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Abstract. We study upper and lower bounds on the kernel size for the
3-hitting set problem on hypergraphs of degree at most 3, denoted 3-

3-hs. We first show that, unless P=NP, 3-3-hs on 3-uniform hypergraphs
does not have a kernel of size at most 35k/19 > 1.8421k. We then give
a 4k − k0.2692 kernel for 3-3-hs that is computable in time O(k1.2692).1

This result improves the upper bound of 4k on the kernel size for 3-

3-hs, given by Wahlström. We also show that the upper bound results
on the kernel size for 3-3-hs can be generalized to the 3-hs problem on
hypergraphs of bounded degree ∆, for any integer-constant ∆ > 3.
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1 Introduction

A hitting set in a hypergraphH = (V,E) is a set of vertices S such that every hy-
peredge in H contains at least one vertex from S. The size of a hitting set S is |S|.
The hitting set problem is: Given a hypergraph H = (V,E) and a nonnegative
integer k, decide if there exists a hitting set for H of size at most k. Therefore,
the hitting set problem is a generalization of the vertex cover problem
(given a graph G and a nonnegative integer k, decide if there exists a subset
of vertices C in G such that every edge in G is incident on at least one vertex
of C) to hypergraphs. The vertex cover problem, one of the first few prob-
lems proven to be NP-complete [12], has very important applications in different
areas of science and engineering, where it usually models conflict-resolution prob-
lems, and has received considerable interest from researchers in several areas of
theoretical computer science (approximation, exact/parameterized algorithms,
kernelization, etc).

? The work of this author was partially supported by a DePaul University Competitive
Research Grant.

1 We do not assume that the hypergraph is 3-uniform for the kernel upper bound
results.



The hitting set problem seems to be much more difficult than the ver-

tex cover problem, at least from the approximation theory and parameterized
complexity points of view. Whereas the vertex cover problem can be ap-
proximated (in polynomial time) to within ratio 2, the hitting set problem is
not approximable to within ratio c lgn for some constant c > 0, where n is the
number of vertices in the hypergraph [2]. From the parameterized complexity
perspective, whereas the vertex cover problem is fixed-parameter tractable,
the hitting set problem is W[2]-complete [10], and hence is unlikely to be
solvable in time f(k)nO(1), for any recursive function f .

The parameterized intractability of the hitting set problem led researchers
in parameterized complexity to consider the special case in which the size of
the hyperedge (the number of vertices in the hyperedge) is at most d, for some
integer constant d; this problem is referred to as the d-hitting set problem,
and can be easily seen to be fixed-parameter tractable. In particular, the 3-

hitting set problem, denoted 3-hs, received a lot of attention. Niedermeier
and Rosmanith [13] gave an algorithm for 3-hs running in time O∗(2.27k).2

Subsequently, Fernau [11] improved Niedermeier and Rosmanith’s result by giv-
ing an algorithm for 3-hs that runs in time O∗(2.179k). This result was further
improved by Wahlström [15], who gave an algorithm for 3-hs that runs in time
O∗(2.07k) [15]. In terms of kernelization, the 3-hs problem was shown to admit
a kernel of size O(k3) [13]. This result was recently improved by Abu-Khzam,
who gave a kernel of size O(k2) for 3-hs [1]; this upper bound currently stands
as the best upper bound on the kernel size for 3-hs. Therefore, in contrast to the
vertex cover problem, which is equivalent to the 2-hs problem and hence is a
special case of 3-hs, the 3-hs problem seems to be more difficult—modulo param-
eterized complexity—than vertex cover: Whereas vertex cover is solvable
in time O∗(1.274k) [9] and admits a kernel of size 2k [3, 7], the currently-best
algorithm for 3-hs runs in time O∗(2.07k) [15], and the currently-best upper
bound on the kernel size for 3-hs is O(k2) [1].

