
Tight Lower Bounds for Certain

Parameterized NP-Hard Problems

Jianer Chen∗ Benny Chor† Mike Fellows‡ Xiuzhen Huang∗

David Juedes¶ Iyad A. Kanj‖ Ge Xia∗

Abstract

Based on the framework of parameterized complexity theory, we derive tight lower bounds
on the computational complexity for a number of well-known NP-hard problems. We start
by proving a general result, namely that the parameterized weighted satisfiability problem on
depth-t circuits cannot be solved in time no(k)mO(1), where n is the circuit input length, m is
the circuit size, and k is the parameter, unless the (t− 1)-st level W [t− 1] of the W -hierarchy
collapses to FPT. By refining this technique, we prove that a group of parameterized NP-hard
problems, including weighted sat, hitting set, set cover, and feature set, cannot be
solved in time no(k)mO(1), where n is the size of the universal set from which the k elements
are to be selected and m is the instance size, unless the first level W [1] of the W -hierarchy
collapses to FPT. We also prove that another group of parameterized problems which includes
weighted q-sat (for any fixed q ≥ 2), clique, independent set, and dominating set,
cannot be solved in time no(k) unless all search problems in the syntactic class SNP, introduced
by Papadimitriou and Yannakakis, are solvable in subexponential time. Note that all these
parameterized problems have trivial algorithms of running time either nkmO(1) or O(nk).

1 Introduction

Solving well-known NP-hard problems with small parameter values has found important applica-
tions recently in areas such as computational biology. For instance, the Computational Biochem-
istry Research Group at the ETH Zürich has successfully applied the algorithms for the vertex
cover problem (determine whether a given graph G has a vertex cover of size k) to their research
in multiple sequence alignments [18, 24], where the parameter value k can be bounded by 100. In
the study of motif finding problem in computational biology, Pevzner and Sze [23] proposed a graph
theoretical formulation that requires finding cliques of size k, where a typical value of k is 20. This
approach has been followed by a steady stream of combinatorial approaches trying to improve the
performance of motif finding algorithms (see, e.g., Buhler and Tompa [3] and their references).

However, from the parameterized complexity point of view [12], these two problems are very
different. The vertex cover problem is fixed-parameter tractable in the sense that it can be solved
in time f(k)nc, where f(k) is a function of the parameter k and c is a fixed constant. After many
rounds of improvement, the best known algorithm for vertex cover runs in time O(1.285k + kn)

∗Department of Computer Science, Texas A&M University, College Station, TX 77843, USA. This research is
supported in part by the NSF grants CCR-0000206 and CCR-0311590. Email: {chen,xzhuang,gexia}@cs.tamu.edu.

†School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel. Email: benny@cs.tau.ac.il. Research
supported by ISF grant 418/00.

‡School of Electrical Engineering and Computer Science, University of Newcastle, University Drive, Callaghan
23-8, Australia. Email: mfellows@cs.newcastle.edu.au.

¶School of EE&CS, Ohio University, Athens, OH 45701, USA. Email: juedes@ohiou.edu.
‖The corresponding author. School of CTI, DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604, USA.

Email: ikanj@cs.depaul.edu. This work was supported in part by DePaul University Competitive Research Grant.

1

[8], which has been implemented and is quite practical for parameter values up to 400 [5]. On
the other hand, the clique problem is W [1]-hard, and thus, it is unlikely to be fixed-parameter
tractable. The best known algorithm for finding a clique of size k in a graph of n vertices runs in
time O(n0.8k) [20], based on a combination of exhaustive search and the best matrix multiplication
algorithm [9]. Obviously, such an algorithm is not practically feasible even for parameter values as
small as 20.

On the surface, the W [1]-hardness of clique implies that any algorithm of running time O(nh)
solving the problem must have the degree h of the polynomial nh a function of the parameter k
unless W [1] = FPT. However, this does not exclude the possibility that clique becomes feasible
for small values of the parameter k. For instance, if clique is solvable by an algorithm running in
time O(nlg lg k), then such an algorithm is still feasible for moderately small values of k.1

In this paper we show that using the notion of W -hardness, we can prove much stronger lower
bounds on the computational complexity for a large group of NP-hard parameterized problems,
including the well-known problems weighted sat, dominating set, hitting set, set cover,
feature set, independent set, and clique. These problems share a common property that
each instance of size m of the problems has a universal set U of size n, and we are looking for a
subset of k elements in U that meets certain given conditions. Note that all these problems have
trivial algorithms of running time nkmO(1), which simply enumerate all subsets of size k in the
universal set U to find a subset satisfying the given conditions in case it exists.

We start by developing a general result showing that in each level of the W -hierarchy, there is
a natural parameterized problem that has time complexity nΩ(k)mO(1) unless an unlikely collapse
occurs in the parameterized complexity theory. More specifically, we prove that for every t ≥ 2,
the weighted satisfiability problem on depth-t circuits cannot be solved in time no(k)mO(1), where
n is the circuit input length and m is the circuit size, unless the (t − 1)-st level W [t − 1] of the
W -hierarchy collapses to FPT. By refining this technique and employing proper reductions, we are
able to prove that, unless the first level W [1] of the W -hierarchy collapses to FPT, a group of
W [2]-hard parameterized problems cannot be solved in time no(k)mO(1), where n is the size of the
universal set from which the k elements are to be selected and m is the instance size. This group of
W [2]-hard problems includes the well-known problems: weighted sat, hitting set, set cover,
and feature set. Note that these results demonstrate that, under the assumption W [1] 6= FPT,
the existence of algorithms which perform much better than the exhaustive search algorithms for
these problems is unlikely.

The general techniques mentioned above do not apply to the case t = 1, and hence, do not imply
computational lower bounds for W [1]-hard problems that are not (or are not known to be) W [2]-
hard. We develop new techniques to derive computational lower bounds on W [1]-hard problems
based on a stronger assumption. Consider the optimization class SNP introduced by Papadimitriou
and Yannakakis [21], which consists of all search problems expressible by second-order existential
formulas whose first-order part is universal. Impagliazzo and Paturi [17] introduced the notion
of SERF-completeness for the class SNP and identified a class of problems which is complete
for SNP under SERF-reduction, such that the subexponential time solvability for any of these
SERF-complete problems implies that all SNP problems are solvable in subexponential time. The
class SNP contains many well-known NP-hard problems, including 3-sat, vertex cover, and
independent set, for which extensive efforts have been made in the last three decades to develop
subexponential time algorithms with no success [26].

1An immediate question that might come to mind is whether such a W [1]-hard problem exists. The answer is
affirmative: by re-defining the parameter, it is not difficult to construct W [1]-hard problems that are solvable in time
O(nlg lg k).

