
Appendix
Pioneering Protocols

◆ ◆

STUDENTS STUDYING ancient civilizations and languages often
wonder what is the point in studying cultures that no longer
exist. How will the way people lived hundreds and thousands
of years ago benefit you in the here and now? Often, the
answer given is that current civilizations are based in many
ways upon the ancient civilizations that existed long before
the present moment. The same argument, to a lesser degree,
can be made for some of the early protocols that shaped and
guided the world of computer networks and data communica-
tions to where it is today. Unlike ancient civilizations that no
longer exist, however, some of the early network protocols still
exist today and actively support computer networks. One of
the earliest protocols for providing a data link connection
between terminals and a mainframe computer is the BISYNC
protocol. Although you may be hard pressed to find a current
system still using BISYNC, the concepts and principles intro-
duced with BISYNC can be found in more modern protocols.

Synchronous data link control (SDLC) protocol was designed
to replace BISYNC and is a more modern data link control

protocol. Although many descendants of SDLC have
appeared over the years, SDLC is still used in IBM-type sys-
tems today. SDLC’s close cousin, high-level data link control
(HDLC) protocol, is also still found in some non-IBM systems.
Many of the concepts introduced in SDLC (and then HDLC)
have carried over into many different types of protocols.

The final topic of this appendix is the pioneering protocol
for packet-switched networks—X.25. When packet-switched
networks were introduced in the 1960s, the modern-day
Internet (also a packet-switched network) was barely a twin-
kle in someone’s eye. Although X.25 is still offered by some
telecommunications carriers across the country, its descen-
dants—frame relay and asynchronous transfer mode—are
quickly replacing the original protocol. Once again, how-
ever, many concepts were introduced with X.25 that are
used in other similar protocols today. Let’s examine each of
these protocols, beginning with the oldest—BISYNC.

BISYNC Transmission
Introduced in the mid-1960s, IBM’s BISYNC protocol was designed to provide a
general-purpose data link protocol for point-to-point and multipoint connections.
Although the protocol itself is very old and rarely used today, the concepts intro-
duced with BISYNC have carried over into many protocols currently in use.
Because of this carryover, it is worthwhile to examine this classic protocol.

BISYNC (or BSC) is a half duplex protocol—data may be transmitted in both
directions but not at the same time. Stated another way, it is a stop-and-wait proto-
col, in that one side sends a message, then stops and waits for a reply. Typically, one
end of the connection is termed the primary, and the opposite end is termed the
secondary (one secondary if point-to-point, multiple secondaries if multipoint). In
most situations, the primary controls the dialog and may perform polls and selects
(in which the primary sends to the secondary) of the secondary counterparts.

BISYNC is also called a character-oriented protocol. The messages or packets trans-
mitted between primary and secondary are collections of individual characters, many
of which are special control characters that drive the dialog. For example, if the primary
wishes to poll the first of multiple secondaries, the following packet is transmitted:

SYN SYN address1 ENQ

The SYN character establishes synchronization of the incoming message with
the receiver and precedes all message packets. It can also be inserted into the middle
of longer messages to maintain synchronization. The address1 field is the address of
the intended secondary. The ENQ character, or inquiry, is used to initiate a poll. Note
that, as stated earlier, each control character is an individual character. If you exam-
ine the ASCII character set, you will see that the SYN character is a valid ASCII char-
acter with the decimal value of 22; the ENQ character is a decimal 5.

If the addressed secondary has nothing to transmit, it responds with:

SYN SYN EOT

The EOT character signifies the End Of Transmission, or that the secondary has
nothing to send. If the secondary had something to send to the primary, it would
respond with a message such as:

SYN SYN STX text EOT BCC

The STX character signals the Start of TeXt, and data (text) follows. The BCC
character is the Block Check Count, an error checksum appended to the end of
the data.

If an optional header with control information is included in the packet, the
message would look something like the following:

SYN SYN SOH header STX text EOT BCC

476 Appendix

SOH indicates the Start Of Header.
Upon receipt of the data at the primary, if there is no checksum error, the pri-

mary responds with:

SYN SYN ACK0

The ACK0 character is a positive acknowledgement for even-sequenced packets.
If the packet was corrupted during transmission and the primary receives a gar-

bled message, it replies with:

SYN SYN NAK

The NAK character is a negative acknowledgement. Retransmitting the mes-
sage then becomes the responsibility of the secondary.