The 3-hs problem on bounded-degree hypergraphs has been considered as
well, especially from the kernelization point of view.3 Wahlström [15] showed
that the 3-hs problem on hypergraphs of degree at most ∆ has a kernel of size
at most (∆ + 1)k. He also claimed a lower bound of (∆ + 5)k/(∆ + 1) on the
size of the kernel for the problem [15]. However, the proof that he provided is
flawed. Recently, under the assumption that P 6= NP, Cai proved a lower bound
of (1 + 1/(

√
2∆+ 1 − 1) − ε)k, for any ε > 0, on the size of the kernel for

the 3-hs problem on 3-uniform hypergraphs of degree at most ∆ [4]. Cai also
gave upper and lower bounds on the kernel size for the 3-hs problem on planar
hypergraphs [4].

In this paper we study upper and lower bounds on the kernel size for 3-hs

on hypergraphs of degree at most 3, denoted 3-3-hs. We note that the vertex

2 The asymptotic notation O∗(f(k)) denotes time complexity of the form f(k) · p(),
where p is a polynomial of the input size.

3 Clearly the problem remains NP-complete because vertex cover on graphs of
maximum degree at most 3 is NP-complete [12].



cover problem on graphs of degree at most 3, denoted vc-3, which is a spe-
cial case of 3-3-hs, has received considerable attention from the parameterized
complexity point of view (for example, see [7, 8, 14]). We start by showing that,
unless P=NP, the 3-3-hs problem on 3-uniform hypergraphs does not have a
kernel of size at most 35k/19 > 1.8421k; this improves the lower bound result of
(1 + 1/(

√
7− 1)− ε)k < 1.608k, given by Cai [4].

We then present an algorithm that computes a kernel of size at most 4k −
k0.2692 for 3-3-hs, and that runs in time O(k1.2692). (We note that for these
results we do not assume that the hypergraph is 3-uniform.) This improves the
upper bound of 4k on the kernel size for 3-3-hs, given by Wahlström [15]. We
note that, even though the improvement in the upper bound for the kernel size
is small, the techniques involved rely on deep structural observations. We also
show that these upper bound results can be generalized to the 3-hs problem on
hypergraphs of degree at most ∆, for any integer constant ∆ > 3.

2 Preliminaries

We describe some of the notations and terminologies used in the paper. The
reader is referred to Downey and Fellows’ book [10] for more details about pa-
rameterized complexity theory, and to West [16] for more information on graphs
and hypergraphs.

For a graph G, V (G) and E(G) are the sets of vertices and edges of G;
n(G) = |V (G)| and e(G) = |E(G)| are the number of vertices and edges in G.
For a vertex v, we let N(v) be the set of vertices adjacent to v. The degree of a
vertex v, deg(v), is the number of edges incident to v in G. The subgraph G− v
of G is obtained from G by removing v ∈ V (G) and its incident edges.

A hypergraph H = (V,E) consists of a vertex set V = V (H) and an edge set
E = E(H) so that e ⊆ V for every e ∈ E. The degree of a vertex v in H, denoted
deg(v), is defined as the number of edges in E that contain v. Two vertices u
and v are adjacent or neighbors in H if there exists an edge e ∈ H such that
{u, v} ⊆ e. The distance between two vertices u and v in H is the length of a
shortest path between u and v in H, where a path in H is naturally defined
using the adjacency relationship described above. An edge e is called an i-edge
if |e| = i. A hypergraph H is i-uniform if every edge in H is an i-edge. We say
that a vertex u dominates a vertex v if every edge containing v also contains u.
A set of vertices Γ is said to be dominated by a set of vertices Γ ′ if every edge
in H containing a vertex of Γ also contains a vertex of Γ ′. An edge e is said to
dominate another edge e′ in H if e′ is a subset of e (i.e., e′ ⊆ e). For a vertex
v ∈ H, H − v is the hypergraph resulting from removing vertex v from every
edge in H. For an edge e ∈ H, H− e is the hypergraph resulting from removing
edge e from H (note that the vertices contained in e remain in H).

