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Extensive experiments and experience have shown that the well-known hypercube networks
are highly fault tolerant. What is frustrating is that it seems very difficult to properly
formulate and formally prove this important fact, despite extensive research efforts in
the past two decades. Most proposed fault tolerance models for hypercube networks are
only able to characterize very rare extreme situations thus significantly underestimating
the fault tolerance power of hypercube networks, while for more realistic fault tolerance
models, the analysis becomes much more complicated. In this paper, we develop new
techniques that enable us to analyze a more realistic fault tolerance model and derive
lower bounds for the probability of hypercube network fault tolerance in terms of node
failure probability. Our results are both theoretically significant and practically important.
From the theoretical point of view, our method offers very general and powerful techniques
for formally proving lower bounds on the probability of network connectivity, while from
the practical point of view, our results provide formally proven and precisely given upper
bounds on node failure probabilities for manufacturers to achieve a desired probability
for network connectivity. Our techniques are also useful and powerful for analysis of
the performance of routing algorithms, and applicable to the study of other hierarchical
network structures and to other network communication problems.

Keywords: parallel processing, interconnection network, hypercube, routing algorithm,
fault tolerance.
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1. Introduction

With the continuous increase in network size, dealing with large size networks with

faults has become unavoidable [23, 24]. In particular, the problem of keeping all non-

faulty nodes in a network connected and developing efficient and reliable routing

algorithms in a network with faults has been extensively studied in the last two

decades (e.g. [17, 21, 25]).

The current paper will focus on the study of fault tolerance of the well-known

hypercube networks. Hypercube networks are among the earliest proposed network

models and still remain as one of the most important and attractive ones. In par-

ticular, the high symmetry, the strong hierarchical structure, and the maximal fault

tolerance are among the most attractive properties of hypercube networks [2, 18].

A number of research and commercial large-scale parallel machines have been built

based on the hypercube network topology [14, 22, 28, 29, 31]. Very recently, re-

search has also shown that fault tolerant hypercube networks of large size (e.g., over

many thousand nodes) can be used as an effective control topology in supporting

large-scale multicast applications in the Internet [19, 20].

Extensive experiments and experience have shown that hypercube networks can

tolerate a large number of faulty nodes while still remain functioning. What is

frustrating is that it seems very difficult to properly formulate and formally prove

this important fact, despite extensive research efforts in the past two decades (see

[9, 15] for comprehensive surveys). It is easy to see that n faulty nodes can disconnect

the n-dimensional hypercube network Hn — when all n neighbors of a non-faulty

node become faulty. Thus, the network Hn can tolerate no more than n− 1 faulty

nodes in this case. However, this is the only way that n faulty nodes disconnect Hn

[18, 27] and in practice the situation is very unlikely. Moreover, the ratio (n−1)/2n

of faulty nodes over the total nodes in Hn is impractically too small, which requires,

for example for n = 20, the average failure probability of each individual node to

be not larger than 0.002%. Much effort has been devoted attempting to introduce

more realistic definitions to measure hypercube networks’ ability of tolerating faults.

Concepts such as forbidden set [7, 16, 17] and cluster fault tolerance model [10, 11]

have been proposed. The concept of forbidden sets suggests to prohibit certain

”very unlikely” failure patterns. A special model for forbidden sets, the k-safeness

of networks, insists that each non-faulty node has at least k non-faulty neighbors

[7, 12, 17, 32]. However, routing algorithms on the model of k-safe networks seem to

become more complicated, and efficient routing algorithms have only been developed

for 1-safe and 2-safe hypercube networks [7, 12, 32]. Since in the worst case a k-safe

hypercube network Hn can tolerate no more than 2
k(n−k)−1 faulty nodes [17, 35],

this line of research still assumes a bound O(n) on the number of faulty nodes in

Hn.

An alternative approach, which seems to more reasonably characterize “normal”

failure situations and avoid being trapped by the unlikely rare situations, is to

study the probability of connectivity of a network under an assumed probabilistic
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distribution of individual node failures. Najjar and Gaudiot [21] have studied this

model using the following approach. Let Q be an N node network in which all

nodes have degree n. An h-cluster in Q is a connected subgraph of h nodes in Q.

We say that a disconnection is caused by an h-cluster C if all nodes in C are non-

faulty but all nodes adjacent to C are faulty. Najjar and Gaudiot [21] conjectured

that the probability of network disconnection caused by 1-clusters should be much

larger than that caused by other situations. Based on this conjecture, they studied

the probability of disconnection caused by 1-clusters and used it to approximate

the probability of real network disconnection. They also verified their conjecture

based on a variety of assumptions, including that the number of possible h-clusters

in Q must be bounded by O(N) and that the number of nodes adjacent to an h-

cluster must be bounded by O(n). Obviously, hypercube networks (and actually

most hierarchical networks) do not satisfy these assumptions: an n-dimensional

hypercube Hn has N = 2n nodes and each node in Hn has degree n, while the

number of edges in Hn, each of which makes a 2-cluster, is nN/2 (thus not O(N)),

and the number of nodes in Hn adjacent to a k-dimensional subcube, which makes

a 2k-cluster, is 2k(n− k) (thus can be much larger than O(n)).

