
Relating Theory to Actual Results

in Computer Science and Human-Computer Interaction

Craig S. Miller

School of CTI

DePaul University

Chicago, IL 60604

USA

Phone: +1 312 362 5085

Email: cmiller@cs.depaul.edu

To appear in Computer Science Education

Compact version | do not quote

March 14, 2003

Running Head: Relating theory to actual results



Abstract

Computer science educators are increasingly adding components that compare theoretical pre-
dictions to empirical results. If we are interested in better integrating Human-Computer Interaction

(HCI) concepts into a computer science curriculum, we might look at HCI lessons that draw upon

the same set of practices. With this aim in mind, I present a lesson that uses Card, Moran and

Newell's Keystroke Level Model and discuss the bene�t of asking students to compare its theoretical

predictions with empirical results from informal usability tests.
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Introduction

Despite an increasing recognition that usability is a serious problem, the study of Human-

Computer Interaction (HCI) remains at the periphery of most computer science programs. If we

look at what HCI entails, we see other reasons for its lack of acceptance in computer science

programs. Quite simply, its study and practice require skills and knowledge that are di�erent from

those that are traditionally developed in a computer science program. Traditional computer science

has its roots in mathematical problem-solving, where the problems are well-speci�ed, the axioms

accepted, and the solutions veri�able. In contrast, HCI problems are ill-de�ned, heuristics serve

in place of axioms, and evaluating proposed solutions is a study in itself. Indeed, practicing HCI

chie
y involves de�ning the problems, constructing the heuristics and deciding just how to evaluate

the solutions.

The di�erence in approaches between HCI and traditional computer science can present a chal-
lenge to instructors, especially those who are trained in one approach but not the other. More-

over, instructors who champion the traditional understandings of computer science, often question

whether HCI belongs in a computer science program. Even if we do not accept the traditional

boundaries of these disciplines, we must nevertheless acknowledge that they are still entrenched

in our curriculum and understand why there may be much resistance towards incorporating HCI

elements into a computer science program.

But computer science as a discipline is changing. Educators are increasingly recognizing com-

puter science as an empirical science, one where data collection and analysis play roles at least as

important as formal proofs (Tichy, 1998; Reed, Miller, & Braught, 2000; Reed, Baldwin, Clancy,

Downey, & Hansen, 2002). One only needs to look at any trade magazine to see that benchmarks

and comparison studies are the common practice for making product claims. To make sense of these

claims, computing professionals need to understand the bene�ts and pitfalls of empirical studies.

In contrast to traditional computer science, HCI is sometimes dismissed as lacking theoretical

underpinnings, or at least the kind of theory that traditional computer scientists feel comfortable

with. For example, HCI textbooks often emphasize iterative design, which often comes across as

simply design by trial-and-error. If we are interested in better integrating HCI concepts with a

computer science curriculum, we might look at HCI practices rooted in theory. At the same time,

if we address empirical elements in computer science, we �nd skills and knowledge in common to

both disciplines. These skills relate theory to empirical results and include the following:

� Explaining how theory applies

� Identifying theoretical assumptions

� Noting when the assumptions are violated (and to what extent)

� Devising and running realistic experiments

� Accounting for experimental error

Increasingly computer science educators are promoting lessons and assignments that involve

these practices. For example, Downey (1999) reports a series of assignments where students ex-
periment with operating system components and collect results to learn how they work. In one

assignment, students run test code that uses varying array sizes to see how its execution time inter-

acts with the cache size. Students are required to explain how the cache size a�ects their results.

Similarly, other educators have promoted assignments where students collect empirical results and
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compare it to theoretical predictions (Braught & Reed, 2002).

One avenue for better integrating HCI concepts into a computer science curriculum is to design

HCI lessons and assignments that apply theory and compare its predictions to collected results.

In this way, HCI instruction leverages upon practices used in teaching computer science concepts.

In this paper, I present how we can use Card, Moran and Newell's (1983) Keystroke Level Model

(KLM) as an example HCI lesson that relates theory to actual use. While the KLM has some
real-world applications, I emphasize its pedagogical value in this article. As we will see, an exercise

using the KLM involves the practices described above and has the same components that have been

promoted for teaching empirical investigative skills in computer science. Having used the KLM

multiple times in HCI courses, I report my experience and what other instructors might expect if

they were to use this model for one of their courses. I argue that lessons that apply a theory, derive

detailed predictions from it and test the predictions with actual usage have pedagogical advantages,

particularly if students are expected to explain actual results in terms of the theory and account for

any discrepancies. The goal is not so much to replace HCI courses but to suggest HCI lessons and

assignments that could �t alongside other assignments in a variety of courses including introductory,

interface development, data analysis, statistics as well as HCI courses.

Experimentation in HCI courses has been advocated before (Clarke, 1998), but here I em-
phasize the importance of applying theories and comparing their precise predictions to empirical

results. While common in most scienti�c disciplines, this practice is rare in HCI courses. While

the Keystroke Level Model is perhaps the best known method that is precise enough to compare to

actual results, its coverage in HCI texts receives minimal attention. Shneiderman (1998) cites the

KLM and mentions its usage but does not explain how to apply it. Preece et al. (1994) present the

operators, their times and a simple example but omit the rules for placing Mental operators. Only

Dix et al. (1998) present enough detail for a student to successfully apply the model. In none of

these cases is there a discussion of how the model's predictions might compare to actual results or

how lessons from the analysis might generalize to non-expert usage. Moreover, it is not used as a

pedagogical vehicle for discussing issues relevant to both HCI and computer science.