A hitting set in a hypergraph H = (V,E) is a set of vertices S such that
every hyperedge in H contains at least one vertex from S. The size of a hitting
set S is |S|. A hitting set S is minimum if its size is minimum among all hitting
sets of H. The hitting set problem is: Given a hypergraph H = (V,E) and a



nonnegative integer k, decide if there exists a hitting set S of H whose size is
at most k. The 3-hitting set problem, denoted 3-hs, is the set of instances
(H, k) of the hitting set problem in which every edge in H has cardinality at
most 3. For an integer constant ∆ ≥ 2, the ∆-3-hs problem refers to the 3-hs

problem on hypergraphs of degree at most ∆.
A parameterized problem is a set of instances of the form (x, k), where x ∈ Σ∗

for a finite alphabet set Σ, and k is a non-negative integer called the parameter.
A parameterized problem Q is fixed parameter tractable, or simply FPT, if there
exists an algorithm that on input (x, k) decides if (x, k) is a yes-instance of
Q in time f(k)nO(1), where f is a recursive function independent of n = |x|.
A parameterized problem Q is kernelizable if there exists a polynomial-time
reduction that maps an instance (x, k) of Q to another instance (x′, k′) of Q
such that: (1) |x′| ≤ g(k) for some recursive function g, (2) k′ ≤ f(k) for some
recursive function f , and (3) (x, k) is a yes-instance of Q if and only if (x′, k′) is
a yes-instance of Q. The instance x′ is called the kernel of x.

3 The lower bound

In this section we derive a lower bound on the size of the kernel for the 3-3-hs

problem on 3-uniform hypergraphs.
Using the techniques in [6], Cai proved that unless P=NP, 3-hs on 3-uniform

hypergraphs of degree at most∆, has no kernel of size at most (1+1/(
√
2∆+ 1−

1)− ε)k, for any ε > 0 [4]. Assuming that P 6= NP, Cai’s result implies a lower
bound of (1+1/(

√
7−1)−ε)k < 1.608k on the kernel size of 3-3-hs on 3-uniform

hypergraphs. Using the results in [6], and a more accurate analysis than that
performed in [4], we shall improve on this lower bound next.

An independent set in a hypergraph H is a set of vertices I ⊆ V (H) such
that no edge in H is completely contained in I; that is, for every edge e ∈ E(H):
e ∩ (V \ I) 6= ∅. The independent set problem on hypergraphs is: given a
hypergraph H and a nonnegative integer k, decide if there is an independent
set in H of size at least k. It can be readily seen that a set I ⊆ V (H) is an
independent set in H if and only if V (H) \ I is a hitting set of H. Therefore,
the hitting set and the independent set problem on hypergraphs are dual
problems [6], in the same sense that vertex cover and independent set are
dual problems on graphs.

The results of Caro and Tuza [5] imply that, for any 3-uniform hypergraph H
of degree at most 3, the independence number of H (i.e., the size of a maximum
independent set in H), denoted α(H), satisfies the following inequality:

α(H) ≥
∑

v∈V (H)

deg(v)
∏

i=1

2i

2i+ 1
. (1)

Theorem 1. The independent set problem on 3-uniform hypergraphs of de-
gree at most 3 has a kernel of size 35k/16 that is computable in O(k) time.



Proof. Inequality (1) implies that the independence number of a 3-uniform hy-
pergraph H of degree at most 3 satisfies:

α(H) ≥ (16/35)|V (H)|. (2)

Consider the following kernelization algorithm for independent set on 3-
uniform hypergraphs of degree at most 3: Given an instance (H, k), if |V (H)| ≥
(35/16)k then accept; otherwise, output the original instance as the kernel.