2

Therefore it seems convincing to assume that not all SNP problems are solvable in subexpo-
nential time. This assumption actually implies W [1] 6= FPT [1]. Under this stronger assumption,
all computational lower bounds we derive for the W [2]-hard problems mentioned above still hold.
Moreover, under this stronger assumption, we are now able to derive computational lower bounds
for certain W [1]-hard parameterized problems that are not (or not known to be) W [2]-hard: we
prove that a group of problems including the following problems cannot be solved in time no(k):
weighted q-sat (for any fixed q ≥ 2), independent set, and clique. Again these lower bounds
prove that one cannot expect to have algorithms that perform much better than the exhaustive
search algorithms for these problems.

Before we close this section, we point out that besides the area of parameterized complexity
theory, the topics related to the above research have also been investigated from many other angles.
Exact algorithms that provide computational upper bounds for NP-hard problems have been exten-
sively studied in the last three decades (see survey [26] and its references). For computational lower
bounds, Papadimitriou and Yannakakis [22] introduced the class LOGSNP. Problems in this class
specifically set (or implicitly force) the parameter value k to be equal to lgn. A group of problems
for which no polynomial time algorithms are known, such as tournament dominating set, and
vc-dimension, are proved to be LOGSNP-hard, in the sense that if any of these problems can be
solved in polynomial time then all problems in LOGSNP are solvable in polynomial time. Thus,
LOGSNP-hardness provides a computational lower bound for these problems. Feige and Kilian [13]
studied the computational complexity of finding a clique of size k = lgn, and showed that if this
problem can be solved in polynomial time then nondeterministic computation can be simulated by
deterministic computation in subexponential time. Moreover, they showed that if the k-clique
problem, where k = Θ(lgc n) for some constant c, can be solved in time O(nh), where h = k1−ε

for some ε > 0, then nondeterministic circuits can be simulated by randomized or non-uniform
deterministic circuits of subexponential size (see [13] for the formal definitions). Compared to this
result, our results on clique have a weaker assumption, i.e., clique can be solved in time no(k),
but our conclusion, i.e., all problems in SNP are subexponential time solvable, is not necessarily
weaker.

2 Preliminaries

A parameterized problem Q is a subset of Ω∗ × N, where Ω is a fixed alphabet and N is the set
of all non-negative integers. Therefore, each instance of the parameterized problem Q is a pair
(x, k), where the second component, i.e., the non-negative integer k, is called the parameter. We
say that the parameterized problem Q is fixed-parameter tractable [12] if there is a (parameterized)
algorithm that decides whether an input (x, k) is a member of Q in time O(f(k)|x|c), where c is
a fixed constant and f(k) is a recursive function independent of the input length |x|. Let FPT
denote the class of all fixed-parameter tractable problems.

To study the fixed-parameter tractability, the fpt-reduction has been introduced [12]: a param-
eterized problem Q is fpt-reducible to a parameterized problem Q′ if there is an algorithm M that
transforms each instance (x, k) of Q into an instance (x′, g(k)) (g is a function of k only) of Q′ in
time O(f(k)|x|c), where f and g are recursive functions and c is a constant, such that (x, k) ∈ Q if
and only if (x′, g(k)) ∈ Q′.

Based on the notion of fpt-reducibility, a hierarchy of parameterized complexity, the W -
hierarchy, has been introduced. At the 0th level of the hierarchy lies the class FPT, and at the ith
level, the class W [i] for i > 0 (see [12] for the formal definition of the class W [i]). A parameterized

3

problem Q is W [i]-hard if every problem in W [i] is fpt-reducible to Q, and is W [i]-complete if
in addition Q is in W [i]. If any W [i]-hard problem is in FPT, then W [i] = FPT, which, to the
common belief, is very unlikely [12].

A circuit is a directed acyclic graph. The nodes of in-degree 0 are called inputs, and are labeled
either by positive literals xi or by negative literals xi. The nodes of in-degree larger than 0 are
called gates and are labeled with Boolean operators and or or. A special gate of out-degree 0 is
designated as the output node. A circuit is said to be monotone (resp. antimonotone) if all its
input literals are positive (resp. negative). The depth of a circuit is the maximum distance from an
input node to the output gate of the circuit. A circuit represents a Boolean function in a natural
way. Using the results in [6], every circuit can be re-structured into an equivalent circuit with the
same monotonicity and number of input variables, same depth, and such that all inputs are in level
0, all and and or gates are organized into alternating levels with edges only going from a level to
the next level, and with at most a polynomial increase in the circuit size. Thus, without loss of
generality, we will implicitly assume that circuits are in this leveled form. A circuit is a Π-circuit if
its output gate is an and gate, and is a Πh-circuit if it has depth h and its output gate is an and
gate. We say that a truth assignment τ to the input variables of a circuit C satisfies a gate g in C
if τ makes the gate g have value 1, and that τ satisfies the circuit C if τ satisfies the output gate of
C. The weight of an assignment τ is the number of variables assigned value 1 by τ . A propositional
formula F is said to be t-normalized where t ≥ 1, if F is the products-of-sums-of-products . . . of
literals with t alternations [12]. From a t-normalized formula F with n input variables, we can
naturally correspond an equivalent Πt circuit CF with n input variables.

The t-normalized satisfiability problem where t ≥ 1, abbreviated sat[t] henceforth, is
defined as follows: Given a t-normalized formula F over n variables whose size is m, decide if
F is satisfiable. For instance, the 2-normalized satisfiability problem is the same as the
satisfiability problem sat. The weighted t-normalized satisfiability problem is defined as
follows: Given a t-normalized formula F and a positive integer k, decide if F has a satisfying as-
signment of weight k. From the weighted t-normalized satisfiability problem we can define
the weighted monotone t-normalized satisfiability problem (resp. weighted antimono-
tone t-normalized satisfiability problem) by requiring all the input literals of the formula
to be positive (resp. negative) [12]. It is known that for t > 1, the weighted t-normalized
satisfiability problem, the weighted monotone t-normalized satisfiability problem for
even t, and the weighted antimonotone t-normalized satisfiability problem for odd t, are
all W [t]-complete [12]. Also, it is known that the weighted antimonotone 2-satisfiability
(each clause contains at most two literals) is W [1]-complete [12].

The above problems can be naturally extended to the circuit model. The weighted t-
normalized satisfiability corresponds to the weighted t-normalized circuit satisfia-
bility, abbreviated wcs[t]: Given a Πt circuit C and a positive integer k, decide if C has a satisfy-
ing assignment of weight k. Similarly, the weighted monotone t-normalized satisfiability
corresponds to the weighted monotone t-normalized circuit satisfiability, abbreviated
monotone wcs[t], and the weighted antimonotone t-normalized satisfiability problem
corresponds to the weighted antimonotone t-normalized circuit satisfiability, abbrevi-
ated antimonotone wcs[t]. Since these problems are natural extensions of the above problems
to the circuit model, and since every t-normalized formula can be transformed into an equivalent
Πt circuit with the same number and monotonicity of the input variables, and with no more than a
polynomial increase in the size, we have wcs[t], monotone wcs[t] for even t, and antimonotone
wcs[t] for odd t, where t > 1, are all W [t]-complete. Moreover, antimonotone 2-wcs[2], where
each gate at level 1 is required to have fan-in bounded by two, is W [1]-complete.

