Core Empirical Concepts and Skills for Computer Science

Grant Braught

Craig S. Miller

David Reed

Department of Mathematics School of CTI Department of Mathematics
and Computer Science DePaul University and Computer Science
Dickinson College Chicago, IL 60604 Creighton University
Carlisle, PA 17013 cmiller@cs.depaul.edu Omaha, NE 68178

braught@dickinson.edu

ABSTRACT

Educators are increasingly acknowledging that practical
problems in computer science demand basic competencies in
experimentation and data analysis. However, little effort has
been made towards explicitly identifying those empirical
concepts and skills needed by computer scientists, nor in
developing methods of integrating those concepts and skills
into CS curricula. In this paper, we identify a core list of
empirical competencies and motivate them based on
established courses outside of computer science, their
potential use in standard CS courses, and their application to
real-world problems. Sample assignments that facilitate the
integration of these competencies into the CS curriculum are
also discussed.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and
Information Science Education — computer science education,
curriculum. G.3 [Probability and Statistics]. A.O0
[General]: Conference Proceedings.

General Terms
Experimentation.

Keywords

Empirical concepts, empirical skills.

1. INTRODUCTION

The questions faced by computer scientists are often empirical
in nature, requiring more than just theoretical analysis. For
example, consider optimizing an enterprise server, assessing a
new software development methodology, comparing the latest
microprocessors, designing a user interface, or investigating
natural phenomena via simulation. To be meaningful, the
results of these and similar tasks must rely on data collection
and analysis from experiments conducted under typical or
“real-world” conditions. While useful in many applications,
theoretical analysis is not always feasible, particularly when
variable or stochastic factors come into play. For example,
optimizing server performance requires first identifying the
conditions and workload under which the system is expected
to function, and then testing the system under those
conditions. Likewise, assessing a new method for developing
software requires analyzing factors such as management
structure and the variability of human performance. In short,
many of the most meaningful real-world claims in computer

davereed@creighton.edu

science critically depend on the evaluator’s ability to conduct
valid experiments and analyze their results.

The importance of experimentation and empirical reasoning in
computer science has long been recognized, as illustrated by
Newell and Simon's 1975 Turing Award lecture entitled
Computer Science as Empirical Inquiry: Symbols and Search
[13]. More recently, Computing Curricula 2001 acknowledged
the importance of empirical methods with the following
statement:

“The scientific method represents a basis methodology
for much of the discipline of computer science, and
students should have a solid exposure to this
methodology.” [10]

While Computer Curricula 2001 does suggest that “students
may acquire their scientific perspective in a variety of
domains”, it does not provide guidance as to which empirical
concepts are important or how they can be integrated into the
computer science curriculum. Traditionally, computer science
curricula have tended to emphasize problem solving and
theoretical analysis as the central means for learning and
reinforcing the discipline's concepts and principles [14,16].
Empirical skills, while expected of computer science students
by graduation, have received little attention in computer
science programs. In the words of Paul Schneck:

"Many (most?) students of computer science are not
educated as scientists. They are trained as programmers.
This results in a situation, reflected in our literature,
where many practitioners form unstructured
phenomenological inferences instead of creating
models, forming hypotheses, and performing experiments
to validate (or invalidate) the hypotheses and models.”
[12]

In recent years, several articles have appeared in the literature
advocating the use of experimentation in computer science
courses. However, these articles tend to involve applying
empirical reasoning to a problem in a particular course, such as
operating systems [7,15], organization/architecture [1,4,17],
software engineering [3,9], or human-computer interaction [6].
While these examples demonstrate the utility of
experimentation, the broader issue that must be addressed is
the need for a systematic approach to developing empirical
skills across the computer science curriculum. Similar to the
way that programming and problem-solving skills are
developed incrementally, important empirical concepts and
skills must be introduced early and revisited often in order to
be mastered by students.

As a first step towards developing a systematic approach to
empirical reasoning, this paper proposes a list of competencies

that should be expected of all graduates in computer science.
These competencies include those empirical concepts that
must be understood by students in order to appreciate
important aspects of computing, as well as specific empirical
skills that are required for experimental studies within the
field. We motivate the need for these concepts and skills by
their appearance in standard Quantitative Reasoning and
statistics courses, as well as their application to practical real-
world applications in computer science. A few specific
assignments are also reviewed to illustrate how the core
empirical competencies can be integrated into a traditional
computer science curriculum.