Clearly, the above algorithm can be implemented to run in time linear in k.
The correctness of the algorithm, as well as the upper bound on the kernel size,
follow from Inequality (2). ut

Using the notion of duality introduced in [6], and the fact that the indepen-
dent set on hypergraphs and the hitting set are dual problems, Theorem 1
implies the following result:

Theorem 2. Unless P=NP, the 3-3-hs problem on 3-uniform hypergraphs does
not have a kernel of size at most 35k/19 > 1.8421k.

4 The kernel

In this section we present a kernelization algorithm for 3-3-hs. Note that we
do not assume that the hypergraph is 3-uniform. As we showed in the previous
section, unless P=NP, no kernel of size at most (35/19)k > 1.842k exists for the
3-3-hs problem. A kernel of size at most 4k for the 3-3-hs problem is implied
from the results in [15]. We shall improve on the 4k upper bound on the kernel
size for 3-3-hs.

The following reduction operations are folklore (see [15], for example), and
can be easily verified by the reader:

Reduction Rule 1: If there is a 1-edge e = {v} then include v in the solution
set S, set H := H− e and H := H− v, and decrement k by 1.

Reduction Rule 2: If edge e is dominated by edge e′ then set H := H− e′.

Reduction Rule 3: If vertex u is dominated by vertex v then set H := H− u.

We assume that we have a subroutine Reduce (H, k) that applies Reduc-

tion Rules 1–3 to the instance (H, k). We say that the instance (H, k) is reduced
if none of Reduction Rules 1–3 applies to (H, k). We shall assume in what
follows that the instance (H, k) is reduced.

Definition 1. An edge e ∈ H is good if it contains exactly one degree-3 and two
degree-2 vertices; otherwise, edge e is bad. A vertex v ∈ H is good if every edge
containing v is good; otherwise, vertex v is bad.



Before we present the technical results of this section, we briefly and intu-
itively describe the ideas behind these results.

We will show that if the number of bad vertices is “large”, say larger than a
certain function g(k), then the size of the instance has to be at most 4k−g(k)/6,
in order for a solution (i.e., a hitting set of size at most k) to exist (Lemma 6),
thus improving on the 4k upper bound on the kernel size in this case.4 This
allows us to upper bound the number of bad vertices in the instance. On the
other hand, we show that if the number of degree-2 vertices in the solution is
“large”, say at least g(k), then the size of the instance must be upper bounded
by 4k−g(k) (Lemma 7), again improving on the 4k upper bound in this case. We
then proceed to show that if a degree-2 good vertex whose distance from every
bad vertex is more than some positive integer h, is contained in every solution,
then this vertex forces at least 2bh/2c+2 − 3 degree-2 vertices to be in a solution
(Lemma 9), thus upper bounding the size of the instance by 4k − 2bh/2c+2 + 3
(Lemma 7). Therefore, if the size of the instance is larger than 4k−2bh/2c+2+3,
then no degree-2 good vertex whose distance is more than h from every bad
vertex can be contained in every solution, and hence, any such vertex can be
discarded from the instance (Lemma 10). After discarding all such vertices, every
good degree-2 vertex (resp. good degree-3 vertex) must be within distance h+1
(resp. h+ 2) from some bad vertex. Since the number of bad vertices has been
upper bounded by g(k), this allows us to derive an upper bound on the total
number of vertices (both good and bad), and hence on the size of the instance. By
choosing g(k) and h appropriately, we can derive an upper bound of 4k−k0.2692

on the size of the kernel. We now proceed to the technical details.
The following lemma follows from Definition 1:

Lemma 1. No two degree-3 good vertices are adjacent.

Lemma 2. Let u be a good degree-2 vertex, and let v and w be its degree-3
neighbors. If every minimum hitting set of H contains u, then no minimum
hitting set of H contains v or w.

Proof. If there is a minimum hitting set that contains both u and v (resp. u and
w), then we can replace u by w (resp. v) to obtain a minimum hitting set that
does not contain u, contradicting the hypothesis. ut
Lemma 3. A degree-3 good vertex has exactly 6 degree-2 neighbors.

