Since by the definitions the
vertices in I ′′M are only adjacent to vertices in the set N(I ′′M ), the set S, which is either I

′′
M or

N(I ′′M ), will cover all the edges incident on vertices in I
′′
M . Since C is a vertex cover for the induced

subgraph G(VM ), the set C2 = C ∪ S ∪ I ′M is a vertex cover for the original graph G. Now

|I ′M |+ |I ′′M |+ |N ′(I ′′M )|+ |Γ(I ′M )| ≥ 3|I ′M |+ |I ′′M |+ |N(I ′′M )|
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≥ 3|I ′M |+ 2min{|I ′′M |, |N(I ′′M )|} = 3|I ′M |+ 2|S|.

The first inequality has used the relations |Γ(I ′M )| ≥ 2|I ′M | and |N ′(I ′′M )| = |N(I ′′M )| in Fact 3.
Thus, 3|I ′M |+ 2|S| < cn and |S| < (cn− 3|I ′M |)/2. This gives

|C2| = |C ∪ S ∪ I ′M | ≤ |C|+ |S|+ |I ′M | ≤ |C|+
cn− 3|I ′M |

2
+ |I ′M | = |C|+

cn− |I ′M |
2

.

By our assumption, |C|/Opt(G(VM )) ≤ r. We also have Opt(G) ≥ Opt(G(VM )) and Opt(G) ≥ n/2.
We finally derive the ratio

|C2|
Opt(G)

≤ |C|
Opt(G)

+
cn− |I ′M |
2Opt(G)

≤ |C|
Opt(G(VM ))

+
cn− |I ′M |

n
≤ r + c− |I

′
M |
n

=
2r + 2

3
.

This proves that the algorithm VC-Apx on a triangle-free graph G with Opt(G) ≥ n/2 returns
a vertex cover C for G satisfying |C|/Opt(G) ≤ (2r + 2)/3.

Now we consider a general graph G′ = (V ′, E′). We first remove all disjoint triangles from
the graph G′ (in an arbitrary order). Let the resulting graph be G and let V∆ be the set of
vertices of the removed triangles. Then, G is the triangle-free subgraph induced by the vertex
set V = V ′ − V∆. Now apply the NT-Theorem to the graph G and let I0, C0, and V0 be the
three vertex sets given in the NT-Theorem. Then the induced subgraph G(V0) is triangle-free and
satisfies Opt(G(V0)) ≥ |V0|/2. Thus, we can apply the algorithm VC-Apx to the graph G(V0). Let
C be the vertex cover returned by the algorithm VC-Apx on the graph G(V0). By the discussion
above, we have |C|/Opt(V0) ≤ (2r+ 2)/3. According to the NT-Theorem, C1 = C ∪C0 is a vertex
cover for the graph G satisfying |C1|/Opt(G) ≤ (2r + 2)/3.

Obviously, C2 = C1∪V∆ is a vertex cover of the original graph G′. According to the Local-Ratio
Theorem by Bar-Yehuda and Even [1], we have

|C2|
Opt(G′)

≤ max
{ |V∆|
Opt(G(V∆))

,
|C1|

Opt(G)

}

≤ max
{ |V∆|
Opt(G(V∆))

,
2r + 2

3

}

.

The theorem follows from |V∆|/Opt(G(V∆)) ≤ 1.5, because every vertex cover of G(V∆) contains
at least two vertices from each triangle in G(V∆).

We remark that it is possible to extend the method of Theorem 4.2 to first consider graphs
that have neither triangles nor 5-cycles. However, when we work on general graphs, we need to
apply the Local-Ratio Theorem of Bar-Yehuda and Even to eliminate all 5-cycles. This makes the
resulting algorithm have approximation ratio at least 5/3 > 1.66.