4

3 Lower bounds for the W -hierarchy

In this section we give lower bounds on the time complexity of the wcs[t] problem, where t ≥ 2,
which is complete for the class W [t] in the W -hierarchy. These lower bounds directly imply lower
bounds for many natural parameterized problems including weighted sat, dominating set,
hitting set, and set cover. We will break our main theorem into two intermediate theorems.
We shall present both theorems because these theorems, per se, are of interest.

Theorem 3.1 For any t ≥ 2, if wcs[t] can be solved in time no(k)h(m) then sat[t] can be solved
in time 2o(n)h′(m), where h and h′ are two polynomials.

Proof. Fix t ≥ 2, and suppose that wcs[t] can be solved in time no(k)h(m). This means that
there exists an unbounded non-decreasing function r(k), such that wcs[t] can be decided in time
bounded by nk/r(k)h(m). We will show that sat[t] can be solved in time 2o(n)h′(m). Let F be a
t-normalized formula over n variables and of size m. We can naturally associate an equivalent Πt

circuit CF with n input variables, whose size is polynomial in m, such that F is satisfiable if and
only if CF is. Note also that CF can be constructed from F in time polynomial in m. We will
construct an instance (C ′

F , k) of wcs[t] such that CF is satisfiable if and only if C ′
F has a satis-

fying assignment of weight k. The construction distinguishes two cases depending on the parity of t.

Case 1. t is even. In this case the gates in level 1 of CF are or gates. Suppose that x1, . . . , xn are
the input variables to CF . Let r = blgnc, b = dn/re, and s = 2r. We divide the n input variables
x1, . . . , xn into b blocks B1, . . . , Bb, where block Bi consists of input variables x(i−1)r+1, . . . , xir,
for i = 1, . . . , b − 1, and Bb consists of input variables x(b−1)r+1, . . . , xn. Denote by the size of a
block the number of variables in the block, and note that |Bi|, i = 1, . . . , b − 1, is exactly r, and
|Bb| = r′ ≤ r. We form the b blocks B′

1, . . . , B
′
b, each block B′

i, i = 1, . . . , b− 1, consists of exactly
s new variables z1i , . . . , z

s
i , and B′

b consists of s′ = 2r
′
variables z1b , . . . , z

s′

b . Blocks B′
1, . . . , B

′
b will

be used to decode the input variables in blocks B1, . . . , Bb in the following manner. The input
variable zj

i in block B′
i, i = 1, . . . , b, j = 1, . . . , |B′

i|, will be used to indicate an assignment to

the input variables in Bi such that if zj
i = 1, then the variables in Bi will be assigned the bits in

the binary representation of the number j. Since for every i = 1, . . . , b, we have |B ′
i| = 2|Bi|, it

is clear that there is a bijection between the assignments to the variables in B ′
i of weight 1 (with

respect to the variables in B′
i) and the possible binary configurations of the input variables in

Bi, given by the above description. It follows that there is a bijection between all possible truth
assignments to the input variables in CF , and all truth assignments to the input variables in B ′

i,
i = 1, . . . , b, in which exactly one variable in each block B ′

i is assigned the value 1. The circuit
C ′

F is now constructed from CF by removing the input literals of CF and adding the new input
variables in the blocks B′

1, . . . , B
′
b. The new input variables are connected to the or gates at level

1 in CF as follows. Suppose that the positive (resp. negative) literal l corresponding to variable
xq (q ∈ {1, . . . , n}) is connected to an or gate g at level 1 in CF , and suppose that xq is the pth

variable in block Bi, i ∈ {1, . . . , b}. Then all input variables zj
i , j = 1, . . . , |B′

i|, in block B′
i such

that the pth bit in the binary representation of j is 1 (resp. 0), are connected to gate g. We
also add some “enforcement” circuitry to C ′

F to ensure that at least one new variable zj
i in every

block B′
i, i = 1, . . . , b, j = 1, . . . , |B′

i|, is set to 1. This can be achieved as follows. For every block
B′

i where i = 1, . . . , b: add an or gate g′i, connect every variable in B′
i to g′i, and connect g′i to

the output gate of CF . This completes the construction of C ′
F . Clearly, C ′

F has size h′′(m) for
some polynomial h′′, and can be constructed from CF in time polynomial in m. Moreover, since

5

t ≥ 2, and the enforcement circuitry requires no more than depth 2 to be implemented, C ′
F is

also a Πt circuit. It is not difficult to verify that F is satisfiable if and only if CF is satisfiable,
if and only if C ′

F has a satisfying assignment of weight b. Note that any satisfying assignment
to C ′

F of weight b must satisfy exactly one input variable in each block B ′
i, i = 1, . . . , b. The

reason being that the number of blocks is exactly b, and the enforcement circuitry guarantees
that at least one variable in every block is set to 1 in any satisfying assignment. Since C ′

F is a
Πt circuit, it follows that (C ′

F , b) is an instance of wcs[t]. The number of input variables N to
C ′

F is bounded by b · s = dn/re.2blgnc ≤ n2. The parameter k in the instance (C ′
F , b) is equal

to b = dn/re = dn/blgnce ≤ 2n/ lgn when n is large enough (if n is bounded by a constant the
problem can be solved in constant time). By the hypothesis, we can decide (C ′

F , k = b) in time
bounded by Nk/r(k)h(h′′(m)) ≤ n4n/r′(n) lgnh(h′′(m)), where r′(n) = r(dn/blgnce) is an unbounded
non-decreasing function of n. Since n4n/r′(n) lgn ∈ 2o(n), and since the construction of CF and C ′

F

from F can be done in polynomial time in m, it follows that deciding whether C ′
F has a truth

assignment of weight k, and hence whether F is satisfiable, can be done in time 2o(n)h′(m), where
h′ is a polynomial.

