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Abstract. The notion of linear fpt-reductions has been recently used to
derive strong computational lower bounds for well-known NP-hard prob-
lems. In this paper, we formally investigate the notions of W [t]-hardness
and W [t]-completeness under the linear fpt-reduction, and study struc-
tural properties of the corresponding complexity classes. Additional com-
plexity lower bounds on important computational problems are also es-
tablished.

1 Introduction

A parameterized problem Q is a decision problem consisting of instances of the
form (x, k), where the integer k ≥ 0 is called the parameter. The parameterized
problem Q is fixed-parameter tractable [8] if it can be solved in time f(k)|x|O(1),
where f is a recursive function5. Certain NP-hard parameterized problems, such
as vertex cover, are fixed-parameter tractable, and hence can be solved prac-
tically for small parameter values [7]. On the other hand, the inherent compu-
tational difficulty of solving many other NP-hard parameterized problems with
even small parameter values has suggested that certain parameterized prob-
lems be not fixed-parameter tractable, which has motivated the theory of fixed-
parameter intractability [8]. The W -hierarchy

⋃
t≥0 W [t] has been introduced to

characterize the inherent level of intractability for parameterized problems. A
large number of parameterized problems have been proved to be hard or com-
plete for various levels in the W -hierarchy [8]. Examples of W [1]-hard problems
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include many well-known NP-hard problems such as clique, dominating set,
set cover, and weighted cnf satisfiability. The theory of parameterized
intractability has found important applications in a variety of areas such as
database systems and model checking [9, 10, 16].

The W [1]-hardness of a parameterized problem provides a strong evidence
that the problem is not solvable in time f(k)nO(1) for any function f . However,
W [1]-hardness dose not provide further information on how precisely the problem
complexity depends on the parameter k. For example, the W [1]-hardness of the
clique problem does not exclude the possibility of solving the problem in time
O(nlog log k). Note that such an algorithm would be practically acceptable for
moderate values of the parameter k, such as k = 1000.

Recent investigation has started along this line of research. In particular, the
concept of linear fpt-reduction has been introduced to derive stronger computa-
tional lower bounds for well-known NP-hard parameterized problems [4, 5]. For
example, based on the linear fpt-reduction, it has been shown that unless an
unlikely collapse occurs in the parameterized complexity theory, any algorithm
solving the clique problem takes time at least nΩ(k). Note that this lower bound
is asymptotically tight in the sense that the trivial algorithm that enumerates
all subsets of k vertices in a given graph to test the existence of a clique of size
k runs in time O(nk).

Therefore, the linear fpt-reduction has provided a powerful method for deriv-
ing strong computational lower bounds. In this paper, we formally investigate the
concepts of W [t]-hardness and W [t]-completeness under the linear fpt-reduction,
and systematically study the structural properties of the corresponding com-
plexity classes. These complexity classes are defined based on generic complete
problems under the linear fpt-reduction, instead of on computational models as
for most traditional complexity classes. Therefore, it is natural to ask whether
the familiar structural properties for traditional complexity hierarchies still hold
true for the new parameterized complexity hierarchy. Moreover, the study of the
structural properties of the new complexity classes has a direct impact on the
applications of the theory to derive strong computational lower bounds.

We then illustrate the power of our techniques by deriving complexity lower
bounds for further computational problems. We note that many of the fpt-
reductions proposed in the literature are actually linear fpt-reductions or can
be easily modified to become linear fpt-reductions. This enables us to quickly
expand the list of computational problems with strong complexity lower bounds.
We also study the parameterized complexity of the problems in the classes lognp
and logsnp introduced by Papadimitriou and Yannakakis [15]. These problems
are solvable in time nO(log n) and therefore look “easier” than NP-hard problems
in general. In particular, we study the problems tournament dominating set,
rich hypergraph cover, and v-c dimension in these classes, and prove that,
these problems are W [1]-hard under the linear fpt-reduction. In consequence,
unless an unlikely collapse occurs in the parameterized complexity theory, these
problems cannot be solved in time f(k)no(k), neither can the optimization ver-
sions of these problems have polynomial time approximation schemes of running
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time f(1/ε)no(1/ε), for any function f . These results either improve or comple-
ment previous research on the problems, and advance our understanding on the
complexity of the problems.