Table A-1 lists the more commonly found BISYNC control codes and their
meanings.

Table A-1
Commonly found BISYNC characters

SYN SYN STX DLE ETX DLE ETX ETX BCC

SYN SYN DLE STX DLE DLE ETX DLE DLE ETX DLE ETX BCC

Pioneering Protocols 477

Transparency
When a sender transmits a message (or packet) to a receiver, how does the receiver
know when the incoming message has ended? As Table A-1 shows, if it is the end of
a block of data, the sender inserts an ETB character at the end of the data. The
receiver inputs this ETB character and realizes that the end of the block has been
reached and what should follow is the checksum. If it is the end of the text, the
sender inserts an ETX character, and, once again, the receiver responds accordingly.

Since the receiver is carefully watching for an ETB or ETX, what would happen
if an ETB or ETX suddenly appeared in the middle of the data? The receiver would
erroneously assume that the end of the text had been reached and the following
characters compose the checksum—which they don’t—resulting in an incorrect
checksum calculation.

Why would a sender insert an ETB or ETX into the middle of the text, caus-
ing all this confusion? Suppose a sender is transmitting a memory listing of a
program. A memory listing consists of multiple bytes, each byte having values
of hexadecimal 00 to hexadecimal FF. If one of those bytes just happens to have
the exact same value as the ordinal value of the ETX character, the receiver will
believe it has received the ETX character and act accordingly. To avoid this
problem, a technique is needed that allows the binary equivalent of the ETX
character to occur in the text but not be recognized as the control character
ETX. Such a technique is termed transparency. More generally, transparency is a
scheme in which any bit sequence can be included within the text, even those
that may appear as control characters.

To enable transparency, the Data Link Escape character (DLE) precedes the
STX character. Then, to end the stream of text characters, a DLE ETX character
would be transmitted, rather than just an ETX character. The DLE would also be
inserted in front of STX, ETB, ITB, ETX, ENQ, DLE, and SYN control characters.

This system seems fairly straightforward until you ask: Couldn’t the binary
equivalent of DLE ETX also appear as data within the text? Yes, it could. To
solve this problem, an extra DLE is inserted before each DLE in the text and only
within the text. Thus, if the sender encounters a DLE ETX sequence in the text
during transmission, it inserts an extra DLE creating DLE DLE ETX. The receiver
will see the DLE DLE ETX and discard the first DLE. Since it encountered two
DLEs before an ETX, the receiver knows it is not receiving the control sequence
DLE ETX but simply text. The only single DLE followed by an ETX should occur
after the end of the text. Figure A-1 demonstrates a before and after example.

Figure A-2 is a more complete example of two stations engaged in data trans-
fer using the BISYNC protocol. Station A (the primary) is polling Stations B, C,
and D (the secondaries), but only Station D has data to return to Station A. After

SYN SYN STX DLE ETX DLE ETX ETX BCC

SYN SYN DLE STX DLE DLE ETX DLE DLE ETX DLE ETX BCC

478 Appendix

Figure A-1
Example of
transparency before
and after DLE insertion

Station D sends its data to Station A, Station A informs Station C that it is going
to receive data and to get ready. The data is transmitted but arrives garbled, so
Station C asks Station A to retransmit.

Synchronous Data Link Control (SDLC)
IBM created Synchronous Data Link Control (SDLC) in the mid-1970s to replace
BISYNC. It is a bit synchronous protocol in which the receiver examines individ-
ual bits looking for control information. Unlike BISYNC, SDLC is capable of sup-
porting both half duplex and full duplex connections. SDLC is a full duplex data
link protocol, because both sender and receiver may transmit at the same time.
You will learn shortly about the mechanism that allows SDLC to support a full
duplex connection.

Another difference between BISYNC and SDLC is that SDLC is code indepen-
dent, whereas BISYNC is code dependent. BISYNC requires a data code, such as
ASCII or EBCDIC, that includes control codes such as SOH, STX, or ETX in the code
set. SDLC does not rely on character codes to control execution but relies instead
on particular bit patterns to indicate a command.

Figure A-3 shows the basic packet format for SDLC. The flag field is an eight-bit
field with the unique value 01111110. The receiver scans the incoming bit stream
looking for the pattern 01111110. When it encounters the pattern, the receiver
knows the beginning of the packet has arrived and continues to scan for the
remainder of the packet.