Case 2. t is odd. Since t > 1, t ≥ 3, and the gates at level 1 in CF are and gates. The
decomposition of the n input variables in CF into b blocks Bi, i = 1, . . . , b, and the construction of
the blocks B′

i, proceed exactly as in Case 1. The enforcement circuitry which ensures that exactly

one variable zj
i in block B′

i is set to true also remains the same. Since t ≥ 3, this enforcement
circuitry can still be implemented without affecting the level structure of CF (this enforcement
circuitry needs two levels to be implemented: and-of-or’s). The only part in the construction of
C ′

F that is different from the above construction, and is a bit trickier, is how to connect the new
variables and their negations to the and gates at level 1 in CF . Let g be a level-1 and gate in
CF . Let Si, i = 1, . . . , b be the set of literals connected to g whose variables are in block Bi (some
Si’s may be empty). If g is satisfied, then all literals in Si, i = 1, . . . , b, must receive the value 1.
Let S′

i, i = 1, . . . , b, be the set of variables zj
i in block B′

i, such that if the input variables in Bi are
assigned the corresponding bits in the binary representation of j (i.e., the pth input variable in Bi

is assigned the pth bit in the binary representation of j), all literals in Si receive the value 1. Let

S′′
i = {zj

i ∈ B′
i | z

j
i /∈ S′

i}, and S
′′

i = {zj
i | z

j
i ∈ S′′

i }, where zj
i is the negation of the input variable

zj
i . For every level-1 gate g in CF , and for every i = 1, . . . , b, we remove the input literals from Si

to gate g in CF , and connect the literals in S
′′

i to g. Let C ′
F be the resulting circuit. Then clearly

C ′
F is a Πt circuit. We argue next that the bijection described above between truth assignments to

the input variables in CF and those to the input variables in C ′
F that assign exactly one variable

in every block B′
i, i = 1, . . . , b, the value 1, associates with every truth assignment τ to CF a truth

assignment τ ′ to C ′
F such that τ satisfies CF if and only if τ ′ satisfies C ′

F . The only difference
between CF and C ′

F is the input gates and their connections to level-1 gates. So it suffices to argue
that the truth value of a level-1 gate g in CF with respect to τ is the same as its truth value in
C ′

F with respect to τ ′. Now gate g receives the value 1 by τ in CF if and only if all literals in Si,
i = 1, . . . , b, are set to 1 by τ . This is true if and only if one of the variables in S ′

i is set to 1 by τ ′

in C ′
F . Since τ ′ assigns exactly one variable in every block the value 1, the latter condition is true

if and only if all the variables in S ′′
i receive the value 0 by τ ′ in C ′

F , which is in turn true if and

only if all literals in S
′′

i receive the value 1 by τ ′ in C ′
F . This is true if and only if g receives the

value 1 by τ ′ in C ′
F . The proof from this point on proceeds in exactly the same fashion as in Case 1.

We conclude that sat[t] can be decided in 2o(n)h′(m) time. This completes the proof.

6

Theorem 3.2 For any t ≥ 2, if sat[t] can be solved in time 2o(n)h(m) for some polynomial h,
then W [t− 1] = FPT.

Proof. If t = 2, the theorem states that if sat can be solved in time 2o(n)h(m) then W [1]=FPT.
This result was established by Cai and Juedes [4]. Thus, we can assume that t ≥ 3. The proof
builds on the techniques employed in [4]. Suppose that sat[t] is solvable in time 2o(n)h(m). Then
there exists an unbounded non-decreasing function s(n) such that sat[t] can be solved in time
bounded by 2n/s(n)h(m). We distinguish two cases based on the parity of t.

Case 1. t is odd. We consider the monotone wcs[t− 1] problem. Since this problem is complete
for W [t − 1], it suffices to show that this problem can be solved in time f(k)h′(m) where f is a
function independent of the circuit size m, and h′ is a polynomial. Let (C, k) be an instance of
monotone wcs[t − 1], where C has n input variables and size m. Since t − 1 is even, the gates
at level 1 in C are or gates. Let x1, . . . , xn be the input variables to C. We will construct a
circuit C ′ from C with kdlgne input variables, such that C has a weight k assignment if and only
if C ′ is satisfiable. The input variables in C ′ are divided into k blocks B1, . . . , Bk, where block
Bi, i = 1, . . . , k, consists of r = dlgne input variables z1i , . . . , z

r
i . Also, for every input variable zj

i ,

i ∈ {1, . . . , k}, j ∈ {1, . . . , r}, we associate the input literal zj
i to denote its negation. Informally

speaking, each block Bi will contain the encoding of an input variable whose value is 1 in a
weight-k assignment to C. We show how to connect the new input variables and their negations
to the level-1 or gates in C. Let g be a level-1 or gate in C. Let xp be an input to g, and let
b1b2 . . . br be the binary representation of the number p (if there are fewer than r bits in the binary
representation of p, we pad the binary representation of p with the appropriate number of 0’s on
the left to make it consist of exactly r bits). We introduce k new and gates g1p, . . . , g

k
p . Each

gate gi
p, i = 1, . . . , k, has exactly r inputs, and its input comes only from input variables in block

Bi and their negations. Informally speaking, each gate gi
p will be satisfied if and only if block Bi

contains the binary representation of p, and hence, encodes xp. The input to gate gi
p is determined

as follows. For j = 1, . . . , r, if bj = 0, then connect zj
i to gi

p, and if bj = 1, then connect zj
i to gi

p.
Now replace the connection from xp to g by the connections from all gates gi

p, i = 1, . . . , k, to g.
We repeat this process for every level-1 gate g in C and every input variable in {x1, . . . , xn} to
g. Clearly, this construction only adds a single level to the circuit C consisting of and gates, and
hence, the resulting circuit is a Πt circuit. We also add enforcement circuitry to ensure that the
k blocks Bi, i = 1, . . . , k, encode distinct k variables. This can be simply achieved by adding a
circuitry that performs a bitwise xor operation to the corresponding variables in every two blocks,
which can be done by adding a 3-level and-of-or-of-and subcircuits to every two blocks (note that
the last and can be merged with the output and gate of the circuit if t = 3). Clearly, the resulting
circuit is still a Πt circuit. Moreover, the size of C is only increased by a polynomial factor in its
original size. Let C ′

F be the circuit resulting from this construction. From the above discussion we
know that C ′ is a Πt circuit of size h′(m) for some polynomial h′. Since the k input blocks in C ′

basically encode the k input variables in C with value 1 in a weight-k assignment to C, it is not
difficult to verify that C has a weight-k truth assignment if and only if C ′ is satisfiable. Now C ′ is
an instance of sat[t] with kr input variables. It follows that we can decide if C ′ is satisfiable in time
bounded by T (n) = 2kr/s(kr)h(h′(m)) = 2kdlgne/s(kdlgne)h(h′(m)) ≤ 2k(lgn+1)/s

′(n)h′′(m), for some
unbounded non-decreasing function s′(n), and some polynomial h′′. Thus T (n) ∈ 2o(lgn)kh′′(m),
and wcs[t−1] is solvable in time 2o(lgn)kh′′(m) for some polynomial h′′. It follows that wcs[t−1] is
fixed parameter tractable (see Lemma 2.1 in [4] for a proof of this fact), and hence, W [t−1] = FPT.