2. CORE EMPIRICAL COMPETENCIES

Table 1 presents our candidate list of core empirical
competencies for practicing computer science. In constructing
this table, we first examined typical tasks in which computer
scientists apply empirical reasoning, and extracted those
concepts and skills necessary for the tasks. We also reviewed
the contents of numerous Quantitative Reasoning and basic
statistics courses [8], and met with colleagues both in
computer science and statistics. We believe the content of this
table provides a framework for successfully integrating
empirical reasoning into computer science curricula.

We have broken the list into three different levels
corresponding to the levels of the undergraduate computer
science curriculum. The purpose of this division is twofold.
First, it emphasizes an incremental approach to developing
empirical knowledge and skills. Generally, the concepts and
skills appearing at the introductory level are basic and less
formal, those appearing at more advanced levels require a more
formal understanding and pair well with upper division

computer science courses. For example, at the introductory
level, students learn that a larger sample is more likely to
produce a more accurate estimate of the population but do not
learn about confidence intervals for quantifying its accuracy
until the advanced level. This organization allows for a
progressive introduction of many empirical concepts,
encouraging students to develop intuition about them before
learning more formal or mathematical definitions.

The second reason for dividing the competencies into levels is
to complement the traditional format of computer science
curricula. In most undergraduate programs, introductory-level
courses focus on programming and problem-solving skills.
Intermediate-level courses (e.g., data structures, algorithms,
computer organization) emphasize foundational knowledge
and skills, introducing more formality in design and analysis.
Finally, upper-level courses build upon these foundations to
study specific areas of computing in depth.

Table 1 organizes the empirical concepts and skills to best fit
with the traditional practices in curriculum design just
described. For example, many of the concepts listed at the
introductory level could easily be introduced in typical CS1
and CS2 assignments, such as simulating dice rolls or random
walks. Basic data representation using scatter-plots appears at
the intermediate level because graphing problem size versus
running time is a natural thing to do in a data structures or
algorithms course. It is important to note that we do not view
the divisions that appear in Table 1 as absolute or inflexible.
One instructor might take a more formal approach to
algorithms in CS1 and CS2, introducing standard deviation or
curve fitting early. Likewise, another instructor might choose
to defer other topics to later in the curriculum.

Table 1: Core empirical competencies for computer science

Level Concepts Skills

Introductory * mean vs. median e Be able to conduct a well-defined experiment,
* informal definition of probability summarize the results, and compare with the
e chance error expected results.
* expected values * Beable to evaluate the persuasiveness of
e Law of Large Numbers experimental conclusions, focusing on issues
* consistency vs. accuracy such as the clarity of the hypothesis, the sample
* benefits/limitations of models size, and data consistency.
Intermediate e uniform vs. normal distribution e Be able to plot and describe the relation between
e standard deviation two variables, such as problem size vs. efficiency
* sampling large populations when analyzing algorithms.
¢ methods for obtaining a good sample e Be able to use a sample to make predictions about
e curve-fitting (e.g., linear regression) a population.
* data presentation (e.g., tables, scatter-plots, * Be able to evaluate the persuasiveness of
histograms) experimental conclusions, focusing on issues
* software testing & debugging strategies such as appropriate statistical measures,
» validity threats (e.g., confounding variables, relevance of a model, and generality of the
non-generalizability) conclusions.
* Be able to design a test suite for a software project
and conduct systematic debugging.
Advanced e standard error e Be able to apply experimental methods to the
* confidence intervals analysis of complex systems in different domains.
e measures of goodness of fit (e.g., correlation | * Be able to formulate testable hypotheses and
coefficient) design experiments for supporting or refuting those
e observational study vs. controlled hypotheses.
experiment
* correlation vs. causality
* significance tests (e.g., t-test, z-score)

The following sections look at each level of competencies,
providing justification for the concepts and skills listed. At
each level, sample assignments that can be used to introduce
and motivate particular competencies are also described.

2.1. Introductory-level Competencies

The main empirical goals at the introductory level are to instill
a basic understanding that programs are used to solve
problems, and to provide informal tools for experiencing this
process. Learning to program is typically difficult enough for
beginning students, so the amount of class time that can be
devoted to additional empirical concepts is minimal. Instead,
we focus on the types of activities that complement traditional
programming assignments, but with an empirical flavor. For
example, students would not be expected to design an
experiment at the introductory level, but they could be given
an existing experimental design (say in the form of a
simulation program) and be asked to carry out the experiment
and analyze the results. A simple example would be to have a
student write a short program that simulates two dice, then
execute that program and verify the expected distribution of
dice totals. Or, the student might be asked to simulate different
variations of random walks and verify or refute hypotheses
about expected distances of those walks. Assignments such as
these involve standard programming constructs (e.g.,
conditionals, loops, counters) but also demonstrate that the
problem is not solved as soon as the program compiles.
Instead, students must collect data by executing the program
repeatedly, and analyze the results.