Therefore, the conjecture given in [21] was not firmly verified and formally proved

for hypercube networks, and an approximation of the probability of connectivity de-

rived from this conjecture for hypercube networks will not be convincing. On the

other hand, a precise calculation or a good approximation of the connectivity prob-

ability for hypercube networks seems to be very difficult. The hypercube networks

may have a very large variety of different kinds of connected subgraphs of vari-

ant structures. A good approximation of the probability would require an effective

characterization of these subgraphs, while it is known that even identifying a single

connected subgraph of a hypercube network is already NP-hard [34]. The fact that

no further improvements have been made over the results in [21] in the last decade

also illustrates the difficulty of this approach.

The main contribution of the current paper is the development of systematic

and powerful techniques for formal analysis of the above probabilistic fault toler-

ance model, which enables us to develop effective lower bounds for connectivity

probability for hypercube networks. Our techniques make use of the concept of “lo-

cal subcube connectivity” introduced in [3]. The study of local subcube connectivity

shows a very nice and important property for the hypercube networks: a properly

defined local connectivity of small subcubes implies the global connectivity of the

entire network. Since small subcubes have much smaller size, a probabilistic analysis

on the local subcube connectivity becomes possible and feasible. From the proba-

bility derived for the local subcube connectivity, we then are able to obtain effective

lower bounds on the probability for the global connectivity for the entire hypercube

network. Our results are both theoretically significant and practically important.

From the theoretical point of view, our method offers very general and powerful

techniques for formally proving lower bounds on the probability for network con-
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nectivity, while from the practical point of view, our results provide formally proven

and precisely given upper bounds on node failure probability for manufacturers to

achieve a desired probability for the entire network connectivity. For example, our

techniques give formal proofs that as long as the individual node failure probability is

not larger than 10%, an nCUBE machine of 1024 nodes [22] remains connected with

probability at least 99%, while when individual node failure probability is bounded

by 1.7%, a Thinking Machines’ CM-2 computer of 65, 536 nodes [31] remains con-

nected with probability larger than 99.99%. To our knowledge, these are the first

group of precisely stated and formally proven conclusions that show the high fault

tolerance of hypercube networks, although they had been previously “observed” by

extensive practical experience and experiments.

To further illustrate the power of our techniques, we study the success probability

of a simple routing algorithm on hypercube networks, which is a slight modification

of the simplest greedy ”dimension-order” routing algorithm [9]. This very simple

routing algorithm is deterministic and local-information-based, running in optimal

time, and constructing a routing path of length bounded by a small constant plus

twice of the optimal length. Compared to most routing algorithms proposed in

the extensive research in the literature (e.g., [1, 4, 8, 10, 11, 12, 13, 26, 30, 33], see

[6, 9, 15, 18] and their bibliographies for further references), this algorithm is simpler

and weaker. However, our new techniques enable us to formally prove that even with

such a simple routing algorithm, and with a very large fraction of faulty nodes, the

hypercube networks can still route successfully with a very high probability.

Finally, we point out that our techniques can be extended to other node fail-

ure probabilities, to other hierarchical network structures, and to other network

applications.

2. The probability of hypercube connectivity

The n-dimensional hypercube Hn (or shortly the n-cube) consists of 2n nodes, each

is labeled by a distinguished binary string of length n. Two nodes in Hn are adjacent

if the binary labels of them differ by exactly one bit. Each binary string b1b2 · · · bn−k

of length n − k corresponds to a k-dimensional subcube Hk in Hn (or shortly a k-

subcube) of 2k nodes whose labels are of the form b1b2 · · · bn−kxn−k+1 · · ·xn, where

each xj is either 0 or 1. The subcube Hk will also be written as Hk = b1b2 · · · bn−k∗∗.

It is easy to see that each k-subcube of Hn is isomorphic to the k-cube. Note that

there are other subgraphs of Hn that are isomorphic to the k-cube. However, in this

paper, we only consider “basic” k-subcubes of the form b1b2 · · · bn−k ∗ ∗.

The concept of local k-subcube connectivity of a hypercube network has been pro-

posed in [3]. We first give a quick review on the related definitions and results.

Definition 1 ([3]) The n-cube Hn is locally k-subcube connected if in every k-

subcube Hk of Hn, less than half of the nodes in Hk are faulty and the non-faulty

nodes of Hk make a connected graph.
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In particular, a k-subcube Hk of the n-cube is k-subcube connected if less than

half of the nodes in Hk are faulty, and the non-faulty nodes in Hk make a connected

graph.

We point out that the conditions of the local k-subcube connectivity of the n-

cube Hn can be detected and maintained in a distributed manner based on localized

management: for each k-subcube Hk in Hn, we can set up a managing program,

executed on a processor in Hk, which manages and reports the status of the k-

subcube Hk.

Theorem 1 ([3]) The non-faulty nodes in a locally k-subcube connected n-cube

make a connected graph for all k ≤ n.