7

Case 2. t is even, and hence t − 1 ≥ 3 is odd. We consider the antimonotone wcs[t − 1]
problem, which is complete for W [t − 1]. The proof proceeds in a very similar fashion to the
proof of Case 1 above. Let (C, k) be an instance of antimonotone wcs[t − 1], and note that
the gates at level 1 in C are and gates. Let x1, . . . , xn be the input literals to C, and let r and
Bi, i = 1, . . . , k, be as defined above. Again, block Bi will be used to encode the indices of the
input variables in C that are set to 1 in a weight-k assignment to C. Let g be a gate at level-1
in C, and suppose that xp, where p ∈ {1, . . . , n}, is connected to g. Now xp is 1 if and only
if xp is 0, if and only if none of the blocks Bi, i = 1, . . . , k contains the binary representation
of p. Thus, in C ′ we will connect the new input variables to g as follows. We introduce k new
or gates g1p, . . . , g

k
p . Each gate gi

p, i = 1, . . . , k, has exactly r inputs, and its input comes only
from input variables in block Bi and their negations. Informally speaking, each gate gi

p will be
satisfied if and only if block Bi does not contain the binary representation of p, and hence, does
not encode xp. Suppose the binary representation of p is b1b2 . . . br. For i = 1, . . . , k, the input

to gi
p is determined as follows. For j = 1, . . . , r, if bj = 0, then connect zj

i to gi
p, and if bj = 1,

then connect zj
i to gi

p. Now replace the connection from xp to g by the connections from all
gates gi

p, i = 1, . . . , k to g, and repeat that for every level-1 gate in C and every original input
literal to that gate. This adds an or-level to C, thus increasing the number of levels in C by
1, and resulting in a Πt circuit. Now we can add the enforcement circuitry to ensure that all k
blocks encode k distinct input variables. This can be simply achieved by adding a circuitry that
performs a bitwise xor operation to the corresponding variables in every two blocks. The resulting
circuitry that tests that no two blocks are the same can be implemented by an or-of-and-of-
and-of-or subcircuit (the last and gate can be identified with the output gate of C if t = 4).
Since t ≥ 4, the resulting circuit C ′ is a Πt circuit whose size is not more than a polynomial in
the size of C. The proof from this point on proceeds in exactly the same fashion as in Case 1 above.

It follows that W [t− 1] = FPT. This completes the proof.

Theorem 3.3 For any t ≥ 2, if wcs[t] is solvable in time no(k)p(m) for some polynomial p, then
W [t− 1] = FPT.

Proof. The proof follows immediately from Theorem 3.1 and Theorem 3.2.

Theorem 3.4 If monotone wcs[2] is solvable in time no(k)p(m) for some polynomial p, then
W [1] = FPT.

Proof. Observe that when t is even, the circuit C ′
F in the proof of Theorem 3.1 is monotone.

Combining this observation with Theorem 3.1 and Theorem 3.2, the result follows.

We consider the following W [2]-complete problems [10, 12].

weighted sat

Given a formula F in CNF over N variables whose size is m, decide if there exists a
weight-k satisfying assignment for F .

red/blue dominating set

Given a bipartite graph G = (V,E), where V = Vred ∪ Vblue with |Vred| = N , and a
positive integer k, decide if there exists a subset V ′ ⊆ Vred of cardinality k such that V ′

dominates Vblue (i.e., every vertex in Vblue is adjacent to some vertex in V ′).

8

hitting set

Given a set U = {u1, . . . , uN}, a collection S = {S1, . . . , Sm}, where Si ⊆ U , i =
1, . . . ,m, and a positive integer k, decide if there exists a subset H ⊆ U with cardinality
k, such that H ∩ Si 6= ∅ for i = 1, . . . ,m.

set cover

Given a set S, a collection F = {C1, . . . , CN} of subsets of S such that
⋃N

i=1Ci = S,
and a positive integer k, decide if there is a subcollection C of F with cardinality k such
that

⋃

Ci∈C
Ci = S.

feature set

Given a set of m examples X = {x(1), . . . , x(m)}, where x(i) = (x
(i)
1 , . . . , x

(i)
N , t(i)) ∈

{0, 1}N+1, and an integer k > 0, decide if there exists a feature set S ⊆ {1, . . . , N} of
cardinality k, such that for all pairs of examples i 6= j, if t(i) 6= t(j), then there exists

l ∈ S with x
(i)
l 6= x

(j)
l .

Theorem 3.5 If any of the weighted sat, red/blue dominating set, hitting set, set
cover, or feature set problems can be solved in time N o(k)p(|I|), then W [1] = FPT , where
|I| is the input size, N is the size of the universal set from which the k-element solution is to be
chosen, and p is a polynomial.

Proof. The result for weighted sat follows directly from Theorem 3.1 with t = 2, by observing
that weighted sat is exactly weighted 2-normalized satisfiability, which corresponds to
wcs[2]. We show the result for red/blue dominating set next. By Theorem 3.4, it suffices to
show that if red/blue dominating set is solvable in time N o(k)p(|G|), where G is the input graph
and N = |Vred|, then monotone wcs[2] is solvable in time no(k)q(m) where n is the number of
input variables, and m is the circuit size. Let (C, k) be an instance of monotone wcs[2] where C
has n input variable {x1, . . . , xn}, and size m. Observe that C has a weight-k satisfying assignment
if an only if there exists a weight-k assignment to the input variables in C such that all level-1 gates
in C are satisfied. The last statement is true if and only if each level-1 gate in C has at least one
variable of value 1 that is connected to it (since all level-1 gates in C are or gates). Let g1, . . . , gr
be the level-1 gates in C. We construct the bipartite graph G = (Vred∪Vblue, E) as follows. For each
input variable xi, i = 1, . . . , n, we associate a vertex xi ∈ Vred. For each gate gj , j = 1, . . . , r, we
associate a vertex gj in Vblue. Now a vertex xi, i = 1, . . . , n, is connected to a vertex gj , j = 1, . . . , r
in G if and only if xi is an input to gate gj in C. From the above discussion, it is easy to see that
C has a weight-k satisfying assignment if and only if G has a subset V ′ ⊆ Vred with |V ′| = k, such
that V ′ dominates Vblue. Thus, by solving the instance (G, k) of the red/blue dominating set
we can solve the instance (C, k) of monotone wcs[2]. Since the construction of G from C can be
done in time polynomial in m, it follows that if red/blue dominating set can be solved in time
No(k)p(|G|), then monotone wcs[2] can be solved in time no(k)q(m) for some polynomial q (note
that N = n and |G| is polynomial in m).

