
Migrations (Chapter 23)

The notes in this document are based on the online guide at
http://guides.rubyonrails.org/migrations.html and the Agile Web Development with Rails, 4th edition,
book.

Migration is a framework that allows us to modify, or migrate, the database schema over time.

Whenever a new model (or scaffold) is generated, it creates a new file in the db/migrate folder. Let’s say
we create a new model named Book. The migration file is called something like
20111010220648_create_books.rb

Migrations are named with a numeric prefix that represents the exact time when the migration was
created – this number uniquely identifies the specific migration in the project.

EXAMPLE:

20111010220648_create_books.rb

yyyymmddhhmmss_create_books.rb

Open the migration file to see the content.

New migrations can be used to modify or add fields in an existing model.

To specify the appropriate version and the corresponding migration you can invoke the following rake
command:

> rake db:migrate VERSION=20111010120000

These tasks check whether the migration has already run, so for example db:migrate
VERSION=20111010120000 will do nothing if Active Record believes that 20111010120000 has
already been run.

http://guides.rubyonrails.org/migrations.html�

Adding more fields

1) Use generate migration (similarly to generating controllers, models, etc) and give a descriptive
name for the migration following a specific syntax described below.

Example: Add new fields edition and pagenum to the Book model

> rails generate migration add_edition_and_pagenum_to_books
edition:integer pagenum:integer

ADD syntax: the key to use RAILS’ built in functionalities is to use the following syntax for the
ADD migration name:

add_newfield1_and_newfield2_and_newfield3_to_tablename

The generator creates a migration class in db/migrate prefixed by a number identifying when
the migration was created.

2) Apply the migration and make changes to the database using the rake software

> rake db:migrate

Note for scaffold projects, you need to modify the following templates to include the new columns:

o _form_html_erb: add form fields for the added columns.
o show.html.erb: add code to display values for the new columns
o index.html.erb: add code to display values for the new columns

Inside the migration

Open the xxxxxxxxxxxx_add_edition_and_pagenum_to_books.rb file to see the content. Rails uses the
add_column helper to create a new field in the table.

RAILS 3.1.0
class AddEditionAndPagenumToBooks < ActiveRecord::Migration
 def change
 add_column :books, :edition, :integer
 add_column :books, :pagenum, :integer
 end
end

change method "knows how to migrate your database and reverse it when the migration is rolled back
without the need to write a separate down method"

RAILS 3.0.9

class AddEditionAndPagenumToBooks < ActiveRecord::Migration
 def self.up
 add_column :books, :edition, :integer
 add_column :books, :pagenum, :integer
 end

 def self.down
 remove_column :books, :edition, :integer
 remove_column :books, :pagenum, :integer
 end
end

The down method of your migration reverts the transformations done by the up method.

To revert back to previous version of database you can use

> rake db:rollback

Removing field/column from database

We can use RAILS built-in functionalities again. We need to generate a migration and use the
remove_fieldname_from_tablename syntax.

Example: Remove “pagenum” field from the Book model

1) Use generate migration and give a descriptive name for the transformation.

> rails generate migration remove_pagenum_from_books pagenum:integer

RAILS creates a migration file that uses the remove_column helper to remove the pagenum field.

class RemovePagenumFromBooks < ActiveRecord::Migration
 def up
 remove_column :books, :pagenum
 end

 def down
 add_column :books, :pagenum, :integer
 end
end

2) Apply the migration and make changes to the database using the rake software

> rake db:migrate

Renaming existing fields (columns)

There is no magic keyword for renaming columns. We need to generate a migration and use the
rename_column method defined in RAILS.

rename_column :tablename, :oldname, :newname

Example: rename “title” field as “btitle” in the Book model

1) Use generate migration and give a descriptive name for the transformation.

> rails generate migration rename_title_in_books

2) Edit rename_title_in_books.rb migration file in db/migrate

class RenameTitleInBooks < ActiveRecord::Migration
 def up
 end

 def down
 end
end

3) Add rename_column method

class RenameTitleInBooks < ActiveRecord::Migration
 def up
 rename_column :books, :title, :btitle
 end

 def down

 rename_column :books, :btitle, :title
 end
end

4) Apply the migration and make changes to the database using the rake software

> rake db:migrate

NOTE: the down method should revert the change if needed

Changing column type

There is no magic keyword for changing column types. We need to generate a migration and use the
change_column method defined in RAILS.

change_column :tablename, :fieldname, :newtype

Example: Change “price” type into a :float type in the Book model

1) Use generate migration and give a descriptive name for the transformation.

> rails generate migration change_price_in_books

2) Edit change_price_in_books.rb migration file in db/migrate

class ChangePriceInBooks < ActiveRecord::Migration
 def up
 end

 def down
 end
end

3) Add change_column method

class ChangePriceInBooks < ActiveRecord::Migration
 def up
 change_column :books, :price, :float
 end

 def down

 change_column :books, :price, :decimal
 end
end

4) Apply the migration and make changes to the database using the rake software

> rake db:migrate

NOTE: the down method should revert the change if needed

Note for scaffolded projects.

