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Abstract. We introduce a notion of approximation, called safe approx-
imation, for minimization problems that are subset problems. We first
study the relation between the standard notion of approximation and
safe approximation, and show that the two notions are different unless
some unlikely collapses in complexity theory occur. We then study the
relation between safe approximation and kernelization. We demonstrate
how the notion of safe approximation can be useful in designing ker-
nelization algorithms for certain fixed-parameter tractable problems. On
the other hand, we show that there are problems that have constant-
ratio safe approximation algorithms but no polynomial kernels, unless
the polynomial hierarchy collapses to the third level.

1 Introduction

Studying the relation between parameterized complexity and approximation the-
ory has attracted the attention of researchers from both areas. Cai and Chen
initiated this study by showing that any optimization problem that has a fully
polynomial time approximation scheme (FPTAS) is fixed-parameter tractable
(FPT) [8]. This result immediately places a large number of optimization prob-
lems in the class FPT. Cesati and Trevisan [10] refined Cai and Chen’s result
by relaxing the condition that the problem has an FPTAS. A problem is said to
have an efficient polynomial time approximation scheme (EPTAS), if the prob-
lem has a PTAS whose running time is of the form f(1/ε)nO(1) (n is the input
size and ε is the error bound). By definition, an FPTAS for a problem is also an
EPTAS. Cesati and Trevisan [10] showed that having an EPTAS is a sufficient
condition for a problem to be in FPT. Cai and Chen also showed in [8] that
the class MaxSNP of maximization problems, defined by Papadimitriou and
Yannakakis [24], and the class Min F+Π1 of minimization problems, defined by
Kolaitis and Thakur [19], are subclasses of the class FPT.

In [13], Chen et al. introduced the notion of efficient fixed-parameter tractabil-
ity, and gave a complete characterization of the relation between the class FPTAS
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and the class FPT. They showed that a parameterized problem has an FPTAS if
and only if it is efficient fixed-parameter tractable [13], which complements the
earlier result by Cai and Chen [8]. Moreover, to study the relation between EP-
TAS and FPT, Chen et al. [13] introduced the notion of the planar W -hierarchy,
and showed that all problems in the planar W -hierarchy, which contains several
known problems such as planar vertex cover and planar independent
set, have EPTAS.

We note that the parameterized complexity framework has also been used to
obtain negative approximation results (see [9, 12, 21], to name a few). For exam-
ple, the above relations between approximation and parameterized complexity
have been used to rule out the existence of EPTAS for certain problems that
admit PTAS (see [9, 21]). For an extensive overview on the relation of parame-
terized complexity and approximation, as well as on combinations of these two
paradigms, we refer the interested reader to the recent survey of Marx [22].

More recently, Kratsch [20] studied the relation between kernelization and ap-
proximation. He showed that two large classes of problems having constant-ratio
approximation algorithms, namely MIN F+Π1 and MaxNP, the latter includ-
ing MaxSNP, admit polynomial kernelization for their parameterized versions.
His result extends Cai and Chen’s results [8] mentioned above.

In this paper we investigate further the relation between approximation and
kernelization. We focus our attention on minimization problems that are subset
problems (i.e., the solution is a subset of the search space), and define the notion
of safe approximation for subset minimization problems. Informally speaking, an
approximation algorithm for a subset minimization problem is safe if for every
instance of the problem the algorithm returns a solution that is guaranteed to
contain (subset containment) an optimal solution. We note that many natural
subset minimization problems admit safe approximation algorithms. We start
by showing that the notion of safe approximation is different from the stan-
dard notion of approximation, in the sense that there are problems that admit
approximation algorithms with certain ratios but do not admit safe approx-
imation algorithms even with much worse ratios, under standard complexity
assumptions. For example, we show that there are natural problems that have
PTASs but do not even have constant-ratio safe approximation algorithms unless
W [1] = FPT. We then proceed to study the relation between safe approximation
and kernelization. We demonstrate, through some nontrivial examples, that the
notion of safe approximation can be very useful algorithmically: we show how
safe approximation algorithms for certain problems can be used to design ker-
nelization algorithms for their associated parameterized problems. On the other
hand, we show that safe approximation does not imply polynomial kernelization
by proving that there are problems that have constant-ratio safe approximation
algorithms but whose associated parameterized problems do not have polynomial
kernels, unless the polynomial hierarchy collapses to the third level.