Now we show the result for the hitting set problem. It suffices to show that if hitting
set can be solved in time N o(k)p(|I|) then red/blue dominating set can be solved in time
no(k)q(|I ′|), where N is the number of elements in the universe U , |I| the size of the input instance
I of hitting set, n the number of vertices in Vred, |I

′| the size of the input instance I ′ of red/blue
dominating set, and p and q are two polynomials. Let I ′ = (G = ((Vred ∪ Vblue), E), k), be an
instance of red/blue dominating set, where |Vred| = n, we construct an instance I = ((U =

9

{u1, . . . , uN}, S = {S1, . . . , Sm}), k) of hitting set as follows. The elements in U are the vertices
in Vred. For every vertex vj , j = 1, . . . ,m, in Vblue we associate a set Sj consisting of all neighbors
of vj . It is easy to see that |I| is polynomial in |I ′|, and that the construction can be carried out in
time polynomial in |I ′|. It can be easily verified that S has a hitting set of size k if and only G has
a subset V ′ ⊆ Vred of k vertices that dominates Vblue. Noting that N = n, the statement follows.

To show that the same result holds for set cover we reduce hitting set to set cover. Let
I = ((U = {u1, . . . , uN}, S = {S1, . . . , Sm}), k) be an instance of hitting set, we construct an
instance I ′ = ((S′, F), k) of set cover as follows: S ′ = {S1, . . . , Sm} and F = {C1, . . . , CN}
where Ci = {Sj ∈ S′ | ui ∈ Sj}. It is not difficult to see that S has a hitting set of size k if and
only if S′ has a set cover of size k. Noting that I ′ has size polynomial in I, and the construction of
I ′ from I takes polynomial time in |I|, the statement follows.

Finally, the result for the feature set problem follows from the reduction from set cover
to feature set given in [25].

4 Lower bounds for some W [1]-hard problems

In this section we prove that the existence of no(k) time algorithms for many parameterized problems
like independent set, clique, and weighted q-sat implies that all problems in the class SNP
can be solved in subexponential time. The class SNP [21] contains many well-known NP-hard
problems including q-sat, q-colorability, q-set cover, vertex cover, and independent
set [17]. In particular, 3-sat is a special case of q-sat, and the existence of no(k) time algorithms
for the above-mentioned parameterized problems would imply that 3-sat is solvable in 2o(n). It is
commonly believed that it is unlikely that all problems in SNP are solvable in subexponential time.
We start with the following theorem, which is due to Nemhauser and Trotter [19]. This version of
the theorem appears in [8].

Theorem 4.1 ([8]) Given an instance (G, k) of vertex cover, there is a polynomial time algo-
rithm which either reports that G does not have a vertex cover of size k, or produces a subgraph G′

of G with at most 2k′ vertices, where k′ ≤ k, such that G has a vertex cover of size k if and only
if G′ has a vertex cover of size k′.

Theorem 4.2 If the parameterized independent set problem can be solved in time no(k), where
n is the number of vertices in the graph, then all problems in SNP can be solved in subexponential
time.

Proof. Assume that there is an algorithm A which determines whether there exists an inde-
pendent set of size k in a graph G with n vertices in O(nf(k)) steps, where f(k) ≤ k/r(k) for some
unbounded nondecreasing function r(k). We will show that the vertex cover problem can be
solved in time 2o(k)p(n), for some polynomial p (note that this will imply that vertex vover can
be solved in time 2o(n), which is subexponential). Since the vertex cover problem is complete
for the class SNP under SERF reductions, this will show that all problems in SNP can be solved
in subexponential time [17].

Let (G = (V,E), k) be an instance of vertex cover. By Theorem 4.1, we can assume that
G has at most n ≤ 2k vertices. We partition the n vertices of G into k′ = d n

dlog kee blocks

B1, B2, . . . , Bk′ each of size bounded by dlg ke. Observe that G has a vertex cover of size k if
and only if there exists a way to partition k into k1, . . . , kk′ (i.e., k = k1+ k2+ · · ·+ kk′), and there

are subsets V ′
i ⊆ Bi, i = 1, . . . , k′ with |V ′

i | = ki, such that
⋃k′

i=1 V
′
i is a vertex cover for G. Since

10

|Bi| ≤ dlg ke, this approach converts the single question “does G have a vertex cover of size k?”
into at most

dlg kek
′
≤ dlg ke

d 2k
dlg ke

e

= 2
d 2k
dlg ke

e·lg (dlg ke)

= 2o(k)

more restrictive questions of the type “does G have a vertex cover V ′ of size k = k1+ k2+ · · ·+ kk′

with |Bi∩V ′| = ki?”. Hence, we can determine whether G has a vertex cover of size k by answering
at most 2o(k) questions individually.

To answer each of the 2o(k) questions, we use the algorithm A for independent set. Given
G, k, and k1, . . . , kk′ such that k = k1 + k2 + · · · + kk′ , we construct a graph G∗ = (V ∗, E∗) as
follows. For each block of vertices Bi in G, and for each subset Bij ⊆ Bi with |Bij | = ki, add a
vertex vij to V ∗ if Bij is a vertex cover of G(Bi) (the subgraph of G induced by Bi). Add edges to
E∗ so that the collection of the vertices vij associated with block Bi, i = 1, . . . , k′, forms a clique.
In addition, for each vij , vkl ∈ V ∗, where i 6= k, add the edge (vij , vkl) to E∗ if Bij ∪ Bkl does
not form a vertex cover for G(Bi ∪ Bk). This completes the construction of G∗. To determine
if G has a vertex cover of size k with the properties mentioned above, it suffices to use algo-
rithm A to determine if G∗ has an independent set of size k′. We prove the correctness of this claim.

Assume that G∗ has an independent set I of size k′. Since G∗ has k′ disjoint cliques, exactly one
vertex from each set V ∗

i = {vij | vij ∈ V ∗} is in I. Let V ′ = ∪vij∈IBij . Since |Bij | = ki, and at
most one Bij is included in V ′, it follows that |V ′ ∩ Bi| = ki, and |V

′| = k. Thus, it suffices to
prove that V ′ is a vertex cover of G. Let (u, v) ∈ E, and let u ∈ Bi and v ∈ Bk. If i = k, then it
must be the case that either u or v ∈ V ′. To see this, note that there exists a vij ∈ I ⊆ V ∗, which
means that Bij ⊆ V ′ by the definition of V ′. Since vij ∈ V ∗, Bij is a vertex cover of G(Bi), and
either u or v must be in Bij ⊆ V ′. Suppose now that i 6= k, and let vij , vkl be the two vertices in
V ∗
i and V ∗

j , respectively, that are in I. Then it must be the case that u ∈ Bij or v ∈ Bkl, otherwise
Bij ∪Bkl is not a vertex cover of G(Bi ∪Bk), which would imply that there is an edge between vij

and vkl in G∗, contradicting the fact that I is an independent set of G∗. It follows that either u or
v is in V ′. This shows that V ′ is a vertex cover of G. To prove the converse, assume that G has a
vertex cover V ′ of size k = k1 + k2 + · · · + kk′ with |Bi ∩ V ′| = ki. Let I = {vij | Bij = Bi ∩ V ′}.
It is clear that I ⊆ V ∗ and |I| = k′, since for each i, Bij has ki vertices and it is a vertex cover of
G(Bi). Furthermore, I is an independent set in G∗ because for each vij , vkl ∈ I, (vij , vkl) 6∈ E∗.
This is true since Bij ∪Bkl = V ′ ∩ (Bi ∪Bk) is a vertex cover of G(Bi ∪Bk).