5 On approximating VC-PM

In this section, we study approximation algorithms for the VC-PM problem.
Recall that an instance of the Max-2Sat problem is a set F of clauses in which each clause is

a disjunction of at most two literals, and we are looking for an assignment σ to the variables in F
that satisfies the largest number of clauses in F . For an assignment σ to F , we denote by |σ| the
number of clauses satisfied by σ. Let Opt(F ) be the largest |σ| among all assignments σ to F .
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Theorem 5.1 If the Max-2Sat problem has a polynomial time approximation algorithm of ratio
r, then the VC-PM problem has a polynomial time approximation algorithm of ratio 1+(r−1)(2m+
n)/(rn) (n and m are the number of vertices and the number of edges in the graph, respectively).

Proof. Let G = (V,E) be an instance of the VC-PM problem, where G has n vertices and m
edges, and let M be a maximum matching in G. Define an instance FG of the Max-2Sat problem
as follows:

FG =
⋃

[u,v]∈M

{(xu ∨ xv), (x̄u ∨ x̄v)} ∪
⋃

[u,v]∈E−M

{(xu ∨ xv)}.

The set FG consists of m+ n/2 clauses on the Boolean variable set XG = {xu | u ∈ V }.
Suppose that C is a minimum vertex cover for the graph G. Since C contains at least one

endpoint of each edge in the matching M , the edges in M can be classified into two sets M1 and
M2 such that each edge inM1 has exactly one endpoint in C and each edge inM2 has both endpoints
in C. Thus, |C| = |M1| + 2|M2|. Define an assignment σC for FG such that σC(xu) = true if
and only if u ∈ C. Then σC satisfies all m clauses of the form (xu ∨ xv) in FG. For each edge
[u, v] in M1, σC satisfies both corresponding clauses (xu ∨ xv) and (x̄u ∨ x̄v), while for each edge
[u, v] in M2, σC satisfies exactly one of the corresponding clauses (xu ∨ xv) and (x̄u ∨ x̄v) (i.e., the
clause (xu ∨ xv)). In conclusion, there are exactly |M2| clauses in FG that are not satisfied by the
assignment σC . Since the clause set FG totally contains m + n/2 clauses, the number of clauses
satisfied by the assignment σC is (note that n/2 = |M | = |M1|+ |M2|)

m+ n/2− |M2| = m+ n− (n/2 + |M2|) = m+ n− (|M1|+ 2|M2|)
= m+ n− |C| = m+ n−Opt(G).

Thus, there is an assignment that satisfies m + n − Opt(G) clauses in FG, and Opt(FG) ≥
m+ n−Opt(G).

Now let σ be an assignment to the clause set FG. We first modify the assignment σ as follows.
If we have both σ(xu) = false and σ(xv) = false for an edge [u, v] ∈ E, then we modify σ by
setting σ(xu) = true, where u is arbitrarily picked from the two endpoints of the edge [u, v]. We
claim that this change does not decrease the value |σ|. In fact, there is only one clause (x̄u∨ x̄w) in
FG that contains the literal x̄u, where [u,w] is an edge in the matching M . Therefore, converting
from σ(xu) = false to σ(xu) = true can make at most one satisfied clause become unsatisfied.
On the other hand, the unsatisfied clause (xu ∨ xv) becomes satisfied after this change. Therefore,
the value |σ| is not decreased.

Let σ′ be the resulting assignment, then |σ′| ≥ |σ|, and for each edge [u, v] ∈ E, σ′ assigns
at least one of the variables xu and xv the value true. Now we let Cσ be a set of vertices in
G as follows: a vertex u is in Cσ if and only if σ

′(xu) = true. Since for each edge [u, v] ∈ E,
we have either σ′(xu) = true or σ

′(xv) = true (or both), the set Cσ is a vertex cover for the
graph G. By the construction of the assignment σ′, the m clauses of the form (xu ∨ xv) in FG
are all satisfied by σ′. Therefore, exactly |σ′| −m clauses of the form (x̄u ∨ x̄v) in FG are satisfied
by σ′. Since these |σ′| −m clauses correspond to |σ′| −m disjoint edges in the matching M , we
conclude that the assignment σ′ has assigned exactly |σ′| −m Boolean variables in XG the value
false. Thus, exactly |σ′| −m vertices in G are not in Cσ and the vertex cover Cσ contains exactly
n− (|σ′| −m) = m+ n− |σ′| ≤ m+ n− |σ| vertices. It follows that Opt(G) ≤ m+ n− |σ|, which
gives |σ| ≤ m+n−Opt(G). Since σ was arbitrarily chosen, this shows that an optimal assignment
satisfies at most m+ n−Opt(G) clauses in FG, and Opt(FG) ≤ m+ n−Opt(G).