Due to the lack of space, most proofs are deferred to the full version of the
paper.



2 Preliminaries

Parameterized complexity and kernelization. A parameterized problem Q is a
subset of Σ∗ × N, where Σ is a finite fixed alphabet and N is the set of non-
negative integers. Therefore, each instance of the parameterized problem Q is a
pair (x, k), where the second component, i.e., the non-negative integer k, is called
the parameter. We say that the parameterized problem Q is fixed-parameter
tractable [16], shortly FPT, if there is an algorithm that decides whether an
input (x, k) is a member of Q in time f(k)|x|O(1), where f(k) is a recursive
function of k. Let FPT denote the class of all fixed-parameter tractable problems.
A parameterized problem Q is kernelizable if there exists a polynomial-time
reduction, the kernelization, that maps instances (x, k) of Q to other instances
(x′, k′) of Q such that: (1) |x′| ≤ g(k), (2) k′ ≤ g(k), for some recursive function
g, and (3) (x, k) is a yes-instance of Q if and only if (x′, k′) is a yes-instance of Q.
The instance (x′, k′) is called the kernel of (x, k). A kernelization is polynomial
if g(k) is bounded by a polynomial in k.

A hierarchy of fixed-parameter intractability, the W -hierarchy
⋃
t≥0W [t], has

been introduced. Here, W [t] ⊆ W [t + 1] for all t ≥ 0 and the 0-th level W [0]
is the class FPT. The hardness and completeness notions have been defined for
each level W [i] of the W -hierarchy, for i ≥ 1 [16]. It is commonly believed that
collapses in the W -hierarchy are unlikely (i.e., W [i] 6= W [i− 1], for any integer
i ≥ 1), and in particular, W [1] 6= FPT (see [16]).

NP-optimization problems and approximability. An NP optimization problem Q
is a 4-tuple (IQ, SQ, fQ, gQ), where: IQ is the set of input instances, which is
recognizable in polynomial time. For each instance x ∈ IQ, SQ(x) is the set of
feasible solutions for x, which is defined by a polynomial p and a polynomial-
time computable predicate π (p and π depend only on Q) as SQ(x) = {y : |y| ≤
p(|x|) ∧ π(x, y)}. The function fQ(x, y) is the objective function mapping a pair
x ∈ IQ and y ∈ SQ(x) to a non-negative integer. The function fQ is computable
in polynomial time. The function gQ is the goal function, which is one of the
two functions {max,min}, and Q is called a maximization problem if gQ = max,
or a minimization problem if gQ = min. We will denote by optQ(x) the value
gQ{fQ(x, z) | z ∈ SQ(x)}, and if there is no confusion about the underlying
problem Q, we will write opt(x) to denote optQ(x).

In this paper we restrict our attention to optimization problems in NP that
are minimization problems. An algorithm A is an approximation algorithm for
a minimization problem Q if for each input instance x ∈ IQ the algorithm A
returns a feasible solution yA(x) ∈ SQ(x). The solution yA(x) has an approxi-
mation ratio r(|x|) if it satisfies the following condition:

fQ(x, yA(x))/optQ(x) ≤ r(|x|).

The approximation algorithm A has an approximation ratio r(|x|) if for every
instance x in IQ the solution yA(x) constructed by the algorithm A has an
approximation ratio bounded by r(|x|).



An optimization problem Q has a constant-ratio approximation algorithm if it
has an approximation algorithm whose ratio is a constant (i.e., independent from
the input size). An optimization problem Q has a polynomial time approximation
scheme (PTAS) if there is an algorithm AQ that takes a pair (x, ε) as input, where
x is an instance of Q and ε > 0 is a real number, and returns a feasible solution
y for x such that the approximation ratio of the solution y is bounded by 1 + ε,
and for each fixed ε > 0, the running time of the algorithm AQ is bounded by
a polynomial of |x|. Finally, an optimization problem Q has a fully polynomial
time approximation scheme (FPTAS) if it has a PTAS AQ such that the running
time of AQ is bounded by a polynomial of |x| and 1/ε.