Direction of
Station A Transmission Station B, C, or D Description

SYN SYN addrB ENQ → Poll to station B

← SYN SYN EOT B has no data to send

SYN SYN addrC ENQ → Poll to station C

← SYN SYN EOT C has no data to send

SYN SYN addrD ENQ → Poll to station D

← SYN SYN STX text ETX BCC D sends first part of data

SYN SYN ACK0 → Acknowledge data

← SYN SYN STX text EOT BCC D sends remaining data

SYN SYN ACK1 → Acknowledge data

SYN SYN addrB ENQ → Poll to station B

← SYN SYN EOT B has no data to send

SYN SYN EOT SYN SYN → Primary selects station C
addrC ENQ

← SYN SYN ACK0 C says OK, I’m ready, send data

SYN SYN STX text EOT BCC → Data is sent

← SYN SYN NAK Data arrives garbled

SYN SYN STX text EOT BCC → Data sent again

← SYN SYN ACK1 Acknowledge data

Pioneering Protocols 479

Figure A-2
Two stations engaged
in data transfer using
the BISYNC protocol

Note that the same flag is used to signal the end of the packet. Just as it looked
for the beginning of the packet, the receiver scans the incoming bit stream looking
for this unique pattern for the ending. When the ending flag has been encoun-
tered, the receiver knows to mark the end of the packet.

As with the control codes in BISYNC, if the bit pattern 01111110 occurs in the
data, the receiver will interpret it as signaling the end of the packet erroneously.
SDLC needs a way of preventing the bit pattern 01111110 from occurring in the
data. As the data and CRC portions of the message are transmitted, the transmitter
watches for five 1s in a row. If it encounters five 1s, the transmitter automatically
inserts a 0. With this procedure, the data and CRC portions of the packet can never
contain 01111110. The receiver also scans the incoming bit stream, and if it finds
five 1s immediately followed by a 0 within the data field of the packet, it discards
the extra 0. This technique of inserting an extra bit is known as bit stuffing.

The address field contains an eight-bit address used to identify sender or
receiver. In an unbalanced configuration (the host computer is the primary or mas-
ter, the terminal is the secondary or slave), the address field always contains the
address of the secondary station. (In a balanced configuration, the host computer
and terminal have equal power, much like peers.)

The control field describes the type of packet for this particular message. In
SDLC, there are three different types of packets:

� I (Information) packets are used to send data, flow control information,
and error control information.

� S (Supervisory) packets are used to send flow and error control but no data.
� U (Unnumbered) packets are used to send supplemental link control

information.

Figure A-4 shows a further breakdown of the control field. The N(S) and N(R)
fields are the send and receive counts for the packets that have been transmitted
from and received at a particular station. A station is capable of transmitting pack-
ets to another station and receiving packets from another station at the same time.
Unlike BISYNC, which sends one packet then awaits a reply, SDLC may send multi-
ple packets to another station before waiting for a reply.

FLAG ADDRESS CONTROL DATA CHECKSUM FLAG

8 bits 8 bits16 bits8 x n bits8 bits8 bits

480 Appendix

Figure A-3
Basic packet format
for SDLC

Likewise, a receiving station does not have to acknowledge every single
packet. Instead, a receiving station may wait until several packets have arrived
before acknowledging any or all of the packets. For example, Station A may send
seven packets (numbered 0, 1, 2, 3, 4, 5, and 6) to Station B. As the packets arrive
at Station B, Station B may wait until the fourth packet (numbered 3) arrives
before sending an acknowledgement. Station B would return an acknowledgment
to Station A with the N(R) count set at 4, implying that packets 0 through 3 were
accepted correctly, and packet 4 is the next packet expected. The N(R) and N(S)
counts always reflect the next packet number expected or sent. At a later time, Sta-
tion B will acknowledge the remaining three packets by transmitting a packet
with the N(R) count set to 7.

So that a transmitting station does not overwhelm a receiving station with a
flood of packets, SDLC has a technique that limits the number of packets a station
may transmit at one time. The window size states how many packets may be unac-
knowledged at any given time. Assume that the window size is 7, and Station A
sends six packets to another station. Station A can still send one more packet, since
the window size is 7 and only six packets have been sent. If the receiving station
acknowledges four of those packets, Station A can then send up to five more pack-
ets, since two of the original six packets transmitted have not yet been acknowl-
edged. Because the number of packets that can be transmitted grows and shrinks
with transmissions and acknowledgments, the technique has more accurately been
called a sliding window.