We conclude from the above discussion that Opt(FG) = m+ n−Opt(G).
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The above construction suggests a polynomial time approximation algorithm for the VC-PM
problem via a polynomial time approximation algorithm for the Max-2Sat problem, as follows.
Given an instance G of VC-PM, we first construct a perfect matching M in G and define FG as
above. We then use the polynomial time approximation algorithm for Max-2Sat to construct a
truth assignment σ to FG, and we return the vertex cover Cσ of G as defined above. Clearly, this
is a polynomial time approximation algorithm for VC-PM.

If the approximation algorithm for Max-2Sat has ratio r, then we have Opt(FG)/|σ| ≤ r.
According to the above discussion, the vertex cover Cσ contains at most m + n − |σ| ≤ m + n −
Opt(FG)/r vertices in the graph G. Noting that Opt(FG) ≤ m+ n/2 we have:

|Cσ|
Opt(G)

≤ m+ n−Opt(FG)/r

m+ n−Opt(FG)
=

r(m+ n)−Opt(FG)

r(m+ n−Opt(FG))

= 1 +
(r − 1)Opt(FG)

r(m+ n−Opt(FG))
≤ 1 + (r − 1)(m+ n/2)

r(m+ n− (m+ n/2))

= 1 +
(r − 1)(2m+ n)

rn
.

This shows that the polynomial time approximation algorithm for VC-PM has ratio 1 + (r −
1)(2m+ n)/(rn), and proves the theorem.

Based on the currently best approximation algorithm for theMax-2Sat problem, Theorem 5.1
describes an approximation algorithm for the VC-PM problem.

Corollary 5.2 There is a polynomial time approximation algorithm VCPM-Apx of ratio 1 +
0.069(2m+ n)/n for the VC-PM problem on graphs of n vertices and m edges.

Proof. The polynomial time approximation algorithm VCPM-Apx for the VC-PM problem
is obtained from the polynomial time approximation algorithm of ratio 1.074 for the Max-2Sat
problem developed by Feige and Goemans [6], and the reduction described in Theorem 5.1.

Corollary 5.2 gives the best approximation algorithm for the VC-PM problem on sparse graphs.
Based on a greedy strategy, Halldórsson and Radhakrishnan [8] proposed an approximation algo-
rithm of ratio (2d̄+ 3)/5 for the Independent Set problem on graphs of average degree d̄. This
result, plus the assumption that a minimum vertex cover for the graph G contains at least half of
the vertices in G, gives us a polynomial time approximation algorithm of ratio (4d̄+1)/(2d̄+3) for
the Vertex Cover problem on graphs of average degree d̄. This is also currently the best result
for the VC-PM problem on graphs of average degree d̄.

According to Corollary 5.2, our algorithm VCPM-Apx improves the above approximation
ratio by Halldórsson and Radhakrishnan on the VC-PM problem when the average degree d̄ is not
larger than 10. The approximation ratios of our algorithm and Halldórsson and Radhakrishnan’s
are compared in the table in Figure 3.

Strictly speaking, neither of Halldórsson and Radhakrishnan’s algorithm and the algorithm
VCPM-Apx is applicable directly to general graphs of average degree d̄. Halldórsson and Rad-
hakrishnan’s algorithm requires that the minimum vertex cover of the input graph contain at least
half of the vertices in the graph, while our algorithm requires that the input graph have a per-
fect matching. Note that the condition in Halldórsson and Radhakrishnan’s algorithm, namely
that the minimum vertex cover should contain at least half of the vertices in the input graph, can
be obtained by first applying the NT-Theorem to the input graph. Unfortunately, applying the
NT-Theorem does not preserve the average degree of a graph.