Theorem 1 shows a very nice property for the hypercube networks: local con-

nectivity in a hypercube network implies global connectivity of the network. Based

on this observation, we are able to derive lower bounds on the probability that an

n-cube remains connected when it contains faulty nodes, as follows.

Throughout this paper, we assume that in the n-cube Hn, the node failures are

independent, and every node has the same failure probability p. For a given event E,

we denote by Prob[E] the probability of the event E. We first derive lower bounds,

in terms of p and the size 2n of the n-cube, on the probability that the n-cube Hn

is locally k-subcube connected.

Let Hk be a fixed k-subcube of the n-cube Hn. We define the following event:

Event NL(Hk)

The k-subcube Hk is not locally k-subcube connected.

We have the following lemma which gives the probability of Event NL(Hk).

Lemma 1 Prob[NL(Hk)] = pkUk(p), where

Uk(p) =
2k−1

−1
∑

i=k

Bk,ip
i−k(1− p)2

k
−i +

2k
∑

j=2k−1

(

2k

j

)

pj−k(1− p)2
k
−j

and Bk,i, k ≤ i ≤ 2k−1 − 1, is the number of ways to remove i nodes from the

k-subcube Hk so that the remaining nodes in Hk do not make a connected graph.

Proof. Suppose Hk is not locally k-subcube connected, then one of the following

situations must hold: (1) the number i of faulty nodes in Hk is less than 2
k−1

and the i faulty nodes disconnect the k-subcube Hk; or (2) the number j of faulty

nodes in Hk is larger than or equal to 2
k−1. Note that since the k-subcube Hk is

k-connected [18], when the number i of faulty nodes is less than k, the remaining

non-faulty nodes must make a connected graph. Therefore, the probability of the

event NL(Hk) is equal to

2k−1
−1

∑

i=k

Bk,ip
i(1− p)2

k
−i +

2k
∑

j=2k−1

(

2k

j

)

pj(1− p)2
k
−j
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where Bk,i, k ≤ i ≤ 2k−1 − 1, is the number of ways to remove i nodes from the

k-subcube Hk so that the remaining nodes in Hk do not make a connected graph.

The lemma follows after a simple rearrangement of the formula.

Lemma 1 implies the following important theorem immediately.

Theorem 2 Suppose that each node in the n-cube Hn has a uniform and inde-

pendent failure probability p and that k ≤ n. Then the probability that the non-faulty

nodes in Hn remain connected is at least 1− 2n−kpkUk(p), where Uk(p) is the poly-

nomial of p given in Lemma 1.

Proof. Let Hk be any k-subcube of the n-cube Hn. By Lemma 1, the probability

that the k-subcube Hk is not locally k-subcube connected is equal to pkUk(p). Thus,

the probability that the k-subcube Hk is locally k-subcube connected is equal to

1−pkUk(p). In consequence, the probability that the n-cube Hn is locally k-subcube

connected, i.e., the probability that all 2n−k k-subcubes in Hn are locally k-subcube

connected, is equal to

(1− pkUk(p))
2n−k

which is at least as large as 1− 2n−kpkUk(p).

Now the theorem follows since by Theorem 1, the local k-subcube connectivity

of Hn implies that the non-faulty nodes in Hn are connected.

It turns out that Theorem 2 is very powerful in the discussion of fault tolerance

of hypercube networks. Consider the local 3-subcube connectivity. It is not hard to

see that B3,3 = 8 since the only way to remove 3 nodes to disconnect the 3-cube H3

is to remove the 3 neighbors of a node in H3, and there are totally 8 nodes in H3.

Therefore, the polynomial U3(p) is given by

U3(p) = B3,3(1− p)5 +
8
∑

j=4

(

8

j

)

pj−3(1− p)8−j

= 8(1− p)5 + 70p(1− p)4 + 56p2(1− p)3 + 28p3(1− p)2 + 8p4(1− p) + p5

Using the standard techniques in calculus, i.e., by computing the zeros of the deriva-

tive of U3(p), we can check that in the interval [0, 1], the polynomial U3(p) is positive

and reaches its maximum 9.881 · · · at point p = 0.14119 · · ·. Now applying Theo-

rem 2 enables us to conclude that the probability that the non-faulty nodes in the

n-cube Hn remain connected is at least

1− 2n−3p3U3(p) ≥ 1− 10 · 2
n−3p3

This implies that, for example, if the failure probability of each individual node is

bounded by 0.1%, then a 20-cube, which has about a million nodes, can sustain up to

220·0.1% > 1, 000 faulty nodes while still keeping its non-faulty nodes connected with

a probability larger than 99.8%. Note that this is a very significant improvement

over the traditional definition of fault tolerance, which allows the 20-cube to tolerate
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at most 19 faulty nodes, and over the concepts of 1-safeness and 2-safeness, which

allow the 20-cube to tolerate at most 37 and 71 faulty nodes, respectively.