Proof. Let v be a degree-3 good vertex, and let edges {v, x, y}, {v, u, w}, {v, p, q}
be the three edges containing v.

By Definition 1, vertices x, y, u, w, p, q are all of degree 2. Therefore, it suffices
to show that all these vertices are distinct. Suppose not, then there exists a vertex
among x, y, u, w, p, q that is dominated by v. This contradicts the fact that the
instance (H, k) is reduced. ut
4 It may sound counterintuitive to call such vertices “bad” since they allow us to upper
bound the size of the instance. However, as will be shown later, it turns out that the
existence of such vertices, and more specifically, the proximity of other vertices to
the bad vertices, is what prohibits us from simplifying the instance further.



The following lemma is straightforward.

Lemma 4. Let u be a good degree-3 vertex. If a hitting set S excludes u, then
S must contain at least one degree-2 vertex from every edge containing u, and
hence, at least three distinct degree-2 vertices that are neighbors of u must be in
S.

Lemma 5. Let S be a hitting set of H. Then there exists a hitting set S′ of H of
size at most |S| such that: (a) no two degree-2 good vertices in S′ are neighbors,
and (b) no good degree-2 vertex in S′ is a neighbor of a degree-3 vertex in S′.

Proof. Among all hitting sets of H of size at most |S|, let S′ be one with the
minimum number of good degree-2 vertices. We claim that S′ satisfies properties
(a) and (b) above.

Suppose that S′ does not satisfy property (a), and let u and v be two good
degree-2 vertices in S′ that are neighbors. Let e = {u, v, x} be the edge containing
u and v, and let e′ = {v, w, y} be the other edge containing v. Since u and v
are good vertices, e and e′ are good edges. From the definition of a good edge,
it follows that x is a degree-3 vertex, and exactly one vertex in {w, y}, say y,
must be of degree 3. By excluding v from S′ and including y (if y is not already
included), we obtain a hitting set of H of size at most |S′| ≤ |S|, in which the
number of degree-2 good vertices is strictly less than that of S′, contradicting
the minimality of S′. This proves part (a).

To prove that S′ satisfies part (b), suppose not, and let v be a good degree-2
vertex in S′ that is a neighbor of a degree-3 vertex x in S′. Let e = {u, v, x}
and e′ = {v, w, y} be the good edges containing v, and assume, without loss of
generality, that y is of degree 3. Then by replacing v in S′ by y, we obtain a
hitting set of size at most |S′| ≤ |S| that contains fewer degree-2 good vertices
than S′, contradicting the minimality of S′. This proves the lemma. ut

Let g(k) be a function of k to be determined later.

Lemma 6. If the number of bad vertices in H is at least g(k), then either |V | ≤
4k − g(k)/6, or H does not have a hitting set of size at most k.

Proof. Suppose that H has a hitting set S of size at most k. The set of bad edges
in H can be partitioned into the following sets:

1. the set of 2-edges, denoted E2;
2. the set of 3-edges whose vertices are all of degree 2, denoted E2

3 ; and
3. the set of 3-edges that each contains at least two degree-3 vertices, denoted

E3.

We define an occurrence of a vertex v to be an edge e that contains v. Clearly,
the number of occurrences of a vertex is equal to its degree. We call the occur-
rences of vertices in S the normal occurrences, and those of vertices not in S the
extra occurrences. We count the total number of extra occurrences next.



Let E′
3 ⊆ E3 be the set of 3-edges that contain at least two vertices in S,

and let E′′
3 = E3 \ E′

3.
Each edge in E2

3 forces at least one degree-2 vertex to be in S, and at most
2 edges in E2

3 can be covered by the same degree-2 vertex in S. On the other
hand, an edge in E′

3 forces two vertices in S to cover the same edge. Since S
has size at most k, and since the degree of H is at most 3, it follows from the
previous statements that the total number of edges that S can cover is at most
3k − |E2

3 |/2 − |E′
3|. Since each of these edges contains at least one vertex from

S, and since each edge in E2 has size 2, the number of extra occurrences is at
most 2(3k − |E2

3 |/2− |E′
3|)− |E2|.