The modifications will not migrate to the templates in app/views/books/.

We need to manually modify the code in the following files:

1) _form_html_erb,
2) show.html.erb,
3) index.html.erb

since table columns have changed.

	Migrations (Chapter 23)
	The notes in this document are based on the online guide at http://guides.rubyonrails.org/migrations.html and the Agile Web Development with Rails, 4th edition, book.
	Migration is a framework that allows us to modify, or migrate, the database schema over time.
	Whenever a new model (or scaffold) is generated, it creates a new file in the db/migrate folder. Let’s say we create a new model named Book. The migration file is called something like 20111010220648_create_books.rb
	Migrations are named with a numeric prefix that represents the exact time when the migration was created – this number uniquely identifies the specific migration in the project.
	EXAMPLE:
	20111010220648_create_books.rb
	yyyymmddhhmmss_create_books.rb
	Open the migration file to see the content.
	New migrations can be used to modify or add fields in an existing model.
	To specify the appropriate version and the corresponding migration you can invoke the following rake command:
	> rake db:migrate VERSION=20111010120000
	These tasks check whether the migration has already run, so for example db:migrate VERSION=20111010120000 will do nothing if Active Record believes that 20111010120000 has already been run.
	Adding more fields
	1) Use generate migration (similarly to generating controllers, models, etc) and give a descriptive name for the migration following a specific syntax described below.
	Example: Add new fields edition and pagenum to the Book model
	> rails generate migration add_edition_and_pagenum_to_books edition:integer pagenum:integer
	ADD syntax: the key to use RAILS’ built in functionalities is to use the following syntax for the ADD migration name:
	add_newfield1_and_newfield2_and_newfield3_to_tablename
	The generator creates a migration class in db/migrate prefixed by a number identifying when the migration was created.
	2) Apply the migration and make changes to the database using the rake software
	> rake db:migrate
	Inside the migration
	Open the xxxxxxxxxxxx_add_edition_and_pagenum_to_books.rb file to see the content. Rails uses the add_column helper to create a new field in the table.
	RAILS 3.1.0
	class AddEditionAndPagenumToBooks < ActiveRecord::Migration
	def change
	add_column :books, :edition, :integer
	add_column :books, :pagenum, :integer
	end
	end
	change method "knows how to migrate your database and reverse it when the migration is rolled back without the need to write a separate down method"
	RAILS 3.0.9
	class AddEditionAndPagenumToBooks < ActiveRecord::Migration
	def self.up
	add_column :books, :edition, :integer
	add_column :books, :pagenum, :integer
	end
	def self.down
	remove_column :books, :edition, :integer
	remove_column :books, :pagenum, :integer
	end
	end
	Removing field/column from database
	We can use RAILS built-in functionalities again. We need to generate a migration and use the remove_fieldname_from_tablename syntax.
	Example: Remove “pagenum” field from the Book model
	1) Use generate migration and give a descriptive name for the transformation.
	> rails generate migration remove_pagenum_from_books pagenum:integer
	RAILS creates a migration file that uses the remove_column helper to remove the pagenum field.
	class RemovePagenumFromBooks < ActiveRecord::Migration
	def up
	remove_column :books, :pagenum
	end
	def down
	add_column :books, :pagenum, :integer
	end
	end
	2) Apply the migration and make changes to the database using the rake software
	> rake db:migrate
	Renaming existing fields (columns)
	There is no magic keyword for renaming columns. We need to generate a migration and use the rename_column method defined in RAILS.
	rename_column :tablename, :oldname, :newname
	Example: rename “title” field as “btitle” in the Book model
	1) Use generate migration and give a descriptive name for the transformation.
	> rails generate migration rename_title_in_books
	2) Edit rename_title_in_books.rb migration file in db/migrate
	class RenameTitleInBooks < ActiveRecord::Migration
	def up
	end
	def down
	end
	end
	3) Add rename_column method
	class RenameTitleInBooks < ActiveRecord::Migration
	def up
	rename_column :books, :title, :btitle
	end
	def down
	rename_column :books, :btitle, :title
	end
	end
	4) Apply the migration and make changes to the database using the rake software
	> rake db:migrate
	NOTE: the down method should revert the change if needed
	Changing column type
	There is no magic keyword for changing column types. We need to generate a migration and use the change_column method defined in RAILS.
	change_column :tablename, :fieldname, :newtype
	Example: Change “price” type into a :float type in the Book model
	1) Use generate migration and give a descriptive name for the transformation.
	> rails generate migration change_price_in_books
	2) Edit change_price_in_books.rb migration file in db/migrate
	class ChangePriceInBooks < ActiveRecord::Migration
	def up
	end
	def down
	end
	end
	3) Add change_column method
	class ChangePriceInBooks < ActiveRecord::Migration
	def up
	change_column :books, :price, :float
	end
	def down
	change_column :books, :price, :decimal
	end
	end
	4) Apply the migration and make changes to the database using the rake software
	> rake db:migrate
	NOTE: the down method should revert the change if needed
	since table columns have changed.