The above example shows that Theorem 2 can be used as a scheme in evaluating

the power of hypercubes’ fault tolerance. In general, by considering local k-subcube

connectivity, we try to derive an upper bound ck for the polynomial Uk(p) in the

interval [0, 1], which will immediately make us able to conclude that the probability

that the non-faulty nodes of an n-cube Hn, where n ≥ k, remain connected is at

least 1−ck2
n−kpk. This gives us a potential to derive a larger and larger probability

for the connectivity for the n-cube Hn if ck2
n−kpk is decreasing when k increases.

Unfortunately, even for local 4-subcube connectivity, the analysis for deriving a

precise formula for the polynomial U4(p) becomes extremely tedious. On the other

hand, the construction of the polynomial Uk(p) is routine: for each i, k ≤ i ≤

2k−1− 1, simply enumerate all possible removals of i nodes from Hk, and count the

number of removals that disconnect Hk. This will directly give us the number Bk,i,

and hence the polynomial Uk(p). This procedure can obviously be automated and

fed to a computer. Based on this idea, we have programmed this procedure for local

5-subcube connectivity and run the program on a parallel Sun workstation system,

which gives us the polynomial U5(p) as follows.

U5(p) = 32(1− p)27 + 832p(1− p)26 + 10400p2(1− p)25 + 83120p3(1− p)24 +

476640p4(1− p)23 + 2086896p5(1− p)22 + 7251584p6(1− p)21 +

20524992p7(1− p)20 + 48190080p8(1− p)19 + 95095920p9(1− p)18 +

159252160p10(1− p)17 + 601080390p11(1− p)16 +

565722720p12(1− p)15 + 471435600p13(1− p)14 +

347373600p14(1− p)13 + 225792840p15(1− p)12 +

129024480p16(1− p)11 + 64512240p17(1− p)10 + 28048800p18(1− p)9 +

10518300p19(1− p)8 + 3365856p20(1− p)7 + 906192p21(1− p)6 +

201376p22(1− p)5 + 35960p23(1− p)4 + 4960p24(1− p)3 +

496p25(1− p)2 + 32p26(1− p) + p27

Again using the standard techniques in calculus, we verify that the polynomial

U5(p) in the interval [0, 1] is positive and bounded by 32 (this now involves solving

a polynomial of degree 26, which was also done by a computer). This computation,

together with Theorem 2, enables us to conclude the following.

Theorem 3 Suppose that each node in the n-cube Hn has a uniform and inde-

pendent failure probability p and that n ≥ 5. Then the probability that the non-faulty

nodes in Hn remain connected is at least 1− 32 · 2n−5p5 = 1− 2np5.

We give a few remarks on Theorem 3.

From the theoretical point of view, Theorem 3 has developed powerful techniques

for formally proving lower bounds on the probability of hypercube connectivity in

terms of the probability of individual node failures. As described in the introductory
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section, although it was well observed that the hypercube networks are highly fault

tolerant, there was no formal proofs for this important fact. Theorem 3 provides a

formal proof of a precisely stated bound for this measure.

From the practical point of view, Theorem 3 provides a formally proven threshold

on the node failure probability for manufacturers to achieve a desired probability

for the connectivity of hypercube networks. In particular, when the dimension n of

the hypercube network and a designated probability p′ for network connectivity are

given, by setting 1 − 2np5 ≥ p′, we can derive an upper bound for the individual

node failure probability p in terms of n and p′, which will guarantees the desired

probability for network connectivity. For example, if we want to build an nCUBE

machine of 1024 nodes [22], which is a 10-cube, and achieve connectivity of proba-

bility at least 99%, we can derive from 1−210p5 ≥ 99% that p ≤ 10%. Thus, as long

as the manufacturers ensure that the individual node failure probability is not larger

than 10%, the probability of network connectivity of the nCUBE machine of 1024

nodes is at least 99%. Similarly, if we want to achieve connectivity of probability

99.99% for a Thinking Machines’ CM-2 computer with 65, 536 processors [31], we

just need to ensure that the individual node failure probability is not larger than

1.7%. Note that the above required individual node failure probabilities are feasibly

achievable by today’s manufacturing technology, which thus provide formal proofs

for the possibilities of building highly fault tolerant hypercube computers. To the

authors’ knowledge, Theorem 3 provides the first formally proven conclusion for this

important fact, although previous extensive experience and experiments have given

people strong impression that the hypercube networks “should be” very highly fault

tolerant.

3. The probabilistic analysis for a routing algorithm

One important reason to require the connectivity of non-faulty nodes in a network

is to ensure the existence of fault-free routing paths between any two non-faulty

nodes in the network. Using the scheme we established in the previous section

(Theorem 1 and Theorem 2), we have been able to show the high probability of

connectivity of a hypercube network with faulty nodes. In this section, we show that

our scheme is also very useful and powerful in the analysis of routing algorithms on

hypercube networks.

We consider a routing algorithm that is a slight modification of the simplest

dimension-order routing algorithm. Given two nodes u = u1u2 · · ·un and v =

v1v2 · · · vn in the n-cube, the dimension-order algorithm routes from u to v by “con-

verting” each bit ui into vi, in the order i = 1, 2, . . . , n [9]. It has been well known

that the dimension-order routing algorithm, though simple, is extremely vulnerable

to network faults [9].