Since every vertex in H has degree at least 2, every vertex not in S must
contribute at least 2 extra occurrences. Moreover, since each edge in E′′

3 contains
at least one degree-3 vertex that is not in S, at least one vertex in each edge of
E′′

3 contributes 3 extra occurrences. Therefore, the number of vertices not in S,
i.e. |V (H) \ S|, is at most:

|V (H) \ S| ≤ (2(3k − |E2
3 |/2− |E′

3|)− |E2| − |E′′
3 |)/2

= 3k − |E2
3 |/2− |E′

3| − |E2|/2− |E′′
3 |/2

= 3k − (|E2
3 |/2 + |E′

3|/2 + |E′′
3 |/2 + |E2|/2)− |E′

3|/2
≤ 3k − (|E2

3 |/2 + |E3|/2 + |E2|/2). (3)

The number of bad edges is |E2
3 |+ |E3|+ |E2|. Moreover, since each bad edge

can induce at most 3 bad vertices, the number of bad vertices is at most 3 times
the number of bad edges, and hence |E2

3 |+ |E3|+ |E2| ≥ g(k)/3. Combining the
last inequality with Inequality (3), we derive that |V (H) \ S| ≤ 3k − g(k)/6.

It follows that if H has a hitting set of size at most k then |V (H)| = |V (H) \
S|+ |S| ≤ 4k − g(k)/6. This completes the proof. ut

Lemma 7. Suppose that H has a hitting set S of size at most k. Let S2 be the
set of degree-2 vertices in S. If |S2| ≥ g(k), then |V | ≤ 4k − g(k).

Proof. Let S3 be the set of degree-3 vertices in S. The number of edges that S
can cover is at most 2|S2|+ 3|S3|. Since S is a hitting set, S covers all edges in
H. Since each edge must contain at least one vertex from S, the total number
of extra occurrences (defined in the proof of Lemma 6) of all vertices is at
most 4|S2|+6|S3|. Each vertex not in S contributes at least 2 extra occurrences.
Therefore, the number of vertices in V \S is at most 2|S2|+3|S3| = 3|S|−|S2| ≤
3k − |S2| ≤ 3k − g(k). It follows that |V | = |V \ S|+ |S| ≤ 4k − g(k). ut

Let h be a nonnegative integer, and let v be a degree-2 good vertex whose
distance from every bad vertex is at least h+ 1. Suppose that v is contained in
every minimum hitting set of H, and let S be a minimum hitting set of H. By
Lemma 5, we can assume that no two good degree-2 vertices in S are neighbors,
and that no good degree-2 vertex in S is a neighbor of a degree-3 vertex in S.
We define a layered graph Tv (we prove next that Tv is a tree rooted at v), with



respect to the minimum hitting set S. The graph Tv consists of exactly h + 1
layers L0, . . . , Lh, defined as follows. Layer L0 consists of the vertex v. For odd
i ∈ {1, . . . , h}, layer Li consists of the degree-3 (good) vertices that are neighbors
of the vertices in Li−1, and that do not appear in a previous layer Lj for j < i.
For even i ∈ {1, . . . , h}, layer Li consists of the good degree-2 neighbors of the
vertices in layer Li−1 that are in S, and that do not appear in a previous layer
Lj for j < i. There is an edge between two vertices in Tv if and only if they are
neighbors in H. The following lemma describes the structural properties of Tv.