The P/F bit is the Poll/Final bit. If a primary is polling a secondary, the P/F bit is
a poll bit and is set to 1. If a secondary is sending multiple messages to a primary,
the last message will have the P/F bit set to 1, and it will act as a final bit.

Following the control field is the data, which is of variable length but always a
multiple of eight bits. After the data is the cyclic redundancy checksum, followed
by the ending flag (01111110).

The S and M subfields of the control field are used by SDLC to define further
the type of Supervisory or Unnumbered packets. The S bits, which exist only
within the Supervisory format, are used to specify flow and error control informa-
tion. Three types of Supervisory messages are available:

� Receive Ready (RR) 00—positive acknowledgment; ready to receive an
Information packet

Bits 0 1 2 3 4 5 6 7

Information 0 N (S) P/F N (R)

Supervisory 1 0 S P/F N (R)

Unnumbered 1 1 M P/F M

where N(S) = send sequence number
 N(R) = receive sequence number
 P/F = Poll/Final bit
 S = Supervisory function bits
 M = Unnumbered function bits

Pioneering Protocols 481

Figure A-4
Bit contents of the
control field of an
SDLC packet

� Receive Not Ready (RNR) 01—positive acknowledgment but not ready to
receive Information packets

� Reject (REJ) 10—negative acknowledgment; go back to the nth packet, and
resend all packets from the nth packet on

The M bits, used only within Unnumbered packets, represent a command when
the packet comes from a primary station, and a response when the packet comes
from a secondary station. The available Unnumbered packet Commands follow:

� Nonsequenced information (NSI): C/R1:00 - C/R2:000
� Set Normal Response Mode (SNRM): 00-001
� Disconnect (DISC): 00-010
� Optional Response Poll (ORP): 00-100
� Set Initialization Mode (SIM): 10-000
� Request Station ID (XID): 11-101
� Request Task Response (TEST): 00-111
� Configure for Test (CFGR): 10-011

The available Unnumbered packet Responses follow:

� Nonsequenced Information (UI): 00-000
� Nonsequenced Acknowledgement (UA): 00-110
� Request for Initialization (RIM): 10-000
� Command Reject (FRMR): 10-100 reject packet, cannot make sense of it
� Request Online (DM): 11-000
� Test Response/Beacon (BCN): 11-111
� Disconnect Request (RD): 00-010

To better understand SDLC and its commands, you need to examine several
examples. The first example, shown in Figure A-5, demonstrates the primary
polling Station A followed by Station A requesting initialization information.

→ FLAG, Address-A, 10-00-1-000, CRC, FLAG Primary polls A

Decoding the Control Field (10-00-1-000): 10=Supervisory Format, 00=Receive
Ready, 1=Poll Bit is On, 000=N(R)=0

← FLAG, Address-A, 11-11-1-000, CRC, FLAG A requests online

Nonsequenced Format, Request Online, Final Bit is On

→ FLAG, Address-A, 11-00-1-001, CRC, FLAG Primary sets A to Normal Mode

Nonsequenced Format, Set Normal Response Mode, Poll Bit is On

← FLAG, Address-A, 11-00-1-110, CRC FLAG A acknowledges

Nonsequenced Format, Unnumbered Acknowledge, Final Bit is On

482 Appendix

Figure A-5
Example showing
polling and request for
initialization

In the second example, shown in Figure A-6, the primary polls Station A to see
if it has data to send, and A replies with three packets of data.

In a third example, shown in Figure A-7, the primary polls Station B, and Sta-
tion B replies with several data packets. Due to a transmission error, one packet
arrives garbled and the primary requests retransmission.

These greatly simplified examples show a primary communicating with only
one secondary. However, you should note that it is quite possible for the primary
to carry on concurrent conversations with multiple secondaries.