We modify the dimension-order routing scheme as follows. We start by converting

the first n− k bits ui into vi, in the order i = 1, 2, . . . , n− k. In case a bit ui cannot

be directly converted into vi because of network faults, we try to flip a bit among
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Algorithm. H-Router

Input: an n-cube Hn and two non-faulty nodes u = u1u2 · · ·un and v = v1v2 · · · vn in
Hn

Output: a path of non-faulty nodes in Hn from u to v

1. w = u, and initialize the path P = [w];

2. for i = 1 to n − k do

if wi 6= vi {so vi = wi} then

if w′ = w1 · · ·wi−1wiwi+1 · · ·wn is non-faulty

then extend the path P to w′; let w = w′;

else if there is a pair of non-faulty nodes of the forms

q = w1 · · ·wi−1wiwi+1 · · ·wn−kwn−k+1 · · ·wj−1wjwj+1 · · ·wn and

q′ = w1 · · ·wi−1wiwi+1 · · ·wn−kwn−k+1 · · ·wj−1wjwj+1 · · ·wn

then extend the path P to q then to q′; let w = q′;

else STOP(‘routing fails’);

3. apply BFS in the k-subcube w1 · · ·wn−k ∗ ∗ to convert the last k bits of w.

Figure 1: A routing algorithm for hypercube networks

the last k bits to make the ith bit convertible. After converting the first n− k bits,

we apply a Breadth First Search process in a k-subcube to convert the last k bits.

The formal algorithm is presented in Figure 1.

The algorithm H-Router is deterministic and local-information-based, requir-

ing no global network faulty information. Compared to most routing algorithms

proposed in the extensive literature (e.g., [1, 4, 8, 10, 11, 12, 13, 26, 30, 33], see

[6, 9, 15, 18] and their bibliographies for further references), this algorithm is sim-

pler and looks weaker. However, in the rest of this section, using our new techniques,

we formally prove that even with such a simple routing algorithm, and with a very

large fraction of faulty nodes, the hypercube networks can still route successfully

with a very high probability.

Note that the loop body of step 2 in the algorithm H-Router is executed only

when ui 6= vi. Let Hn−k(u, v) be the Hamming distance between the substrings

u1u2 · · ·un−k and v1v2 · · · vn−k, then the loop body in step 2 is executed exactly

Hn−k(u, v) times. During each execution of the loop body, at most 2 bits are

flipped. Thus, step 2 of the algorithm runs in time O(n) and increases the path

length by at most 2Hn−k(u, v). Finally, step 3 of the algorithm H-Router runs in

time O(2k) and extends the routing path to the destination node v in the k-subcube

v1v2 · · · vn−k ∗ ∗.

Thus, the algorithm H-Router, if succeeds, runs in optimal time and, when k

is small, constructs routing paths of length bounded by a small constant plus twice

of the optimal length. However, the algorithm H-Router may fail when fault-free

routing paths exist between the two given nodes. In the following, we use our new

developed techniques to show that this happens with very small probability.
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We say that two k-subcubes b1b2 · · · bn−k ∗ ∗ and b′1b
′

2 · · · b
′

n−k ∗ ∗ in the n-cube

Hn are neighboring k-subcubes if the two binary strings b1b2 · · · bn−k and b′1b
′

2 · · · b
′

n−k

differ by exactly one bit. Note that each k-subcube in the n-cube Hn has exactly

n− k neighboring k-subcubes.

Let w be a node in a k-subcube Hk and let H ′

k be a neighboring k-subcube of

Hk. We say that the k-subcube H ′

k is not reachable from w in two steps if every path

in Hk ∪ H ′

k of length bounded by 2 from w to a node in H ′

k contains at least one

faulty node q 6= w (note that the node w could be either faulty or non-faulty). We

define the following event.

Event L2(Hk)

There is a node w in the k-subcube Hk and there is a neighboring

k-subcube H ′

k of Hk such that the k-subcube H ′

k is not reachable from

w in two steps.

Lemma 2 Prob[L2(Hk)] is bounded by 4k(n− k)pk+1.

Proof. Let w be any node in the k-subcube Hk and let H ′

k be any neighboring k-

subcube of Hk. Let q1, q2, . . ., qk be the k neighbors of the node w in the k-subcube

Hk, and w′ be the node in the k-subcube H ′

k that is adjacent to w. Finally, let q′1,

q′2, . . ., q′k be the nodes in the k-subcube H ′

k that are adjacent to the nodes q1, q2,

. . ., qk in Hk, respectively. Since each node in Hk has a unique neighbor in H ′

k, a

path of length at most 2 in Hk ∪H ′

k from w to H ′

k must either go directly from the

node w to its neighbor w′ in H ′

k, or go from w to a neighbor qj of w in Hk then to

qj ’s neighbor q′j in H ′

k, where j = 1, 2, . . . , k. Therefore, if the k-subcube H ′

k is not

reachable from w in two steps, then we must have the following conditions: (1) the

node w′ is faulty; and (2) each {qj , q
′

j} of the k pairs of nodes, j = 1, 2, . . . , k, where

qj is a neighbor of w in Hk and q′j is qj ’s neighbor in H ′

k, must contain at least one

faulty node. Note that the probability that the pair {qj , q
′

j} contains at least one

faulty node is 1− (1− p)2 = 2p− p2. Therefore, the probability that the k-subcube