Therefore, we can use algorithm A to determine whether G has a vertex cover V ′ of size
k = k1 + k2 + · · ·+ kk′ , by checking whether G∗ has an independent set I of size k′. The graph G∗

has a most 2k · k′ ≤ 4k2 vertices because |Bi| ≤ dlg ke, and there are at most
(dlg ke

ki

)

≤ 2dlg ke ≤

2lg k+1 ≤ 2k, possible subsets Bij of size ki. Therefore, the time taken by applying the algorithm
A to the instance (G∗, k′) is of the order

(4k2)f(k
′) = 2f(k

′)·lg (4k2)

≤ 2k
′/r(k′)(2+2 lg k)

≤ 2(2k/(s(k) lg k)+1/s(k))(2+2 lg k)

= 2o(k)

11

where s(k) = r(k′) is an unbounded non-decreasing function of k. The inequality before the last
uses the fact that k′ = d n

dlog kee ≤ 2k/ lg k + 1.

Noting that the time needed to construct G∗ is O(k4), and that applying Theorem 4.1 takes
polynomial time in n, it follows that the vertex cover problem can be solved in time q(n) +
2o(k) · 2o(k) · k4 ≤ 2o(k)p(n), where p and q are polynomials. This completes the proof.

Consider the following parameterized problems.

weighted q-sat:

Given a CNF formula F on n variables with at most q literals per clause, where q ≥ 2,
determine if there is a weight-k assignment to the variables that satisfies F .

dominating clique:

Given a graph G and a positive integer k, decide if G has a dominating set of size k
that is also a clique.

graph k-cut:

Given a graph G = (V,E), an edge weighting function w : E −→ N, and positive
integers k and b, where k is the parameter, determine if there is a set of edges C ⊆ E
with

∑

e∈C

w(e) ≤ b such that the graph formed from G by removing the edges in C has

at least k connected components.

Note that all the above problems are W [1]-hard [11, 12]. The graph k-cut problem has been
widely studied, and it is known to have a polynomial time algorithm for every fixed k. In particular,
Goldschmidt and Hochbaum [15, 16] proved that graph k-cut can be solved in time O(nk2

) for
every fixed k. Downey et al. [11] recently showed that graph k-cut is W[1]-hard. Note also
that the universal set in the weighted q-sat problem is the set of input variables in the formula,
and the universal set in each of the dominating set, dominating clique, and graph k-cut
problems, is the set of vertices in the graph.

Theorem 4.3 If clique, weighted q-sat (for any q ≥ 2), dominating set, dominating
clique, or graph k-cut can be solved in time no(k) then all problems in SNP can be solved in
subexponential time, where n is the size of the universal set from which the k elements are to be
selected.

Proof. It is well-known that a graph G with n vertices has a clique of size k if and only if
the complement of G, G, has an independent set of size k. Hence, if clique has a no(k) time
algorithm, then parameterized independent set has a no(k) time algorithm. Applying Theorem
4.2 completes the proof. Similarly, the reduction from independent set to weighted 2-sat is
straightforward. Given a graph G with n vertices and an integer k, we can convert the instance
(G, k) of independent set to an instance (F, k) of weighted 2-sat as follows. For each vertex
vi in G, create a Boolean variable xi. For each edge (vi, vj) ∈ E, create the clause (¬xi ∨ ¬xj).
The formula F created by taking the conjunction of all these clauses, is an instance of weighted
2-sat with at most O(n2) clauses. Moreover, F has a weight-k satisfying assignment if and only if
G has an independent set of size k. Hence, if weighted 2-sat has an no(k) time algorithm, then
independent set can be solved in no(k) time.

12

To prove the statement for the dominating set problem, we use the polynomial time reduction
given in [12] from weighted sat to dominating set. Cleary any reduction from weighted sat
to dominating set is also a reduction from weighted q-sat to dominating set (note that in
the weighted q-sat problem the formula is assumed to be in the CNF form) since the weighted
q-sat problem is a restriction of the weighted sat problem to instances in which every clause
contains at most q literals. The reduction in [12] constructs from a CNF formula F of n variables
and m clauses a graph G of O(n3 + m) edges, such that F has a satisfying assignment of weight
k if and only if G has a dominating set of 2k vertices. Observing that the number of clauses m
in an instance of weighted q-sat is always O(nq), which is polynomial in n, it follows that if
the dominating set problem is solvable in no(k) time then the weighted q-sat problem is also
solvable in no(k) time.

To show the statement for the dominating clique problem, it suffices to prove that if dom-
inating clique can be solved in time no(k), then dominating set can be solved in time no(k).
Assume that dominating clique can be solved in time no(k). Given a graph G and an integer
k, we can determine whether G has a dominating set of size k as follows. Construct a graph
G′ = (V ′, E′), where V ′ = {v, v′ | v ∈ V } and E′ is defined as follows. First, add all edges of the
form (u, v) to E ′. Hence, G′ contains a clique of size n. Furthermore, add all edges of the form
(u, v′) to E′, where (u, v) ∈ E. Finally, add all edges of the form (u, u′) to E′. We show that G′

has a dominating clique of size k if and only if G has a dominating set of size k.
Suppose that G has a dominating set D of size k. We show that D is a dominating clique of

size k in G′. First D is clearly a clique in G′, by construction. Also, D dominates all of the vertices
in V because these vertices form a clique. Moreover, D dominates all of the other vertices in V ′.
To see why the preceding statement is true, let v′ ∈ V ′−V . Since D is a dominating set for G, the
vertex v is dominated by D in G, and either an adjacent vertex u to v in G is in D, or v itself is
in D. In the former case there exists an edge from u ∈ D to v′ in G′, and in the latter case there
exists an edge from v ∈ D to v′ in G′, by construction. It follows that in both cases v′ is dominated
by D in G′, and D is a dominating clique in G′.

Conversely, if G′ has a dominating clique D of size k, then at most one of the vertices in D can
come from V ′ − V since the vertices in V ′ form an independent set. Furthermore, if D contains
exactly one vertex v′ ∈ V ′ − V , then since v′ cannot dominate any vertex in V ′ − V except v′,
and since all the vertices in V that are dominated by v′ in G′ are also dominated by v which also
dominates v′, the vertex v′ can be replaced by v and we still get a dominating set of size k for G′

consisting only of vertices in V . Thus, we can assume without loss of generality, that D contains
only vertices from V . Now to see that D is a dominating set in G, let v be a vertex in V . The
vertex v′ in G′ must be dominated by some vertex u ∈ D, and hence, there is an edge from u ∈ D
to v′ in G′. From the construction of G′, either u = v, or u is adjacent to v in G. In both cases,
the vertex v is dominated by u in G, and consequently, D is a dominating set in G.