10



Avg-degree 2 3 4 5 6 7 8 9 10

VCPM-Apx 1.207 1.276 1.345 1.414 1.483 1.552 1.621 1.690 1.759

H&R [8] 1.286 1.444 1.545 1.615 1.666 1.706 1.737 1.762 1.783

Figure 3: The approximation ratios of VCPM-Apx and the algorithm in [8]

A graph class for which both Halldórsson and Radhakrishnan’s algorithm and the algorithms we
developed in this paper are applicable, is the class of everywhere sparse graphs. Note that a graph
of degree bounded by d is an everywhere (d/2)-sparse graph, and an everywhere k-sparse graph
has average degree bounded by 2k. According to Clementi and Trevisan [4], unless NP = co-RP,
for each fixed ε > 0, there is a constant k such that there is no polynomial time approximation
algorithm of ratio 7/6− ε for the Vertex Cover problem on everywhere k-sparse graphs.

Theorem 5.3 Halldórsson and Radhakrishnan’s algorithm has approximation ratio (8k+1)/(4k+
3) for the Vertex Cover problem on everywhere k-sparse graphs.

Proof. Given an everywhere k-sparse graph G, we first apply the NT-theorem to G to obtain
the sets C0, I0, and V0. Now the induced subgraph G(V0) is still everywhere k-sparse and satisfies
Opt(G(V0)) ≥ |V0|/2. Thus, Halldórsson and Radhakrishnan’s algorithm can be directly applied
to the graph G(V0) to get a vertex cover C1 for G(V0). Since an everywhere k-sparse graph has
average degree d̄ bounded by 2k, we have

|C1|
Opt(G(V0))

≤ 4d̄+ 1

2d̄+ 3
≤ 8k + 1

4k + 3
.

Now the theorem follows from the NT-Theorem.

Combining the algorithms VC-Apx and VCPM-Apx developed in the current paper, we have
the following theorem.

Theorem 5.4 There is a polynomial time approximation algorithm whose ratio is bounded by
max{1.5, 0.092k + 1.379} for the Vertex Cover problem on everywhere k-sparse graphs.

Proof. The NT-Theorem preserves everywhere k-sparseness, and thus we can assume that the
input graph G of n vertices and m edges, which is everywhere k-sparse, satisfies Opt(G) ≥ n/2.

Let M be a maximum matching in G, and let VM be the set of matched vertices. Let nM
and mM be the number of vertices and number of edges in the graph G(VM ), respectively. The
subgraph G(VM ) is still everywhere k-sparse, andmM ≤ knM . Since the graph G(VM ) has a perfect
matching, we can use the algorithm VCPM-Apx in Corollary 5.2 to construct a vertex cover for
G(VM ). According to Corollary 5.2, the ratio r of VCPM-Apx satisfies:

r ≤ 1 + 0.069(2mM + nM )

nM
≤ 1.069 + 0.138k.

Now the theorem follows directly from Theorem 4.2.

For certain values of k, the approximation ratio in Theorem 5.4 is better than the one in
Theorem 5.3 derived from Halldórsson and Radhakrishnan’s algorithm [8]. For example, for k = 2.5,
3, and 3.5, Theorem 5.3 gives ratios 1.615, 1.667, and 1.705, respectively, while Theorem 5.4 gives
ratios 1.609, 1.655, and 1.701, respectively.

11



References

[1] R. Bar-Yehuda and S. Even, A local-ratio theorem for approximating the weighted vertex
cover problem, Annals of Discrete Mathematics 25, (1985), pp. 27-46.

[2] P. Berman and T. Fujito, On approximation properties of the independent set problem
for low degree graphs, Theory Comput. Systems 32, (1999), pp. 115-132.
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