Definition 1. Let Q = (IQ, SQ, fQ, gQ) be a minimization problem. The param-
eterized version of Q is Q≤ = {(x, k) | x ∈ IQ ∧ optQ(x) ≤ k}. A parameterized
algorithm AQ solves the parameterized version of Q if on any input (x, k) ∈ Q≤,
AQ returns “yes” with a solution y in SQ(x) such that fQ(x, y) ≤ k, and on any
input not in Q≤, AQ simply returns “no”.

The above definition allows us to consider the parameterized complexity of
a minimization problem Q, which is the parameterized complexity of Q≤.

The problems discussed in the current paper all share the property that they
seek a subset, of a given set (a “search space”), that satisfies certain proper-
ties. We call such problems subset problems. Most of the problems studied in
parameterized complexity and combinatorial optimization are subset problems.1

3 Safe approximation

In this section we define a notion of approximation for subset minimization prob-
lems that we call safe approximation, and we study its relation to the standard
notion of approximation.

Definition 2. Let Q be a subset minimization problem. An approximation al-
gorithm A for Q is said to be safe if for every instance x of Q, A returns a
solution yA(x) such that there exists an optimal solution Sopt(x) of x satisfying
Sopt(x) ⊆ yA(x). The notions of constant-ratio safe approximation algorithm,
safe PTAS, and safe FPTAS are defined in a natural way.

Informally speaking, an approximation algorithm for a minimization subset
problem is safe if the solution that it returns is guaranteed to contain an optimal
solution.

Some natural questions to ask are the following: (1) Are there (NP-hard)
subset minimization problems that admit safe approximation algorithms with

1 In the case of optimization problems the subset sought is one that mini-
mizes/maximizes the objective function, among all subsets satisfying the required
properties. For most problems considered in this paper, the objective function is the
cardinality of the subset sought.



“small” ratios? (2) Does every problem that has a constant-ratio approxima-
tion algorithm (resp. PTAS/FPTAS) have a constant-ratio safe approximation
algorithm (resp. safe PTAS/FPTAS)?

The answer to question (1) is positive: many minimization problems ad-
mit safe approximation algorithms with “small” ratios (e.g., constant ratios).
Those problems include vertex cover (follows from a well-known theorem of
Nemhauser and Trotter [4, 23]), many subset minimization problems on bounded-
degree graphs (for many such problems we can simply return the whole set of
vertices as the approximate solution), and many subset minimization problems
on planar graphs (e.g., planar dominating set).

We show next that, unless some unlikely collapses in complexity theory or
parameterized complexity occur, the answer to question (2) is negative. First,
we define the following problems.

A vertex cover in an undirected graph is a subset of vertices C such that
every edge in the graph is incident to at least one vertex in C. The connected
vertex cover problem is: Given an undirected graph G, compute a subset of
vertices C of minimum cardinality such that C is a vertex cover of G and the
subgraph of G induced by C is connected.

A dominating set in an undirected graph is a subset of vertices D such that
every vertex in the graph is either in D or has a neighbor in D. The dominating
set problem is: Given an undirected graph G, compute a subset of vertices D
of minimum cardinality such that D is a dominating set of G. A unit disk graph
(UDG) is a graph on n points/vertices in the Euclidean plane such that there is
an edge between two points in the graph if and only if their Euclidean distance
is at most 1 (unit). The dominating set problem on UDGs, denoted udg-
dominating set, is the dominating set problem restricted to UDG’s.