The above polynomial time reduction from the dominating set problem to the dominating
clique problem shows that we can determine whether a graph G of size n has a dominating set
of size k by determining whether a graph G′ of size 2n has a dominating clique of size k. Thus, if
dominating clique can be solved in time no(k) then we can solve dominating set in time no(k).

We finally show the statement for the graph k-cut problem. It suffices to employ the results
in [11]. In [11], it was shown that there exists a polynomial time many-one reduction from clique
to graph k-cut that transforms an instance (G, k) of clique to an instance (G′, k + 1, b, w) of
graph k-cut, where G′ has (n + 2) · n4 vertices, and k + 1 is the parameter. As shown in [11],
G has a clique of size k if and only if b edges can be deleted from G′ to create k + 1 connected
components in the graph. Now, if graph k-cut can be solved in time no(k), then we can solve

13

the clique problem by performing the reduction from clique to graph k-cut mentioned above,
and then solving the graph k-cut problem in time no(k). The total time for this procedure is the
time needed to construct G′ (a fixed polynomial in n) plus ((n+ 2)(n4))o(k+1) which is no(k). This
completes the proof.

5 Conclusion

In the current paper we have established very strong computational lower bounds on the time
complexity of many natural NP-hard problems including: weighted sat, set cover, feature
set, weighted q-sat, independent set, clique, and dominating set. We showed that an
algorithm with time complexity no(k)p(|I|) for some polynomial p (n is the size of the universal
set from which the k elements are to be chosen, and |I| is the instance size), for any of the above
problems would lead to unlikely consequences in complexity theory such as W [1] = FPT or all
SNP problems are solvable in subexponential time. Observing that all the above problems can be
solved in time nkp(|I|) for some polynomial p by simply enumerating all subsets of size k from the
universal set, the results in the current paper provide a strong evidence that significant improvement
on the straightforward exhaustive search algorithms for the above problems seems unlikely. We also
mention that the results in the current paper can be naturally extended to many other problems
via standard reductions similar to the ones given in Theorem 4.3 (see [7]).

References

[1] K. A. Abrahamson, R. G. Downey, and M. R. Fellows, Fixed-parameter tractability
and completeness IV: on completeness for W [P] and PSPACE analogs, Annals of Pure and
Applied Logic 73, pp. 235-276, (1995).

[2] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier, Fixed parameter
algorithms for dominating set and related problems on planar graphs, Algorithmica 33, pp.
461-493, (2002).

[3] J. Buhler and M. Tompa, Finding motifs using random projections, Journal of Computa-
tional Biology 9, pp. 225-242, (2002).

[4] L. Cai and D. Juedes, On the existence of subexponential parameterized algorithms, Jour-
nal of Computer and System Sciences 67-4, pp. 789-807, (2003).

[5] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and P. Taillon, Solving large
FPT problems on coarse grained parallel machines, Journal of Computer and System Sciences
67-4, pp. 691-706, (2003).

[6] J. Chen, Characterizing parallel hierarchies by reducibilities, Information Processing Letters
39, pp. 303-307, (1991).

[7] J. Chen, X. Huang, I. A. Kanj, and G. Xia, W -hardness under linear FPT-reductions:
structural properties and further application, to appear in Proceedings of the The Eleventh
International Computing and Combinatorics Conference (COCOON’05), Kunming, Yunnan,
PRC, August 16-19, 2005.

14

[8] J. Chen, I. A. Kanj, and W. Jia, Vertex cover: further observations and further improve-
ments, Journal of Algorithms 41, pp. 280-301, (2001).

[9] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progression,
Journal of Symbolic Computation 9, pp. 251-280, (1990).

[10] C. Cotta and P. Moscato, The k-feature set problem is W [2]-complete, Journal of
Computer and System Sciences 67-4, pp. 686-690, (2003).

[11] R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto-Rodriguez, and F. Rosa-
mond, Cutting up is hard to do: the parameterized complexity of k-cut and related problems,
Electronic Notes in Theoretical Computer Science 78, pp. 205–218, (2003).

[12] R.G. Downey and M.R. Fellows, Parameterized Complexity, Springer-Verlag, 1999.

[13] U. Feige and J. Kilian, On limited versus polynomial nondeterminism, Chicago Journal
of Theoretical Computer Science, (1997).

[14] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, H. Freeman, New York, 1979.

[15] O. Goldschmidt and D. Hochbaum, Polynomial algorithm for k-cut problem, in Proceed-
ings of the 29th Annual Symposium on the Foundations of Computer Science (FOCS 1988),
pp. 444-451, (1998).

[16] O. Goldschmidt and D. Hochbaum, A polynomial algorithm for k-cut problem for fixed
k, Mathematics of Operations Research 19, pp. 24-37, (1994).

[17] R. Impagliazzo and R. Paturi, Which problems have strongly exponential complexity?
Journal of Computer and System Sciences 63, pp. 512-530, (2001).

[18] C. Roth-Korostensky, Algorithms for Building Multiple Sequence Alignments and Evolu-
tionary Trees, Ph.D. Thesis, No. 13550, ETH Zürich, 2000.

[19] G. L. Nemhauser and L. E. Trotter, Vertex packing: structural properties and algo-
rithms, Mathematical Programming 8, pp. 232-248, (1975).

[20] J. Nes̆etr̆il and S. Poljak, On the complexity of the subgraph problem, Commentationes
Mathematicae Universitatis Carolinae 26 (2), pp. 415-419, (1985).

[21] C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity
classes, Journal of Computer and System Sciences 43, pp. 425-440, (1991).

[22] C. H. Papadimitriou and M. Yannakakis, On limited nondeterminism and the complexity
of VC dimension, Journal of Computer and System Sciences 53, pp. 161-170, (1996).

[23] P. A. Pevzner and S.-H. Sze, Combinatorial approaches to finding subtle signals in DNA
sequences, Proc. 8th International Conference on Intelligent Systems for Molecular Biology,
pp. 269-278, (2000).

[24] U. Stege, Resolving Conflicts from Problems in Computational Biology, Ph.D. Thesis, No.
13364, ETH Zürich, 2000.

15

[25] K. Van Horn and T. Martinez, The minimum feature set problem, Neural Networks 7
(3), pp. 491-494, (1994).

[26] G. J. Woeginger, Exact algorithms for NP-hard problems: a survey, Lecture Notes in
Computer Science 2570, pp. 185-207, Springer-Varlag (2003).

16