H ′

k is not reachable from w in two steps is bounded by

p(2p− p2)k = pk+1(2− p)k

Since the k-subcube Hk has exactly n − k neighboring k-subcubes, the probability

that there is a neighboring k-subcube H ′

k of Hk such that H ′

k is not reachable from

w in two steps is bounded by

(n− k)pk+1(2− p)k

Finally, since there are 2k nodes in the k-subcube Hk, the probability that there

exist a node w in Hk and a neighboring k-subcube H ′

k of Hk such that H ′

k is not

reachable from w in two steps, i.e., the probability of the event L2(Hk), is bounded

by

2k(n− k)pk+1(2− p)k ≤ 4k(n− k)pk+1
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This proves the lemma.

Now we consider the following event.

Event FN(Hk)

The k-subcube Hk has at least 2k − 2 faulty nodes.

We have the following lemma.

Lemma 3 Prob[FN(Hk)] is bounded by p2k−2
(

2k

2k−2

)

.

Proof. Since the k-subcube Hk has totally 2
k nodes, the probability that Hk has

exactly i faulty nodes is
(

2k

i

)

pi(1−p)2
k
−i. Thus, the probability that Hk has at least

2k − 2 faulty nodes is
2k
∑

i=2k−2

(

2k

i

)

pi(1− p)2
k
−i

which is bounded by
(

2k

2k−2

)

p2k−2 (for a proof of this inequality, see, for example, [5],

page 121).

Let u = u1u2 · · ·un and v = v1v2 · · · vn be any two nodes in the n-cubeHn. Recall

that Hn−k(u, v) is the Hamming distance between the two substrings u1u2 · · ·un−k

and v1v2 · · · vn−k. We have the following theorem.

Theorem 4 Suppose that each node in the n-cube Hn has a uniform and inde-

pendent failure probability p, then for any k ≤ n and for any two given non-faulty

nodes u and v in Hn, with probability at least 1 − 2n−kpk[Uk(p) + 4
k(n − k)p +

pk−2
(

2k

2k−2

)

], where the polynomial Uk(p) is given in Lemma 1, the algorithm H-

Router runs in time O(kn+2k) and constructs a routing path from u to v of length

bounded by 2Hn−k(u, v) + k + 2.

Proof. Let Hk be a fixed k-subcube in the n-cube Hn. Recall that NL(Hk) is the

event that Hk is not locally k-subcube connected, L2(Hk) is the event that there

exist a node w in Hk and a neighboring k-subcube H ′

k of Hk such that H ′

k is not

reachable from w in two steps, and FN(Hk) is the event that Hk has at least 2k− 2

faulty nodes. Now let Bad(Hk) be the union of these events:

Bad(Hk) = NL(Hk) ∪ L2(Hk) ∪ FN(Hk)

then we have

Prob[Bad(Hk)] ≤ Prob[NL(Hk)] + Prob[L2(Hk)] + Prob[FN(Hk)]

≤ pkUk(p) + 4
k(n− k)pk+1 + p2k−2

(

2k

2k − 2

)

= pk

[

Uk(p) + 4
k(n− k)p+ pk−2

(

2k

2k − 2

)]

(3.1)



Hypercube Network Fault Tolerance: A Probabilistic Approach 13

where the second inequality is by Lemma 1, Lemma 2, and Lemma 3, and the

polynomial Uk(p) is given in Lemma 1.

Let the complement event of the event Bad(Hk) be Good(Hk), which is stated

as:

Event Good(Hk)

(1) the k-subcube Hk is locally k-subcube connected; (2) for every

node w in Hk, every neighboring k-subcube H ′

k of Hk is reachable from

w in two steps; and (3) the number of faulty nodes in Hk is bounded

by 2k − 3.

Then the probability of the event Good(Hk) is

Prob[Good(Hk)] = 1− Prob[Bad(Hk)]

Now we define GOOD to be the intersection of the events Good(Hk) over all

k-subcubes Hk in the n-cube Hn, thus

Event GOOD

For every k-subcube Hk in the n-cube Hn: (1) Hk is locally k-subcube

connected; (2) for every node w in Hk, every neighboring k-subcube H ′

k

of Hk is reachable from w in two steps; and (3) the number of faulty

nodes in Hk is bounded by 2k − 3.

Since there are totally 2n−k k-subcubes in the n-cube Hn, the node failure proba-

bility is independent, and any two k-subcubes in Hn are disjoint (thus the events

Good(Hk) and Good(H
′

k) are independent for two different k-subcubes Hk and

H ′

k), we have

Prob[GOOD] = (Prob[GOOD(Hk)])
2n−k

= (1− Prob[Bad(Hk)])
2n−k

≥ 1− 2n−kProb[Bad(Hk)] (3.2)

Combining (3.1) and (3.2), we get immediately

Prob[GOOD] ≥ 1− 2n−kpk

[

Uk(p) + 4
k(n− k)p+ pk−2

(

2k

2k − 2

)]

(3.3)

Therefore, it suffices to show that under the conditions of the event GOOD, the

algorithm H-Router achieves the performance described in the theorem.