We briefly review the related terminologies. Denote by FPT the class of all
fixed-parameter tractable problems. A circuit C is a Πt-circuit if its output gate
is an and gate and it has depth t. The weight of an assignment τ to a circuit
is the number of variables assigned value 1 by τ . The parameterized problem
weighted satisfiability on Πt-circuits, abbreviated wcs[t], is to determine
for a given Πt-circuit C and an integer k, whether C has a satisfying assignment
of weight k. The weighted monotone satisfiability (resp. weighted anti-
monotone satisfiability) problem on Πt-circuits, abbreviated wcs+[t] (resp.
wcs−[t]) is defined similarly as wcs[t] except that the circuit C is required to
be monotone (resp. antimonotone). To simplify our statements, we will denote
by wcs∗[t] the problem wcs+[t] if t is even and the problem wcs−[t] if t is odd.
Finally, the weighted antimonotone cnf 2sat problem, abbreviated wcnf
2sat−, consists of the pairs of the form (F, k), where k is an integer k and F
is a CNF formula in which all literals are negative and each clause contains at
most 2 literals, such that F has a satisfying assignment of weight k.

Due to the space limit, proofs for Theorems 1, 2, 3, and 5 have been omitted.
We refer interested readers to the full version of the paper [6].

2 Wl-hardness and Wl-completeness

Each instance (C, k) of the wcs[t] problem can be regarded as a search problem,
in which we need to select k elements from a search space consisting of a set of n
input variables, and assign them value 1 so that the circuit C is satisfied. Many
well-known computational problems, such as weighted cnf sat, set cover,
and hitting set, have similar formulations. The interested reader is referred to
[5] for detailed discussion on this issue.

We will concentrate on parameterized problems that seek a subset in a search
space satisfying certain properties. Thus, each instance of our parameterized
problem is associated with a triple (k, n, m), where k is the parameter, n is the
size of the search space, and m is the instance size 6.

Definition 1. A parameterized problem Q is linear fpt-reducible, shortly fptl-
reducible, to a parameterized problem Q′ if there exist a function f and an
algorithm A of running time f(k)mO(1) that, on each (k, n, m)-instance x of Q,
produces a (k′, n′,m′)-instance x′ of Q′, where k′ = O(k), n′ = nO(1), m′ =
mO(1), and x is a yes-instance of Q if and only if x′ is a yes-instance of Q′.

It is easy to verify that the fptl-reducibility is transitive. Similar to the W -
hierarchy defined in terms of the standard fpt-reducibility [8], we introduce a
W -hierarchy based on the fptl-reducibility.

6 For most problems in our consideration, the search space can be easily identified.
For problems in which the search space is not easily identified, we simply let n = m.
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Definition 2. A parameterized problem Q is W [1]-hard under the fptl-reduction,
shortly Wl[1]-hard, if the wcnf 2sat− problem is fptl-reducible to Q. The prob-
lem Q is W [t]-hard under fptl-reduction, shortly Wl[t]-hard, for t ≥ 2 if the
wcs∗[t] problem is fptl-reducible to Q. For all t ≥ 1, a parameterized problem
Q is Wl[t]-complete if Q is in W [t] and is Wl[t]-hard.

The Wl[t]-hardness has been used to derive strong complexity lower bounds.
For Wl[t]-hard problems where t ≥ 2, we have the following result.

Proposition 1. (Theorem 5.1, [5]) For any integer t ≥ 2, unless W [t − 1] =
FPT, no Wl[t]-hard problem can be solved in time f(k)no(k)mO(1) for any recur-
sive function f .

Computational lower bounds for Wl[1]-hard problems have been closely re-
lated to the exponential time hypothesis (ETH), which was first articulated in
[12]. This hypothesis conjectures that the problem 3-satisfiability cannot be
solved in time 2o(n). To support the hypothesis, Impagliazzo and Paturi [12] have
shown that if ETH fails then many well-known NP-hard problems, including all
SNP problems formulated in [14], are solvable in subexponential time. Note that
many of the SNP problems have been the targets for exact algorithms for decades
but no subexponential time algorithms for them have been developed.

It is known [8] that ETH implies W [1] 6= FPT.

Proposition 2. (Theorem 5.2, [5]) Unless ETH fails, no Wl[1]-hard problem is
solvable in time f(k)mo(k) for any recursive function f .

The main result in this section is that for any t ≥ 1, Wl[t+1]-hardness implies
Wl[t]-hardness. There are a number of reasons why this result is not trivial and
should be examined carefully:

– In most hierarchies in complexity theory, the hardness for an upper level
implies trivially the hardness for a lower level. For example, a Σp

t+1-hard
problem in the polynomial time hierarchy is automatically Σp

t -hard by the
definitions [13]. Therefore, it will be interesting to check whether such a
common property is also shared by the Wl-hierarchy.