We answer question (2) negatively by showing that the dominating set
problem, which has an approximation ratio lg n+ 1 [17] (n is the number of the
vertices in the graph), is unlikely to have a safe approximation algorithm of ratio
c lg n, for any constant c > 0:

Theorem 1. Unless FPT = W [2], dominating set does not have a safe ap-
proximation algorithm of ratio ρ ≤ c lg n, for any constant c > 0.2

Proof. Let (G, k) be an instance of dominating set≤. Suppose that dominat-
ing set has a safe approximation algorithm A of ratio c lg n. We run A on G
to obtain a solution D of G such that |D|/|opt(G)| ≤ c lg n. If |D| > ck lg n,
it follows that opt(G) > k, and we can reject the instance (G, k); so assume
|D| ≤ ck lg n. Since A is a safe approximation algorithm, D contains a minimum
dominating set. Therefore, in time

∑k
i=1

(
ck lgn
i

)
n2 we can enumerate all subsets

of D of size at most k, and check whether any of them is a dominating set. If
we find any, then we accept the problem instance (G, k); otherwise, we reject

2 As a matter of fact, under the same complexity hypothesis, we can rule out (using
a similar proof) the existence of a safe approximation algorithm of ratio no(1) for
dominating set.



it. This shows that dominating set≤ is solvable in f(k)nc time for some con-
stant c and completes the proof. ut

By a similar argument, it follows that there are problems that have a PTAS
but that are unlikely to have even a safe constant-ratio approximation algorithm:

Theorem 2. The udg-dominating set problem admits a PTAS but does not
admit a constant-ratio safe approximation algorithm unless W [1] = FPT .

Finally, the connected vertex cover problem, which has an approxima-
tion algorithm of ratio 2 [25], does not admit a constant-ratio safe approximation
algorithm unless the polynomial time hierarchy collapses to the third level:

Theorem 3. Unless the polynomial time hierarchy collapses to the third level,
the connected vertex cover problem does not have a constant-ratio safe
approximation algorithm.3

4 Kernelization and safe approximation

At the surface, the notion of safe approximation seems to be closely related to
the notion of kernelization in parameterized complexity. We clarify some of the
differences between the two notions in the following remark.

Remark 1. It seems intuitive that problems with a safe approximation algorithm
should have kernels of matching size. Of course, the two notions are not equiv-
alent: The safe approximation solution is not necessarily a kernel, as simply
“forgetting” everything outside the solution cannot be guaranteed to give an
equivalent instance. Furthermore, kernelizations are not restricted to subprob-
lems of the original instance and, hence, do not have to return a safe approx-
imation. Still, even if one aims to compute a safe approximation and cleverly
reduce the part outside the solution to small size, it can be showed (Theorem 4)
that there are problems with constant-factor safe approximation but without
polynomial kernels (assuming that the polynomial hierarchy does not collapse).

Remark 2. If a subset minimization problem has a constant-ratio safe approx-
imation algorithm (in fact, any ratio of the form f(opt) suffices, where f is a
nondecreasing efficiently computable function) then its parameterized version
must be FPT (enumerate all subsets of the solution returned by the safe ap-
proximation algorithm in FPT time).

The hitting set problem is defined as follows. Given a pair (S,F) where S
is a set of elements and F is a family of subsets of S, compute a smallest subset
H of S that intersects every set in F .

3 Under the same complexity hypothesis, we can strengthen this result to rule out
the existence of a safe approximation algorithm of ratio opt(G)O(1) for connected
vertex cover.



Theorem 4. Unless the polynomial-time hierarchy collapses to the third level,
there are problems that have constant-ratio safe approximation algorithms but
no polynomial kernels.

Proof. Consider the following restriction of hitting set, denoted paired-HS,
consisting of the set of all instances of hitting set of the form (S,F), where
|S| = 2N for some natural number N , and F contains, in addition to other sets,
N pairwise disjoint sets, each of cardinality 2, whose union is S. It is not diffi-
cult to see that the instances of paired-HS are recognizable in polynomial time
(e.g., by computing maximum matching). Moreover, it follows easily from the
definition of paired-HS that it has a safe approximation algorithm of ratio 2
(the algorithm returns the set S as the solution to the instance (S,F)). Note also
that paired-HS≤ is FPT, since any instance in which the parameter is smaller
than |S|/2 can be rejected immediately, otherwise, a brute force algorithm enu-
merating all subsets of S and checking whether each subset is a solution, is an
FPT algorithm that solves the problem.