→ FLAG, Address-B, 10-00-1-000, CRC, FLAG Primary polls B

← FLAG, Address-B, 0-000-0-000, data, CRC, FLAG B sends first packet

← FLAG, Address-B, 0-001-0-000, data, CRC, FLAG B sends second packet

← FLAG, Address-B, 0-010-0-000, data, CRC, FLAG B sends third packet

← FLAG, Address-B, 0-011-0-000, data, CRC, FLAG B sends fourth packet

← FLAG, Address-B, 0-100-0-000, data, CRC, FLAG B sends fifth packet

← FLAG, Address-B, 0-101-0-000, data, CRC, FLAG B sends sixth packet

← FLAG, Address-B, 0-110-0-000, data, CRC, FLAG B sends seventh packet, stops

packet 110 arrives garbled which results in a CRC error

→ FLAG, Address-B, 10-00-1-110, CRC, FLAG Primary acks packets 000-101
but says Reject, go back and
resend packet 110 and all
subsequent packets again.

← FLAG, Address-B, 0-110-0-000, data, CRC, FLAG B resends seventh packet

← FLAG, Address-B, 0-111-0-000, data, CRC, FLAG B sends eighth packet

← FLAG, Address-B, 0-000-1-000, data, CRC, FLAG B sends ninth and final packet

→ FLAG, Address-B, 10-00-1-001, CRC, FLAG Primary acks packets 110-000

→ FLAG, Address-A, 10-00-1-000, CRC, FLAG Primary polls A

← FLAG, Address-A, 0-000-0-000, data, CRC, FLAG A sends first packet (data packet #0)

←FLAG, Address-A, 0-001-0-000, data, CRC, FLAG A sends second packet (data
packet #1)

← FLAG, Address-A, 0-010-1-000, data, CRC, FLAG A sends final packet (data packet #2,
final bit)

→ FLAG, Address-A, 10-00-1-011, CRC, FLAG Primary acks packets 0-2

Primary says packet #3 next
expected packet

Pioneering Protocols 483

Figure A-6
Primary polls A and A
responds with three
packets of data

Figure A-7
Primary polls Station B
and B replies with
several data packets

High-Level Data Link Control (HDLC)
High-level Data Link Control (HDLC) is a data link standard created by ISO that
closely resembles SDLC. Typically, anyone dealing with IBM products and software
would use SDLC. HDLC is used by anyone dealing with non-IBM products. Note
that the two protocols are very similar but not exactly the same. It is possible to
make HDLC behave like SDLC, but it is not necessarily possible to make SDLC
behave like HDLC. Do not assume that the two protocols are interchangeable.

There are a number of major differences between HDLC and SDLC. For exam-
ple, SDLC allows for only an eight-bit address, whereas HDLC can be extended to
an address size that is a multiple of eight bits. To extend the address in HDLC, a 0 is
inserted in the high-order bit position of each octet, except the last octet of the
address, which has a 1 in the high-order bit position.

A further difference is that a balanced configuration is available in HDLC, but
not in SDLC. In HDLC’s balanced configuration, a command packet contains the
destination address, and a response packet contains the sending address.

Like the extended address, the control field in HDLC may be 8 bits (as in
SDLC) or 16 bits in length. The 16-bit control field allows for 7-bit N(R) and N(S)
counts, thus allowing a larger window size for packet transmission. HDLC also
allows for an extended checksum. The cyclic checksum field may be either 16 bits
(as in SDLC) or an extended 32-bit checksum.

Unique to HDLC is the selective reject command. Supervisory packets in SDLC
have Receive Ready, Receive Not Ready, and Reject (go-back-N). HDLC adds Selec-
tive Reject (SREJ), which informs the sender that a message was in error and to
resend that one message but NOT all the messages that followed it. HDLC also has
additional Unnumbered Commands.

Of primary interest here is the fact that multiple modes of dialog between
sender and receiver may be established. The following modes exist in HDLC:

� Set Normal Response Mode (SNRM) is a primary (master)–secondary
(slave) type arrangement.

� Set Normal Response Mode Extended (SNRME) is the same as SNRM except
control field is 16 bits in length as opposed to standard eight-bit length.

� Set Asynchronous Response Mode (SARM) allows the secondary to initiate
transmission without explicit permission of the primary, but the primary
still retains responsibility of the line (initialization, error recovery, and log-
ical disconnection).

� Set Asynchronous Response Mode Extended (SARME) is the same as SARM
but in extended mode (16-bit control field).

� Set Asynchronous Balanced Mode (SABM) allows either station to initiate
transmission without explicit permission from the other station. No sta-
tion implicitly retains responsibility. This arrangement is a peer-to-peer
connection, as opposed to the primary-secondary configuration of SDLC.