– Such a result does not trivially follow from the definitions. The Wl[t]-hardness
is defined differently according to the parity of the integer t: for an even inte-
ger t, Wl[t]-hardness is defined based on the satisfiability problem wcs+[t] on
monotone circuits, while for an odd integer t, Wl[t]-hardness is defined based
on the satisfiability problem wcs−[t] on antimonotone circuits. In particu-
lar, the fpt-reduction from the problem wcs∗[t− 1] to the problem wcs∗[t]
proposed in the literature [8] is not a linear fpt-reduction (see Chapter 12 in
[8] for details).

– Note that the lower bound in Proposition 2 is actually stronger than that
in Proposition 1 since the search space size n is in general not larger than
the instance size m. That is, Wl[1]-hardness in fact implies a stronger lower
bound (although also under a stronger working hypothesis) than that implied
by Wl[t]-hardness for t > 1. Therefore, proving that Wl[t]-hardness implies
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Wl[t− 1]-hardness will immediately provide a stronger computational lower
bound for Wl[t]-hard problems when t > 1.

Theorem 1. For any t ≥ 2, Wl[t + 1]-hardness implies Wl[t]-hardness.

Theorem 2. Wl[2]-hardness implies Wl[1]-hardness.

3 New lower bounds

Propositions 1 and 2 offer powerful techniques for deriving strong complexity
lower bounds for well-known NP-hard problems. In particular, it has been shown
[4, 5] that the following parameterized problems are Wl[2]-hard: weighted cnf
satisfiability, set cover, hitting set, and dominating set, and that the
following parameterized problems are Wl[1]-hard: weighted cnf q-sat for any
integer q ≥ 2, clique, and independent set. According to Proposition 2, none
of these problems can be solved in time f(k)mo(k) for any recursive function f
unless ETH fails.

In this section we expand the list of Wl[1]-hard problems by developing linear
fpt-reductions from the known Wl[1]-hard problems. In fact, many existing fpt-
reductions proposed in the literature are linear fpt-reductions. Therefore, these
fpt-reductions can be directly used or modified for our purpose. Using this ap-
proach, we can quickly get a much longer list of Wl[1]-hard problems and claim
strong complexity lower bounds for these problems. The reader is referred to [8]
for precise definitions for these problems.

Theorem 3. (1) The following parameterized problems are Wl[2]-hard: red-
blue dominating set, dominating clique, precedence constrained proces-
sor scheduling, feature set, and weighted binary integer program-
ming; and (2) The problem set packing is Wl[1]-hard.

In particular, none of these problems can be solved in time f(k)mo(k) for any
recursive function f unless ETH fails.

Again, Theorem 3 gives asymptotically tight complexity lower bounds in a
very strong sense for these well-known NP-hard problems. For example, even
though the dominating clique problem can be trivially solved by exhaustive
enumeration in time O(nkm) of all subsets of k vertices, where n is the number
of vertices and m is the instance size of the graph, solving the problem in time
f(k)mo(k) is very unlikely for any recursive function f .

We further apply our technique to study two important problems in compu-
tational biology.

longest common subsequence: given a set S = {s1, s2, ..., sk} of k
strings over a finite alphabet Σ, and an integer λ > 0, is there a string
s ∈ Σ∗ of length λ, which is a subsequence of all of the k strings in S?
Here the parameter is k.

shortest common supersequence: given a set S = {s1, s2, ..., sk} of
k strings over a finite alphabet Σ, and an integer λ > 0, is there a string
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s ∈ Σ∗ of length λ, which is a supersequence of all of the k strings in S?
Here the parameter is k.

Theorem 4. The problems longest common subsequence and shortest
common supersequence are Wl[1]-hard. In consequence, they cannot be solved
in time f(k)mo(k) for any function f , unless ETH fails.

Proof. Pietrzak [17] has recently proved the W [1]-hardness for the problems
longest common subsequence and shortest common supersequence
by fpt-reductions from clique. For longest common subsequence, Pietrzak
developed a polynomial time algorithm A1 that, on an instance (G, k) of clique,
produces an instance (S1, λ1, k1) for longest common subsequence, where
k1 = k + 1 and |S1| = O(k8n7) = O(n15), such that (G, k) is a yes-instance of
clique if and only if (S1, λ1, k1) is a yes-instance of longest common subse-
quence. This fpt-reduction is obviously a linear fpt-reduction. In consequence,
the longest common subsequence problem is Wl[1]-hard. Note that here
we have simply let the search space size in an instance of longest common
subsequence to be equal to the instance size.