We claim that paired-HS≤ does not have a polynomial kernel4, unless the
polynomial hierarchy collapses to the third level. To prove this claim, consider
the d-sat problem that consists of the set of instances of CNF-SAT in which
each clause has at most d literals, where d ≥ 3 is an integer constant. It was
shown in [15] that, unless the polynomial time hierarchy collapses to the third
level, the d-SAT problem parameterized by the number of variables n, has no
oracle communication protocol of cost at most O(nd−ε), for any ε > 0; this can
be easily seen to exclude also kernels as well as compressions into instances of
other problems of size O(nd−ε) (cf. [15]).

Now proceed by contradiction. Assume that paired-HS≤ has a polynomial
kernel of size O(kc) for some integer constant c > 1, and consider the d-sat
problem where d = c + 1. We can reduce d-sat to paired-HS as follows. For
each instance F on n variables, construct the instance (S,F , n) (with parameter
n) of paired-HS≤ where S consists of the set of n variables in F and their
negations; thus, S has 2n elements. For each variable in F we associate a set
of two elements in F containing the variable and its negation. Finally, for each
clause in F we associate a set in F containing the literals in the clause. Clearly,
the resulting instance is an instance of paired-HS≤. Moreover, F is a yes-
instance of d-sat if and only if (S,F , n) is a yes-instance of paired-HS≤; the
key observation is that the paired elements and the maximum size of n encode
the selection of a truth assignment, the other sets check that it is satisfying. It
follows that this reduction compresses instances of d-sat into instances of size
O(nc) = O(nd−1), which implies a collapse of the polynomial hierarchy to the
third level. This completes the proof. ut

In the remainder of this section we study further the relation between safe
approximation and kernelization. We show that the notion of safe approxima-
tion can be useful for obtaining kernelization algorithms for FPT problems. The
vertex cover problem is a trivial example showing how a safe approximation
4 The kernel size for hitting set≤ is the sum of the cardinalities of all sets in F .



algorithm can be used to obtain a kernelization algorithm: no edge has both
endpoints outside the safe approximation solution, and if an edge has one, we
may safely take the other.5 The NT-theorem [4, 23], which is a local-ratio ap-
proximation algorithm of ratio 2 for vertex cover, is at the same time a safe
approximation algorithm. This algorithm has been used in [14] to obtain a kernel
for vertex cover of size at most 2k, which currently stands as the best upper
bound on the kernel size for vertex cover.

It is not always as simple to get a kernelization from a safe approximation
algorithm as in the case of vertex cover. Therefore, it is interesting to inves-
tigate which safe approximation algorithms (for subset minimization problems)
can be turned into kernelization algorithms. In addition to its theoretical impor-
tance, this question has an interesting algorithmic facet: given a solution to the
instance that contains an optimal solution (the “important” part), can we “deal
with” the remaining part of the instance (the “left overs”)?

We illustrate next, through a few examples, how the existence of safe approx-
imation algorithms implies the existence of kernelization algorithms for certain
problems. These results should mainly be seen as illustrative examples of using
safe approximation as a technique for obtaining kernelization algorithms; in most
cases matching or better kernels are known. The problems under consideration
are: edge multicut, vertex multicut, planar dominating set, planar
feedback vertex set, feedback vertex set, and a generalization of feed-
back vertex set, called feedback vertex set with blackout vertices.
Both planar dominating set and planar feedback vertex set admit
PTAS [3], and feedback vertex set and its generalization with blackout ver-
tices admit approximation algorithms of ratio 2 [2]. Both planar dominating
set≤ [1] and planar feedback vertex set≤ [6] have linear kernels, and
feedback vertex set has a quadratic kernel [26].

4.1 Planar dominating set

The planar dominating set problem is the dominating set problem re-
stricted to planar graphs. We show next that any safe approximation algorithm
of ratio ρ for planar dominating set can be used to design a kernelization
algorithm for planar dominating set≤ that computes a kernel with at most
10ρk vertices. For a vertex v in a graph, we denote by N(v) the set of neighbors
of v. Two vertices u and v in a graph are said to be twins if N(u) = N(v).