� Set Asynchronous Balanced Mode Extended (SABME) is the same as SABM
but in extended mode.

484 Appendix

Public Data Networks and X.25
Data transfer over short distances is often performed by local area networks, metro-
politan area networks, and dial-up modem transmission. However, when the dis-
tance covered encompasses a state or a country, LANs and MANs can no longer do
the job. Dial-up long-distance transmission using voice-grade telephone lines and
modems has improved in quality and reliability over the years but is still plagued
by occasional transmission noise and high telephone costs. One possible solution,
presented by a number of companies, is to provide a user with a local connection
to a long-haul network for a fee. The long-haul company deals with the details of
transmitting the data across the network. As shown in Figure A-8, the user at loca-
tion A (DTE) transmits its data to the network host 1 (DCE). The network has the
responsibility of transmitting the data across the subnet to the destination DCE,
where the user at site B may receive the information. Networks such as these are
termed public data networks, or PDNs.

As an analogy, a PDN is similar to a package delivery system such as the United
Parcel Service (UPS). You take the package to the UPS depot, and UPS ships it across
the country in the best manner possible. The person sending the package does not
necessarily care how the package gets there, just as long as it arrives undamaged in
a reasonable length of time.

One advantage of using a PDN is that User A pays only for the number of charac-
ters of data transferred. This situation is like talking on the telephone to a friend and
being charged only for the number of words spoken, not the overall connect time.

So that a user may connect a DTE terminal to a PDN DCE, the International
Telecommunications Union (ITU) created the X.25 standard in 1974. The X.25 stan-
dard allows a uniform approach to making a connection to the network station. Since
the use of X.25 involves a high-speed synchronous interface and requires a fair of
amount of software and computing power, the device that is the DTE should be more
powerful than a simple dumb terminal. If a user does not have a powerful enough
workstation or is using a low-speed asynchronous DTE, X.25 cannot be used. Luckily,
ITU provided ways to connect low-speed, asynchronous terminals to a PDN. These
low-speed, asynchronous methods will be discussed later.

DCE = Data Circuit-Terminating Equipment
DTE = Data Terminating Equipment

DTE DTE
Public
Data

Network
DCEDCE

User A User B

Pioneering Protocols 485

Figure A-8
Two users accessing a
public data network

The three levels of X.25
X.25, much like the OSI model, is divided into levels. Since X.25 originated before
the OSI model, however, the three levels do not precisely fit into the three layers of
the OSI model. The lowest level of X.25, the physical level, follows the X.21 stan-
dard introduced in Chapter Four. Almost any physical layer protocol can be used
since, like any network model, the levels are disjointed from one another. Since
X.21 is not widely used, X.25 also allows the use of EIA-232 or V.24/V.28 protocols.
When you use EIA-232 or V.24/V.28, the physical level interface is termed X.21 bis
(secondary standard).

The second level, the data link level, is responsible for creating a cohesive,
error-free connection between the user’s DTE and the network DCE. Since these
responsibilities are virtually identical to the data link layer of the OSI model, X.25
allows two variations on the HDLC data link protocol: Link Access Protocol (LAP)
and LAP-B. As a data packet is passed from the network level of the DTE to the data
link level, the network-level data packet is encapsulated with beginning and end-
ing 8-bit flags, control field, address field, and a frame check sequence (Figure A-9).

It is important to note that the LAP fields (flag, control, address, frame check
sequence, and flag) remain with the data packet only for the transmission from
DTE to DCE. Once the packet arrives at the DCE, and before it is placed onto the
network, all LAP fields are removed.

The third level of the X.25 protocol is termed the packet level. This level devi-
ates the most from the OSI’s third layer, the network layer. The packet level’s main
responsibility is to establish a connection between the user (DTE) and the network,
and finally to the receiver (DTE) at the other end of the circuit (Figure A-10).

DTE DTE

Public
Data

Network

DCEDCE

User A User B

X.25X.25

Upper Levels [User Data]

Packet Level [header info][user data]

Data Link Level [Flag][Control][Address][header info][user data]

(LAP, LAP-B) [Frame Check Sequence][Flag]

Physical Level Above Frame is Transmitted

(X.21, X.21 bis)

486 Appendix

Figure A-9
X.25 levels and the flow
of data between levels

Figure A-10
X.25 connection of user
to packet network

Since it is possible for a user to establish multiple connections simultaneously,
each network connection is identified by a 4-bit logical group number plus an 8-bit
logical channel number. Although all possible connections are not used, there is suf-
ficient room for many concurrent logical connections over each physical channel.