The other polynomial time algorithm developed by Pietrzak transforms an
instance (G, k) of clique to an instance (S2, λ2, k2) for shortest common
supersequence, where k2 = k + 1 and |S2| = O(k8n7) = O(n15), which gives
a linear fpt-reduction from clique to shortest common supersequence. In
consequence, shortest common supersequence is Wl[1]-hard. ut

To see the significance of Theorem 4, we quote a sentence from [17]:

Unless an unlikely collapse in the parameterized hierarchy occurs, this7

rules out the existence of exact algorithms with running time f(k)nO(1)

(i.e., exponential only in k) for those problems. This does not mean
that there are no algorithms with much better asymptotic time-complexity
than the known O(nk) algorithms based on dynamic programming, e.g.,
algorithms with running time n

√
k are not deemed impossible by our re-

sults.

Therefore, Theorem 4 has strengthened the results in [17] significantly and ad-
vanced our understanding on the complexity of the problems: it is actually un-
likely that the problems can be solved in time nγ(k) for any sublinear function
γ(k), and the known dynamic programming algorithms of running time O(nk)
for the problems are actually asymptotically optimal.

4 On the complexity of lognp and logsnp problems

To further illustrate the power of our methods, we consider another group of
computational problems introduced by Papadimitriou and Yannakakis [15].

7 This refers to the results proved in [17] that the problems longest common sub-
sequence and shortest common supersequence are W [1]-hard.
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A directed graph G is a tournament if between each pair of vertices in G,
there is exactly one directed edge. A hypergraph H is a rich hypergraph if every
edge in H is incident on at least half of the vertices in H. In their study for the
complexity classes lognp and logsnp, Papadimitriou and Yannakakis [15] have
in particular considered the following problems:

rich hypergraph cover: given a rich hypergraph H = (V, E) and a
parameter k, is there a subset C of k vertices in H such that every edge
in H is incident on at least one vertex in C?

tournament dominating set: given a tournament graph T , and a
parameter k, is there a subset D of k vertices in T such that for each
vertex v not in D, there is at least one vertex w in D and [w, v] is a
directed edge in T?

v-c dimension: given a family F of subsets of a universe U , and a
parameter k, is there a subset S of U such that |S| = k and for each
subset T of S, there is a set CT ∈ F satisfying S ∩ CT = T?

It can be shown [15] that if the parameter value k is larger than log m,
where m is the instance size, then the answer to rich hypergraph cover and
tournament dominating set is always positive while the answer to v-c di-
mension is always negative. Therefore, the problem instances of these problems
become non-trivial only when k ≤ log m. In consequence, all these problems can
be solved in time O(mlog m). Hence, these problems are unlikely to be NP-hard.
On the other hand, it is unknown whether any of these problems is solvable in
polynomial time.

Theorem 5. The problems rich hypergraph cover and tournament dom-
inating set are Wl[2]-hard, and the problem v-c dimension is Wl[1]-hard. In
consequence, they cannot be solved in time f(k)mo(k) for any function f , unless
ETH fails.

The approximability of the problems in Theorem 5 has drawn research inter-
ests recently [1, 2]. Recall that an NP optimization problem Q has a polynomial
time approximation scheme if there is an approximation algorithm AQ that takes
a pair (x, ε) as input, where x is an instance of Q and ε > 0 is a real number, and
returns a solution y for x such that the approximation ratio of the solution y is
bounded by 1 + ε, and for a fixed ε > 0, the running time of the algorithm AQ

is bounded by a polynomial of |x|. The algorithm AQ is a fully polynomial time
approximation scheme for Q if the running time of AQ is bounded by a polyno-
mial of 1/ε and |x|, and is an efficient polynomial time approximation scheme
for Q [3] if the running time of Q is bounded by f(1/ε)|x|O(1) for a function f .

An NP optimization problem Q can be systematically parameterized [5] into
a parameterized problem Para(Q), whose instances take the form (x, k) asking
whether the optimal value for x is not larger than k (resp. not smaller than k)
in case Q is a minimization (resp. maximization) problem.
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Theorem 6. (Theorem 6.1, [5]) If the parameterized version Para(Q) of an NP
optimization problem Q is Wl[1]-hard, then Q has no polynomial time approxima-
tion scheme of running time f(1/ε)mo(1/ε) for any recursive function f , unless
ETH fails.

Consider the following optimization problems.

rich hypergraph cover-opt: given a rich hypergraph H = (V, E),
find a minimum set C of vertices such that each edge in H is incident
on at least one vertex in C.

tournament dominating set-opt: given a tournament graph T , find
a minimum set D of vertices such that for each vertex v not in D, there
is at least one vertex w ∈ D and [w, v] is a directed edge in T .

v-c dimension-opt: given a family F of subsets of a universe U , find a
maximum subset S of U such that for each subset T of S, there is a set
CT ∈ F satisfying S ∩ CT = T .