Theorem 5. If planar dominating set has a safe approximation algorithm
A of constant ratio ρ then planar dominating set≤ has a kernelization algo-
rithm A′ that computes a kernel with at most 10ρk vertices.

Proof. Given an instance (G, k) of planar dominating set≤, the kernelization
algorithm A′ starts by invoking the algorithm A to compute a set of vertices
S of G whose cardinality is at most ρ|opt(G)|, and that contains a minimum
5 This is also true for the d-hitting set; we may forget all elements that are outside

the safe approximation solution, and shrink the sets accordingly.



dominating set of G. If |S| > ρk then clearly opt(G) > k and the algorithm A′
rejects the instance (G, k); so assume |S| ≤ ρk. Let S = V (G)\S. The algorithm
A′ applies the following reduction rules to G in the respective order.

Reduction Rule 1 Remove all the edges in G[S].

Reduction Rule 2 For any set of degree-1 vertices (degree taken in the current
graph) in S that are twins, remove all of them except one vertex.

Reduction Rule 3 For any set of degree-2 vertices in S that are twins (i.e., all
of them are twins), remove all of them except two vertices.

Let G′ be the resulting graph from G after the application of the above
rules. Note that S ⊆ V (G′). The algorithm A′ returns the instance (G′, k).
Since S contains an optimal solution, it is not difficult to verify that (G′, k) is
an equivalent instance of (G, k). Next, we upper bound the number of vertices
in G′.

Let I = V (G′)\S, and note that I is an independent set by Reduction Rule 1.
We partition I into three sets: I1 is the set of degree-1 vertices (degree taken in
G′), I2 is the set of degree-2 vertices, and I≥3 is the set of vertices in I of degree
at least 3. Next, we upper bound the cardinality of each of these three sets.

To upper bound the cardinality of I≥3, we define the multihypergraph H as
follows. The vertex-set ofH is S. A subset of vertices e is an edge inH if and only
if there exists a vertex u ∈ I≥3 such that N(u) = e. Since the incidence graph
of H is a subgraph of G′, and hence is planar, the multihypergraph H is planar.
It follows from Lemma 4.4 in [18] that H has at most 2|V (H)| − 4 = 2|S| − 4
edges. Since the number of edges in H is exactly the number of vertices in I≥3, it
follows that |I≥3| ≤ 2|S| − 4. By Reduction Rule 2, we have |I1| ≤ |S|. To upper
bound |I2|, we construct a planar multigraph G whose vertex set is S, and such
that there is an edge between two vertices u and v in G if and only if there exists
a vertex w ∈ I2 whose neighbors are u and v. Since G′ is planar, G is planar,
and by Reduction Rule 3, there are at most 2 edges between any two vertices in
G. It follows from Euler’s formula that the number of edges in G, and hence the
number of vertices in I2, is at most 2(3|V (G)| − 6) = 6|S| − 12.

Thus |V (G′)| = |I|+ |S| ≤ 10|S| − 16 < 10ρk, completing the proof. ut

4.2 Feedback vertex set

Let G be an undirected graph. A set of vertices F in G is a feedback vertex set
of G if the removal of F breaks all cycles in G, that is, if G− F is acyclic. The
feedback vertex set problem is to compute a feedback vertex set of minimum
cardinality in a given graph. The planar feedback vertex set problem is the
restriction of the feedback vertex set problem to planar graphs. We show
first that a constant-ratio safe approximation for feedback vertex set gives a
kernel with a cubic number of vertices for feedback vertex set≤, using only
one reduction rule plus a simple marking procedure. We then consider a gener-
alization of feedback vertex set≤, which allows for the presence of blackout



vertices, and asks for a feedback vertex set excluding all blackout vertices. We
call this problem feedback vertex set with blackout vertices, fvsbv
for short. This problem was introduced by Bar-Yehuda [5], and has applications
in Bayesian inference. We show that the cubic kernel can be improved for this
generalization to match the known quadratic kernel by Thomassé [26], as the
blackout annotation allows a more efficient processing of the trees that are out-
side the safe approximation, using simpler and different arguments. (Note that
the quadratic upper bound does not carry to the standard feedback vertex
set≤ problem due to the presence of blackout vertices.) Finally, we show that
a ratio ρ safe approximation for planar feedback vertex set gives a kernel
with at most 3ρk vertices for planar feedback vertex set≤.