Consider step 2 of the algorithm. In case the ith bit wi of the node w =

w1w2 · · ·wn is not equal to the ith bit vi of the destination node v = v1v2 · · · vn, we

look for a subpath from the node w in the k-subcubeHk = w1 · · ·wi−1wiwi+1 · · ·wn−k∗

∗ to the neighboring k-subcube H ′

k = w1 · · ·wi−1viwi+1 · · ·wn−k ∗ ∗. Under the con-

ditions of the event GOOD, the neighboring k-subcube H ′

k of the k-subcube Hk
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is reachable from the node w in Hk in two steps. That is, either w’s neighbor

w′ = w1 · · ·wi−1viwi+1 · · ·wn in H ′

k is non-faulty, or a neighbor

q = w1 · · ·wi−1wiwi+1 · · ·wn−kwn−k+1 · · ·wj−1wjwj+1 · · ·wn of w in Hk and q’s

neighbor q′ = w1 · · ·wi−1viwi+1 · · ·wn−kwn−k+1 · · ·wj−1wjwj+1 · · ·wn inH ′

k are both

non-faulty. Thus, the path P can be extended to the k-subcube H ′

k by adding at

most two edges. Finally, since the loop body in step 2 is executed only when

ui 6= vi, we conclude that the length of the path P after step 2 of the algorithm

is bounded by 2Hn−k(u, v). Moreover, the running time of step 2 is bounded by

O(kHn−k(u, v) + (n− k)) = O(kn).

Finally, we consider step 3 of the algorithm. Now the node w and the destination

node v are in the same k-subcube Hk = v1v2 · · · vn−k ∗∗. Under the conditions of the

event GOOD, the k-subcube Hk is locally k-subcube connected and the number

of faulty nodes in Hk is bounded by 2k − 3. Since the non-faulty nodes in Hk are

connected, every non-faulty node in Hk has at least one non-faulty neighbor in Hk.

Latifi [16] has shown that if each non-faulty node in Hk has at least one non-faulty

neighbor and the total number of faulty nodes in Hk is bounded by 2k − 3, then

every pair of non-faulty nodes in Hk are connected by a path of length bounded by

k + 2 that consists of only non-faulty nodes. Therefore, the Breadth First Search

process from the node w will construct a path from w to v in Hk whose length is

bounded by k + 2. This completes the routing path from the source node u to the

destination node v in the n-cube Hn. Moreover, the Breadth First Search in step 3

of the algorithm runs in time O(2k).

Therefore, under the conditions of event GOOD, whose probability is at least

1−2n−kpk[Uk(p)+4
k(n−k)p+pk−2

(

2k

2k−2

)

], the routing algorithmH-Router runs in

time O(kn+2k) and constructs a routing path of length bounded by 2Hn−k(u, v)+

k + 2.

Remark. The running time of the algorithm H-Router in Theorem 4 can be

further improved to O(kn + k2). In fact, Latifi [16] has described a construction

that runs in time O(k2) and constructs a routing path of length bounded by k + 2

for any two non-faulty nodes in a k-cube, under the conditions that each non-faulty

node has at least one non-faulty neighbor and that the total number of faulty nodes

in Hk is bounded by 2k − 3. In consequence, the running time of step 3 of the

algorithm H-Router can be reduced to O(k2), which gives the improved running

time O(kn+ k2) for the algorithm H-Router.

Corollary 1 Suppose that each node in the n-cube Hn has a uniform and indepen-

dent failure probability p, then for any two given non-faulty nodes u and v in Hn,

with probability at least 1− 2n−5p5[32 + 1024(n− 5)p + 10518300p3], the algorithm

H-Router runs in time O(n) and constructs a routing path from u to v of length

bounded by 2Hn−5(u, v) + 7.

Proof. Let k = 5 in Theorem 4, we conclude that with probability at least 1 −
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2n−5p5[U5(p) + 4
5(n− 5)p+ p3

(

32

8

)

], the routing algorithm H-Router constructs in

time O(n) a routing path from u to v of length bounded by 2Hn−5(u, v) + 5 + 2 =

2Hn−5(u, v) + 7, where the polynomial U5(p) is given in Lemma 1.

As we have verified in section 2, in the interval [0, 1], the polynomial U5(p) is

bounded by 32. This, plus
(

32

8

)

= 10518300, proves the corollary.

Again Corollary 1 provides explicitly stated and formally proven upper bounds on

the individual node failure probability in order to achieve a designated success prob-

ability for the routing algorithm H-Router. For instance, as long as the individual

node failure probability is not larger than 4.7%, the routing algorithm H-Router

routes successfully in an nCUBE machine of 1, 024 processors [22] with probability

at least 99%, while when the individual node failure probability is bounded by 1.7%,

the routing algorithm H-Router routes successfully in a Thinking Machines’ CM-2

computer with 65, 536 processors [31] with probability larger than 99.9%. Again

since the required individual node failure probabilities are feasible in today’s manu-

facturing technology, Corollary 1 provides formally proven conclusions showing that

the simple routing algorithm H-Router works practically well.