Theorem 7. Unless ETH fails, none of the problems rich hypergraph cover-
opt, tournament dominating set-opt, and v-c dimension-opt has poly-
nomial time approximation schemes of running time f(1/ε)mo(1/ε) for any re-
cursive function f .

Proof. The parameterized versions of these problems are just the corresponding
parameterized problems in Theorem 5. The theorem follows immediately from
Theorem 5 and Theorem 6. ut

Theorem 7 improves or complements a number of previous results. Papadim-
itriou and Yannakakis [15] introduced the classes lognp and logsnp, and proved
that rich hypergraph cover and tournament dominating set are com-
plete under the polynomial time reduction for the class logsnp, and that v-c
dimension is complete under the polynomial time reduction for the class lognp.
These results hint that it is unlikely that these problems can be solved in poly-
nomial time. Theorem 7 shows that these problems are not only difficult for
being solved precisely in polynomial time, but also difficult for being solved
approximately in polynomial time. Cai and Chen [1] showed that the parame-
terized version of every NP optimization problem with fully polynomial time
approximation schemes is fixed-parameter tractable, and Cesati and Trevisan [3]
extended this result and proved that the parameterized version of every NP opti-
mization problem with efficient polynomial time approximation schemes is fixed-
parameter tractable. As a consequence, these results plus the W [1]-hardness of
the problems rich hypergraph cover, tournament dominating set, and
v-c dimension imply that these problems have no fully or efficient polynomial
time approximation schemes. Theorem 7 further strengthens these results by
showing the impossibility for these problems to have polynomial time approxi-
mation schemes of running time f(1/ε)mo(1/ε) for any recursive function f . Cai,
Juedes, and Kanj [2] studied the approximability of these problems and proved
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that tournament dominating set and rich hypergraph cover cannot be
approximated to a ratio c > 1 unless dominating set can be approximated to
a ratio 2c in time O(2nδ

) for some δ < 1. Theorem 7 complements this result by
showing the inpracticability of approximation algorithms with small approxima-
tion ratio for tournament dominating set and rich hypergraph cover
(under a different working hypothesis). Moreover, it was posed as an open prob-
lem in [2] to study the inapproximability of v-c dimension, and Theorem 7
provides an answer to this question.

We point out that the results in Theorems 5 and 7 can be extended to many
other problems, such as the problems log clique, log dominating set, log
hypergraph cover, log adjustment, log chordless path studied in [15].
For detailed discussions, interested readers are referred to [11].

5 A remark on the W -hierarchy

In this section, we provide an interesting observation on the original W -hierarchy.
Most complexity hierarchies have the “hierarchical collapsing property” so that
the collapsing of a lower level in the hierarchy implies the collapsing of all higher
levels. For example, if for any integer t > 0, the t-th level of the polynomial time
hierarchy collapses to the (t−1)-st level, Σp

t = Σp
t−1, then the entire polynomial

time hierarchy collapses to the (t − 1)-st level: Σp
t+h = Σp

t−1 for all h ≥ 0
[13]. Most important complexity hierarchies, such as the NC hierarchy, the AC
hierarchy, and the Boolean hierarchy, share a similar collapsing result [13].

It has been a well-known open problem in parameterized complexity theory
whether the W -hierarchy satisfies a similar collapsing result. In particular, we
are interested in knowing whether the following result holds true for the W -
hierarchy:

Collapsing. If W [t] = FPT for an integer t ≥ 1, then W [h] = FPT for all
integer h ≥ t.

One would expect naturally that the collapsing results such as Collapsing
hold true. In the following, we discuss the consequence of Collapsing.

Theorem 8. If Collapsing holds true, then the problem wcs∗[t] either cannot
be solved in time f1(k)no(k)mO(1) for any function f1, or can be solved in time
f2(k)mO(1) for a fixed function f2.

Proof. Suppose that the problem wcs∗[t] can be solved in time f1(k)no(k)mO(1)

for a function f1. By Proposition 1, this implies that W [t − 1] = FPT . By
collapsing, this would imply W [t] = FPT . Since wcs∗[t] is in W [t], we derive
that wcs∗[t] can be solved in time f2(k)mO(1) for a function f2. ut

Obviously, the problem wcs∗[t] in Theorem 8 can be replaced by any Wl[t]-
complete problem.

Note that if Collapsing can be proved, then the conclusion in Theorem 8
holds true unconditionally, not depending on any complexity assumptions such
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as P 6= NP or W [1] 6= FPT . This would exclude the possibility that, for example,
the complexity of the clique problem is in the order of Θ(n

√
k).
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