Lemma 8. The following are true:

(i) Vertex v has exactly two good degree-3 neighbors that form layer L1.
(ii) No two degree-2 vertices in Tv are adjacent, and no two degree-3 vertices in

Tv are adjacent.
(iii) For odd i ∈ {0, . . . , h}, every vertex in layer Li is a good degree-3 vertex

that is not in S, and that has exactly one neighbor in layer Li−1. For even
i ∈ {1, . . . , h}, every vertex in layer Li is a good degree-2 vertex that is in
S, and that has exactly one neighbor in layer Li−1.

(iv) For odd i ∈ {0, . . . , h − 1}, every vertex in layer Li has two neighbors in
layer Li+1. For even i ∈ {1, . . . , h− 1}, every vertex in layer Li has exactly
one neighbor in layer Li+1. Moreover, two distinct vertices in layer Li have
distinct neighbors in layer Li+1.

(v) Tv is a tree.

By Lemma 8, Tv is a tree rooted at v. Therefore, we can now refer to the
parent of a vertex w ∈ Tv, denoted π(w), and the children of w, in the usual
sense.

Lemma 9. Let n2 be the number of degree-2 vertices in Tv. Then n2 = 2bh/2c+2−
3.

Proof. Note that the degree-2 vertices appear only in even layers of Tv. Layer
L0 contains exactly one degree-2 vertex, namely v. By Lemma 8, every vertex in
an even layer Li, 0 < i < h, has exactly one child in layer Li+1, and every vertex
in an odd layer Li, 0 < i < h, has exactly two children in layer Li+1. Therefore,
we can write the following recurrence to describe the number of vertices in layer
L2i, denoted |L2i|, for i = 0, . . . , bh/2c:

|L2i| =







1 if i = 0,
4 if i = 1,
2|L2i−2| for i = {2, . . . , bh/2c}.

Solving the above recurrence relation, we obtain |L2i| = 2i+1, for i = {1, . . . , bh/2c}.
The total number of degree-2 vertices in Tv, n2, is then:

n2 = |L0|+
bh/2c
∑

i=1

|L2i| = 1 +

bh/2c
∑

i=1

2i+1 = 1 + 4(2bh/2c − 1) = 2bh/2c+2 − 3.

ut



Lemma 10. Let h be a nonnegative integer, and let v be a good degree-2 vertex
whose distance from every bad vertex is at least h+1. If |V | > 4k−2bh/2c+2+3,
then there is minimum hitting set of H that does not contain v.

Proof. Proceed by contradiction. Suppose that every minimum hitting set con-
tains v. Consider a minimum hitting set S of H, and assume, without loss of
generality, that S satisfies the properties in Lemma 5. We construct the tree
Tv as described above. By Lemma 9, the number of degree-2 vertices that are
in Tv, and hence in S, is 2bh/2c+2 − 3. By Lemma 7, |V | ≤ 4k − 2bh/2c+2 + 3,
contradicting the hypothesis in the statement of the theorem. ut

Lemma 11. Let B be the set of bad vertices in H. If every degree-2 good vertex
in H is of distance at most h + 1 from some bad vertex in B, then |V (H)| ≤
4|B|2.562h+1 + |B|.

Consider the following algorithm:

Algorithm: Kernel-3-3-hs (H, k)

if |V (H)| > 9k then reject;
else repeat the following:

0. call Reduce(H, k); if |V (H)| > 4k then reject;
1. if |V (H)| ≤ 4k − g(k) then return the resulting instance;
2. let B be the set of bad vertices in H; if |B| > 6g(k) then reject;
3. grow a Breadth-First Search (BFS) forest F rooted at the vertices in B and
stop at depth h(k);
4. if all the degree-2 vertices in H are also in F then return the resulting in-
stance;
5. let v be a degree-2 vertex in V (H)− V (F); remove v from H;

To optimize the upper bound on the size of the kernel, we choose g(k) =
k0.2692 and h(k) = log3.6235 k in the algorithm Kernel-3-3-hs. Let (H′, k′) be
the instance returned by the algorithm Kernel-3-3-hs.