The empirical concepts listed at the introductory level support
the types of activities described above. Most involve
descriptive statistics, such as mean and median. These
concepts provide informal tools for analysis, allowing
students to begin the process of empirical reasoning in an
intuitive manner. Assignments that involve writing Monte
Carlo simulations, such as dice rolls and random walks,
require students to perform analysis of their program’s output
and draw conclusions, providing an opportunity to initiate an
elementary discussion of probability, consistency, accuracy
and expected values. In addition, students discover that
unexpected results may be due to their programs correctly
simulating an incorrect model of the process, or to bugs in
their program [2]. They learn that larger samples tend to
produce more consistent results and, assuming a correct
program, more accurate results.

2.2. Intermediate-level Competencies

The intermediate level provides a transition from following
prescribed experiments to successfully designing
experiments. While informal measures may have sufficed at the
introductory level, problems such as selecting the best sorting
algorithm for a particular application, optimizing the hashing
scheme for a large hash table, or selecting the appropriate page
size in a virtual memory system require more formal analysis
tools. More formal statistical concepts are introduced,
including quantitative measures describing distributions,
lines and curves. For example, students may learn the formal
distinction between uniformly and normally distributed
random variables. While at the introductory level, the normal
distribution may have been understood in terms of summing
dice and learning that “values in the middle are more
probable,” the intermediate level may show probability
distributions and use concepts from calculus. At this point,

students may develop mathematical models and estimate
parameters to fit a line, curve or normal distribution to
experimental data and then use the fit to make predictions.

Since the intermediate level is typically where students begin
designing and implementing complex software systems, it is
the natural place to emphasize the connection between
software testing/debugging and experimentation. When
testing a system involving many interacting components, a
methodical approach to designing test suites and identifying
bugs is necessary. For example, debugging a program might
involve observing its behavior on a variety of inputs, forming
a hypothesis as to what might be going wrong (and where the
error is in the code), and then executing on additional input
sets to test that hypothesis. Empirical skills developed at the
introductory level can naturally be applied here.

We also suggest that students start critiquing experimental
design at the intermediate level. Drawing from experimental
methodology courses in psychology, a systematic critique of
experiments comes from reviewing threats to an experiment’s
validity. These threats include problems with cause and effect,
statistical validity, and whether the results generalize to real-
world situations. A critique of cause-and-effect checks whether
the experiment successfully manipulates the factor being
tested while controlling all other variables. Checking for
statistical validity involves verifying that the sample is large
enough to draw conclusions. Finally, students should learn to
assess whether the circumstances and assumptions in the
experiment are close-enough to useful real-world situations
for the result to apply to them.

2.3. Advanced-level Competencies

At the advanced level, students are expected to be able to
design, conduct, and analyze experiments to address problems
in various settings. Building upon the foundational
knowledge and skills developed in earlier courses, a student in
a human-computer interaction course should be able to
evaluate different user-interfaces empirically, using proper
statistical measures and controlling for extraneous variables.
Likewise, a student in a databases class should be able
compare different indexing strategies using experimentation.

The specific concepts introduced at the advanced level will
vary depending upon the course and the application-specific
knowledge required to conduct experiments in that domain.
For example, studies involving human behavior might require
learning different techniques for assigning human participants
to an experiment’s conditions. Depending on the course,
students might learn about the different kinds of studies, such
as the difference between a controlled experiment and an
observational study. Some advanced statistical measures, such
as confidence intervals, correlation coefficients, and p-values,
will be useful in a variety of domains, and so are listed in
Table 1.

Having developed empirical reasoning skills throughout the
curriculum, students at the advanced level are prepared to
rigorously compare theoretical predictions with empirical
results and to discuss the strengths and weaknesses of both
approaches. Calculating confidence intervals for the empirical
results helps the students assess whether the two approaches
are consistent with each other for a given application.
Particularly large confidence intervals expose limitations of
empirical findings whereas inappropriate assumptions may

limit the wvalidity of theoretical predictions. Often
discrepancies between the two approaches provide learning
opportunities since they motivate students to suggest
possible problems with either approach. [11]

3. REAL-WORLD APPLICATIONS

So far we have motivated our list of concepts and skills
through their origin in statistics and Quantitative Reasoning
courses. We have also discussed how these competencies can
be applied to traditional concepts and exercises in computer
science curricula. A third way of motivating our selection of
competencies is by witnessing their application to real-world
problems. In this section we will discuss two such
applications. They are the optimization of computer systems
(both software and hardware) and the evaluation of benchmark
results.