4. Conclusions and final remarks

Fault tolerance and network routing have been among the most studied topics

in the research of parallel processing and computer networking. In this paper, we

have established a scheme that enables us to study the probability of network fault

tolerance in terms of individual node failure probability. Our results are both the-

oretically significant and practically important. From the theoretical point of view,

the scheme offers very general and powerful techniques for establishing lower bounds

on the probability for network connectivity, while from the practical point of view,

our scheme has provided formally proven threshold on the node failure probability

that guarantees very high probability for network connectivity and efficiency and

effectiveness of routing algorithms. Before closing this paper, we would like to make

a few remarks.

The scheme established in this paper is obviously not only restricted to hyper-

cube networks. In fact, the technique developed here is very general and can be

applied to any hierarchical network structures (i.e., the network structures in which

larger networks can be decomposed into smaller sub-networks of similar structure).

Examples of hierarchical networks include mesh networks, a variety of hypercube

variations, and many network structures based on Cayley graphs (see [2, 18, 27]

for a survey). Roughly speaking, the scheme suggests that for hierarchical network

structures, the study of global connectivity and routings can be reduced to the

study of smaller substructures. In most cases, the study of small substructures is

much easier since they have much fewer nodes and simpler structure. Sometimes

certain properties of the small substructures can even be obtained using exhaustive

enumerations.

Our scheme should also suggest a possible approach for the study of network
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fault tolerance under other probability distributions of node failures. For example,

clustered node failure distributions have also become very popular under the belief

that a node tends to fail when many of its neighbors have failed. We believe that

based on our approach, the probabilistic study of network fault tolerance in terms

of this kind of node failure distributions should become possible. Other extensions

of our scheme include the study of other network communication problems, such as

broadcasting, multicasting, and parallel routing.

We would also like to remark on our scheme for more technical details. To make

our discussion more specific, we will concentrate on hypercube networks. However,

the readers are reminded that most of these discussions are also applicable to other

hierarchical network structures.

Theorem 3 could be further improved. In fact, since every locally k-subcube

connected n-cube is also locally (k + 1)-subcube connected [3], under the same

uniform and independent node failure distribution, the probability that an n-cube

is locally (k + 1)-subcube connected is at least as large as the probability that the

n-cube is locally k-subcube connected. Therefore, deriving the probability for, say,

local 6-subcube connectivity will most likely improve the bound given in Theorem 3.

Therefore, Theorem 3 is really an example of an application of Theorem 2, which

offers a very general scheme for the study of hypercube fault tolerance. On the other

hand, it does require to overcome certain analysis and computational difficulties in

order to improve Theorem 3: when k increases, the construction of the polynomial

Uk(p) quickly becomes computationally infeasible even with a high speed computer.

For example, to construct the polynomial U6(p) using a routine method, we need

to enumerate about half of the 22
6

> 1019 subsets of nodes in the 6-cube. For

further larger k, this enumeration quickly becomes infeasible. Better and deeper

mathematical analysis seems needed for deriving and estimating the value for the

polynomial Uk(p).

There is another reason that we may not want to consider local k-subcube con-

nectivity for large k. Consider Theorem 4, the running time of the algorithm H-

Router is bounded by O(kn + 2k), which will become inefficient when k is very

large. Indeed, the local n-subcube connectivity of an n-cube basically just tells that

the non-faulty nodes in the n-cube are connected without giving any other useful

information. Thus, what a routing algorithm can do is to exhaustively search among

the non-faulty nodes, which obviously takes time O(2n). Note that Latifi’s method

[16], which routes in a k-subcube in time O(k2), cannot help for large k either since

it requires the number of faulty nodes to be bounded by 2k − 3. When k is large,

the ratio (2k − 3)/2k will require an impractically small bound for individual node

failure probability p.

Finally, we would like to explain the advantage of our scheme over the previously

proposed fault tolerance models. Compared to Najjar and Gaudiot’s results [21],

our results are precisely stated and formally proved, while the results in [21] are

approximations based on an unverified conjecture. Now consider the model of k-



Hypercube Network Fault Tolerance: A Probabilistic Approach 17

safe networks [7, 12, 17, 32]. The k-safe networks require that each non-faulty

node have at least k non-faulty neighbors. Using the techniques developed in this

paper, it is possible to prove that for small k, a hypercube network is k-safe with

high probability. However, the k-safeness of the hypercube does not guarantee the

connectivity of the network unless we also bound the number of faulty nodes by

2k(n − k) − 1 [17, 35]. This constraint then significantly bounds the node failure

probability to the order 2k(n−k)/2n, which would be impractically small even for a

reasonable value k and a moderate value n. On the other hand, our scheme allows a

much larger percentage of faulty nodes and guarantees the connectivity of the entire

network.
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