A user of an X.25 PDN can choose from among four interface options. A user
may establish a permanent virtual circuit, which is quite similar to a leased line
in a public telephone network. Thus, before a session begins, the two users (or
sender and receiver) and the network administration reach an agreement for a per-
manent virtual connection, and a logical connection number is assigned. This
assigned logical connection number is then used for all future transmissions
between the two users.

A second type of interface, the virtual call, is similar to the standard telephone
call. The sending or originating DTE issues a Call Request packet, which is sent to
the network. The network routes the Call Request packet to the destination DTE,
which can accept or reject the request for a connection. If the destination DTE
accepts, a Call Accepted packet is sent to the network, which transposes the packet
into a Call Connected packet. The Call Connected packet arrives at the originating
DTE and a virtual circuit is established. The two DTEs are now in a data transfer
state until either DTE issues a Clear Request.

The permanent virtual circuit and virtual call interface designs are connection-
oriented, in that a virtual circuit must be created with the consent of both DTEs
and the network. After going through all the work to establish a connection, you
would imagine that a relatively large number of data packets will be transferred
between the two DTEs. But what if one DTE wishes to send only one packet of
information to another DTE? Spending so much time making a connection for
only one packet of data seems wasteful.

In situations in which only one packet of information is sent, a third connec-
tion strategy, the fast select, is available. Fast select allows one DTE to transfer data
to another DTE without using call establishment and call termination procedures.
The originating DTE sends a fast select packet to the network. This packet may also
contain up to 128 bytes of user data. When the network delivers this packet to the
destination DTE, the destination DTE has two response choices: Clear Request or
Call Accepted. The first choice is to return a Clear Request packet, which may also
contain 128 bytes of user data. When the originating DTE receives the Clear
Request packet, that DTE realizes “I accepted your packet, thank you very much.”
The destination DTE could also respond with a Call Accepted packet, which then
invokes the standard X.25 data transfer and clearing procedures of a virtual call.

The final interface option is the fast select with immediate clear. This
technique is similar to the fast select, but the destination DTE has only one pos-
sible response: to return a Clear Request. Upon receipt of the Clear Request, the
originating DTE returns a Clear Confirmation to the destination DTE. Thus, if a
DTE has only one packet of data to send, this fourth and final interface choice
is the simplest.

Packet types
So that X.25 may establish connections, transfer error-free data packets, and clear
connections, several types of packets exist (Table A-2).

Pioneering Protocols 487

Table A-2
X.25 packet types

The call setup and clearing packets are used to create a virtual call. The origi-
nating DTE issues a Call Request packet, the network delivers an Incoming Call
packet to the destination DTE, the destination DTE responds with a Call Accepted
packet, and the network delivers a Call Connected packet to the originating DTE. A
similar dialog follows for clearing a call.

The data and interrupt packets are used for transferring data and sending inter-
rupts. Similar to HDLC commands, the flow control packets are used to acknowl-
edge or suspend the actions of the DTEs. The Reset and Restart packets are used by
the network and DTEs to recover from errors (such as loss of a packet), congestion,
loss of the network’s internal virtual circuit, or sequence number error. The Reset
packet can be used to reinitialize a virtual circuit, and the Restart packet is reserved
for more serious calamities.

Packet Types

From DCE to DTE From DTE to DCE

Call Setup and Clearing

Incoming Call Call Request

Call Connected Call Accepted

Clear Indication Clear Request

DCE Clear Confirmation DTE Clear Confirmation

Data and Interrupt

DCE Data DTE Data

DCE Interrupt DTE Interrupt

DCE Interrupt Confirmation DTE Interrupt Confirmation

Flow Control and Reset

DCE Receive Ready DTE Receive Ready

DCE Receive Not Ready DTE Receive Not Ready

DTE Reject

Reset Indication Reset Request

DCE Reset Confirmation DTE Reset Confirmation

Restart

Restart Indication Restart Request

DCE Restart Confirmation DTE Restart Confirmation

Diagnostic

Diagnostic

Registration

Registration Confirmation Registration Request

488 Appendix