3.1. System Optimization

Very often, opportunities for optimization arise as a computer
system is being developed. As prototypical examples of
system optimization, we might consider the development of a
software class library and the configuration of an enterprise
information server. Because these are real systems with myriad
implementation details, theoretical analysis is impractical for
optimization, thus necessitating the use of empirical studies.

First, consider the task of optimizing a sorting algorithm.
While it is true that an O(n log n) sorting algorithm will be
faster than an O(n?) algorithm when the list size is large, an
O(n%) algorithm can be faster on small lists. To optimize an
O(n log n) sort such as quick sort or merge sort, one can
modify it to revert to the use of an O(n®) algorithm, such as
insertion sort, when the list size falls below some threshold.
In fact, this has been done in the Java SDK 1.4.1, The
java.util.Arrays class provides methods for sorting both
primitive and object types utilizing quick sort and merge sort,
respectively. Both of these sorts have been optimized by
reverting to the use of insertion sort for base-case lists of less
than seven elements. In a separate optimization example,
tuning an enterprise server involves minimizing the response
time of the system while at the same time ensuring that it
scales reasonably with both user load and database size. Each
of these optimizations requires empirical investigation and
motivates several of the empirical skills and concepts on our
list.

Experiment Design: Both the sorting optimization and
the tuning of an enterprise server require the use of
controlled experiments. In the case of the sort
optimization, in order to determine the proper threshold
at which to revert to insertion sort, the experimenter must
be aware of how the large population of input datasets is
sampled and the effect of this sampling on the
generalizability of the results. In the case of the enterprise
server, an experiment might control the load on the server
while measuring the response time of the system. In such
an experiment, the experimenter must be careful to isolate
the variables of server load from database size and
content.

Data Analysis: For the sort optimization, the concepts of
consistency and accuracy can be used to determine when a
sufficient number of trials have been performed. This can
be further formalized by the use of standard deviation.

Finally, curve fitting and linear regression can be used to
determine the optimal value at which to switch from the
quick sort (or merge sort) to insertion sort. In the case of
tuning an enterprise server the analysis of experimental
result may be less formal. For example, poor performance
with respect to the size or content of the database may
prescribe the creation of new database indices.

3.2. Benchmark Evaluation

Benchmarks are commonly used to compare the performance of
software and hardware systems. For example, many claims have
been made regarding the performance of the PowerPC
processor compared to the x86 series of processors. Each new
generation of these microprocessors invites new studies
comparing their power (see [5] for a summary). Often, claims of
superior performance are backed by running a suite of standard
benchmarks and comparing average times. Our suggested core
competencies provide the concepts and skills needed for
understanding and critiquing these studies:

Confounding variables. Sometimes the studies do not
succeed in controlling all factors except for the power of
the microprocessor. For example, different
microprocessors may require different compilers. If one
compiler is better engineered, a subsequent difference in
performance may be the result of the compilers and not
the microprocessors.

Generalizing results. A difference in performance among
the benchmark tasks does not necessarily mean that a
difference in performance will be noticed when
conducting real-world tasks. For example, if the
benchmark tasks demand a substantial number of
floating-point operations but the applied tasks do not,
the microprocessor with fast floating-point operations
will not show the same advantage when performing the
applied tasks.

Significance tests. Unless the execution of the
benchmarks is carefully controlled to allow no random
variation (e.g. from network delays, imprecise clock ticks,
processor interrupts, etc.), a large number of executions
may be required in order to rule out the effect of noise.
Confidence intervals and statistical hypothesis testing
may be used.

Of course studying these threats to validity does not guarantee
that students will be able to successfully critique or design
experiments. However, they do provide students with a
language and a systematic process for understanding how
experiments might fail. In the case of statistical validity, they
also learn general-purpose tools for testing for reliable results.

4. ASSIGNMENT REPOSITORY

As part of an NSF-sponsored project we have begun using our
list as a framework for materials development, creating an
online repository of assignments that support the core
empirical competencies that we have identified. The goal of
this repository is to provide instructors with assignments that
could be integrated into existing courses with a minimal
amount of effort, and yet introduce and exercise empirical
skills. For example, at the introductory level, an instructor
might select from a variety of assignments that involve Monte
Carlo simulations and require the student to collect and

analyze data (using concepts such as mean, median,
consistency, and accuracy). An instructor in an algorithms
course might select from a variety of topics, such as a
comparison of balanced vs, unbalanced tree representations in
a dictionary application.