Theorem 6. If feedback vertex set has a constant-ratio safe approxima-
tion, then feedback vertex set≤ has a cubic kernel.

Corollary 1. If fvsbv has a constant-ratio safe approximation, then fvsbv≤
admits a quadratic kernel.

Theorem 7. If planar feedback vertex set has a safe approximation al-
gorithm with constant ratio ρ then planar feedback vertex set≤ has a
kernel with at most 3ρk vertices.

4.3 Multicut problems

The edge multicut problem is defined as follows: Given a graph G = (V,E)
and a set of pairs T = {(s1, t1), . . . , (s`, t`)} of vertices in G, compute a set of
edges E′ in G of minimum cardinality whose removal disconnects all pairs in T
(i.e., there is no path from si to ti, for i = 1, . . . , `, in (V,E \ E′)).

Theorem 8. If edge multicut has an f(opt) safe approximation algorithm,
where f is a nondecreasing efficiently computable function, then edge multicut≤
has a polynomial kernel with at most 3f(k) vertices.

A similar result holds for vertex multicut≤, where the task is to delete at
most k non-terminal vertices to disconnect all given terminal pairs.

Theorem 9. If vertex multicut has an f(opt) safe approximation algo-
rithm, where f is a nondecreasing efficiently computable function, then vertex
multicut≤ has a polynomial kernel with at most 2f(k) vertices.

5 Conclusion

We presented the notion of safe approximation and studied its relation to the
notion of kernelization in parameterized complexity.

Even though we have shown that the notions of safe approximation and ker-
nelization are different for subset minimization problems, we illustrated through
some nontrivial examples how safe approximation can be useful for obtaining



kernelization algorithms. Some of those results imply linear kernelization algo-
rithms for the problems under consideration. For example, it can be shown that
planar dominating set has a constant-ratio safe approximation algorithm,
which, when combined with Theorem 5, gives a linear kernelization algorithm
for planar dominating set≤. Unfortunately, the obtained upper bound on the
kernel size does not come close to the currently-best upper bound on the kernel
size for planar dominating set≤ [11]. This, however, may not be discourag-
ing due to the mere fact that kernelization algorithms for planar dominating
set≤ have been extensively studied, whereas the notion of safe approximation
was not considered before. Maybe a celebrated example that can be used to
illustrate how safe approximation can be useful for designing kernelization algo-
rithms is the example of vertex cover. An approximation algorithm of ratio
2, the NT-theorem, for vertex cover existed since 1975 [23]. Buss and Gold-
smith [7], in 1993, presented a kernelization algorithm that gives a quadratic
(2k2) kernel for vertex cover≤. This upper bound on the kernel size was sub-
sequently used in several parameterized algorithms for vertex cover≤, until
Chen et al. [14] observed in 2001 that the approximation algorithm given by the
NT-theorem is safe (this notion was not defined at that point), and implies a 2k
kernel for vertex cover≤. We believe that the existence of the notion of safe
approximation may bridge the gap between approximation and kernelization.

Several interesting questions arise from the current research. Many parame-
terized problems admit polynomial kernels and their optimization versions have
constant-ratio approximation algorithms. Do these optimization versions admit
constant-ratio safe approximation algorithms? For example, feedback vertex
set has a ratio 2 approximation algorithm [2] and a quadratic kernel [26], does
it have a constant-ratio safe approximation algorithm? One can ask whether a
sufficient condition (based on parameterized complexity) exists, such that if a
problem satisfying this condition has an approximation algorithm then it must
have a safe approximation algorithm.
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