Theorem 3. Given an instance (H, k) of 3-3-hs, in time O(k1.2692) the algo-
rithm Kernel-3-3-hs returns an equivalent instance (H′, k′) such that |V (H′)| ≤
4k′ − k′0.2692.

Proof. Observe that since the size of each edge in H is at most 3, and since
every vertex in H has degree at most 3, the total number of edges and vertices
in H must be at most 9k if a solution of size k exists. Otherwise, we can reject
the original instance directly. With this observation in mind, it is not difficult
to see that the subroutine Reduce(H, k) can be implemented to run in O(k)
time using the proper data structures. If after the application of Reduce more
than 4k vertices remain in H, then the instance can be rejected by Lemma 6.
Clearly, steps 1–5 of the algorithm can be implemented to run in O(k) time.



Therefore, each execution of steps 0–5 of the algorithm takes O(k) time. After
the first application of Reduce, at most 4k vertices remain in H or the instance
is rejected. Since in each execution the algorithm either returns a kernel (step
1 or step 4), rejects the instance (step 2), or removes a vertex from H (step
5), and since the algorithm stops once the number of vertices in H is at most
4k − k0.2692, the number of executions of steps 0–5 is at most k0.2692. It follows
that the algorithm runs in O(k1.2692) time.

To prove the correctness of the algorithm, note that since Reduction Rules

1–3 are sound, the subroutine Reduce(H, k) is correct, and step 1 of the algo-
rithm is valid. If in step 2 |B| > 6k0.2692, then since |V | > 4k − k0.2692 (from
step 1), it follows from Lemma 6 that H does not have a hitting set of size at
most k, and the algorithm can reject the instance. Therefore, step 2 is correct.
If the algorithm removes a vertex v in step 5, then since v ∈ V (H) − V (F),
the distance between v and any bad vertex in B is more than log3.6235 k. Since
|V | > 4k− k0.2692, by Lemma 10, there is a solution that excludes v, and hence
v can be safely removed from H. It follows that step 5 is correct, and so is
the algorithm Kernel-3-3-HS. Therefore, the instance (H′, k′) returned by the
algorithm is equivalent to the instance (H, k).

To prove that the algorithm returns an instance of size at most 4k′−k′0.2692,
note that the algorithm returns an equivalent instance only in steps 2 and 4.
Clearly, if the algorithm returns an instance in step 2 then the size of the in-
stance is at most 4k′ − k′0.2692. If the algorithm returns an instance in step 4,
then the number of vertices in H is bounded by 4|B|2.562log3.6235 k′+1 + |B| <
9.076|B|k′0.73075 + |B| < 4k′ − k′0.2692.

Therefore we conclude that the size of the instance is at most 4k′ − k′0.2692.
This completes the proof. ut

5 Generalization to bounded degree ∆

The kernelization results in the previous section can be generalized to hyper-
graphs of degree at most ∆, for ∆ > 3. We modify the definition of bad and
good edges and vertices as follows. Let (H, k) be an instance of 3-hs, where H
has degree at most ∆. An edge e is good if e is a 3-edge in which exactly two
vertices are of degree 2 and the third vertex is of degree more than 2; otherwise,
e is bad. A vertex v is good if every edge containing v is good; otherwise, v is
bad. With the modified definition of good and bad edges and vertices, and using
a parallel approach to the one used in the previous section, we can show the
following:

Theorem 4. The 3-hs problem on hypergraphs of degree at most ∆ > 3 has a

kernel of size 4k−O(k
1

2+4 log(∆−1) ) that is computable in time O(k1+
1

2+4 log (∆−1) ).

6 Concluding remarks

In this paper we gave upper and lower bounds on the kernel size for 3-3-hs.
Although our improvement on the upper bound of the kernel size for 3-3-hs is



small, the techniques involved are highly nontrivial. This hints at the level of
difficulty of the problem, and may suggest that a linear improvement on the
kernel size for 3-3-hs may not be easy. We leave this as an open problem.
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