The assignments in the online repository have been classroom
tested, many at multiple institutions, to ensure their
effectiveness, and new assignments are continually added. In
fact, the submission of new assignments or assignment ideas
is always welcome. The repository may be accessed at:

http:/XXXXXXXXXXXXXX

5. CONCLUSION

We have proposed and motivated a list of core empirical
concepts and skills that we believe to be essential to the well-
versed computer science graduate. While each of the concepts
and skills in our list is motivated by computer science
applications, there is certainly some room for debate over the
inclusion or exclusion of topics. It is hoped that this paper
will serve to open a dialog about the content of such a list,
leading to a refinement of the skills and concepts that it
contains. In a broader context we hope that this dialog will
raise awareness of the need to address empirical skills and
concepts in the computer science curriculum. In addition, a
concrete list represents a first step toward being able to assess
whether students are really learning competencies needed for
solving practical problems using experimentation. Finally, the
list provides a framework to guide the development of
materials (such as the assignments found at our online
repository) that reinforce computer science concepts while
introducing and exercising empirical skills.

6. ACKNOWLEDGEMENTS

Partial support for this work was provided by the National
Science Foundation's Course, Curriculum, and Laboratory
Improvement Program under grant DUE-0230950. We would
also like to thank Mike Fries, Mike Kenniston, and David
Jabon of DePaul University, who met with the authors and
provided valuable feedback on the competencies list.

7. REFERENCES

[1] Braught, G., and D. Reed (2001). “The knob & switch
computer: a computer architecture simulator for
introductory computer science.” ACM Journal of
Educational Resources in Computing 1(4).

(7]

(8]

(9]

(11]

[12]

[13]

Braught, G., and D. Reed (2002). “Disequilibration for
Teaching the Scientific Method in Computer Science”
ACM SIGCSE Bulletin 34(1): 106-110.

Basili, V.R. (1996). “The role of experimentation in
software engineering: past, current, and future.” /EEE
Proceedings of ICSE 18.

Bem, E.Z. (2002). “Experiment-based project in
undergraduate computer architecture.” ACM SIGCSE
Bulletin 34(1): 171-175.

Blatchford, N. (2003). “Analysis: x86 vs. PPC.” OS News.
Retrieved August 4, 2003 from
http://www.osnews.com/story.php?news_1d=3997.
Clarke, M.C. (1998). “Teaching the empirical approach to
designing human-computer interaction via an
experimental group project.” SIGCSE Bulletin 30(1):
198-201.

Downey, A.B. (1999). “Teaching experimental design in
an operating systems class.” SIGCSE Bulletin 31(1):
316-320.

Freedman, D., Pisani, R., and Purves, R. (1998).
Statistics, Third Edition. New York: W.W. Norton &
Company.

Hendrix, T.D., J.H.Cross II, S. Maghsoodloo, and
M.L.McKinney. (2000). “Do visualizations improve
program comprehensibility? Experiments with control
structure diagrams for Java.” ACM SIGCSE Bulletin
32(1): 382-386.

Joint IEEE Computer Society/ACM Task Force for
CC2001 (2001). “Computing Curricula 2001.” Online at
http://www.acm.org/sigese/cc2001/.

Miller, C.S. (2003). “Relating Theory to Actual Results
in Computer Science and Human-Computer Interaction.
Computer Science Education 13(3): 227-240.

Mudge, T. (1996). “Report on the panel: How can
computer architecture researchers avoid becoming a
society for irreproducible results?” Computer
Architecture News 24(1): 1-5.

Newell, A., and H.A.. Simon (1976). “Computer Science
as empirical inquiry: symbols and search (ACM Turing
Award Lecture).” Communications of the ACM 19, 111-
126.

Reed, D., Miller, C., and Braught, G. (2000). “Empirical
Investigation throughout the CS Curriculum.” ACM
SIGCSE Bulletin 32(1): 202-206.

Robbins, S., and K.A. Robbins (1999). “Empirical
exploration in undergraduate operating systems.” ACM
SIGCSE Bulletin 31(1): 311-315.

Tichy, W.F. (1998). “Should computer scientists
experiment more?” Computer 31(5): 32-40.

Zelkowitz, M.V, and D.R. Wallace (1998). “Experimental
models for validating technology." Computer 31(5): 23-
31.