Using the Keystroke Level Model

The Keystroke Level Model (KLM) produces time predictions for how long it would take an

expert user to complete a particular task on a particular interface (Card, Moran, & Newell, 1983).

Here an expert user is de�ned as someone who already knows how to use the interface and is

unlikely to make mistakes completing the task. Prediction times are based on the execution times

of the operators needed to complete the task. While the KLM makes absolute prediction times, it

is particularly useful for comparing the predicted performances of competing designs. The KLM

procedure and some examples are presented in Card, Moran and Newell (1983) and in Raskin
(2000). Here I describe the process and rules as I present it to my classes. The wording and rule

applications di�er among my examples but all should produce the same results.

Applying the KLM

In applying the KLM, a practitioner selects a representative task for the interface to be evaluated.

A task may be selected because it is frequently performed or because it is a critical task that should

be completed as eÆciently as possible. The practitioner then lists the physical actions needed to
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Table 1: Operators for the Keystroke Level Model, adapted from Card, Moran and Newell (1983)

and Raskin (2000)

Constants for primitive operators
K = 0.2 sec Keying: the time it takes to tap a key on the keyboard or a

button on the mouse (skilled typist).

P = 1.1 sec Pointing: the time it takes to move the mouse to a position

on the display.

H = 0.4 sec Homing: the time it takes to move the hand from the key-

board to the mouse or from the mouse to the keyboard.

M = 1.35 sec Mental preparing: the time it takes to mentally prepare for

the next step.

R Responding: the time needed for the computer to respond.

complete the task. It might be useful to group the actions into abstract steps, but ultimately the

actions need to be grounded into a series of primitive actions called operators.

The three most common physical operators are key pressing (K), pointer movement (P), and

switching between keyboard and mouse (H). The actions needed for interacting with most command-

line and graphical user interfaces can be decomposed into these three physical operators. Card,

Moran and Newell also present a drawing operator, but this is not needed for most applications. In

addition to the physical actions, the practitioner lists a response operator (R) wherever the system
requires time to respond.

After the complete set of K, P, H and R operators are listed, the practitioner adds mental

operators (M) that represent time needed for mental deliberation. Table 1 shows a list of the

operators and Table 2 lists the rules that I have presented in my classes. I have adapted the

wording and added examples to �t most of the interfaces that we discuss in class.

Once the operators are listed and the rules are applied, the practitioner counts the number

of each operator and multiplies each of their counts with the corresponding time cost listed in

Table 1. The time costs represent average usage. In particular, the keystroke constant is that of

a skilled typist. The pointing constant assumes a typical distance and target size, but Fitts's law

would produce more accurate predictions for extreme distances and sizes (see MacKenzie, 1992, for

examples of its application).

I usually present a simple example in class. Figure 1 presents a Web interface that converts
units of one measure (e.g. meters) to units of a di�erent measure (e.g. yards) of the same property

(e.g. length). To convert 12.3 meters to yards, the user chooses Length in the Property selection

box, Meters in the From box and Yards in the To box. All of these selections are accomplished

with a mouse. The �gure displays the state of the interface after these actions are performed. To

�nish the conversion, the user types 12.3 in the text �eld and presses the Perform Conversion

button with the mouse.
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Table 2: Steps for applying the Keystroke Level Model, adapted from Card, Moran and Newell

(1983) and Raskin (2000)

1 Fully list the K, P, H and R operators needed to complete the task.

2 Insert an M operator before every K operator.

3 Insert an M operator before every P operator unless that P operator speci�es

additional information to a command. For example, inserting a column break

using MS Word requires the user to select the Break item from the Insert
menu and then point to and click on the Column break option in the dialog

box. The operator of pointing to the Column break option does not require

an M operator because it speci�es what type of Break should be inserted.

4 Delete an M if it precedes an anticipated operator. For example, the keying

(clicking) operator of a \point and click" process is an anticipated operator.

5 If a string of MKs form a cognitive unit (e.g. a word, number, name or

command), delete all of the Ms except the �rst one.

6 For sequences of terminators to cognitive units (e.g. a sequence of return
keys or closing multiple dialog boxes), delete all Ms except the M that starts

the sequence.

7 For a terminator to a command, delete the preceding M.

8 Delete an M that overlaps with an R. However, do not delete the M if the

next operator depends on the outcome from R.

Table 3 shows the result of a keystroke level analysis for the above task. It assumes that none of

the selections are already showing and that the user's hands are at the keyboard at the beginning

of the task. The table breaks the sequence of operators into groups of abstract commands, which

helps clarify the rules for placing mental operators. By grouping operators that are anticipated

together (Step 4 of Table 2) or are part of the same cognitive unit (Step 5), one need only place

mental operators at the beginning of each abstract command. The last abstract command (i.e.

pressing the button) is considered as a terminator to entering the number of units and its mental

operator has been deleted (Step 7).

Student experiences with the keystroke model

When demonstrating an example or assigning an application for analysis, I select applications

whose principal tasks take 30 to 60 seconds. Often these are Web applications. Examples include

an apartment-�nding Web site, a currency conversion application, a course enrollment application

and a site for booking airline tickets. When students perform the analysis themselves, I allow them

to choose from a list of possible applications but ask them to de�ne the actual task.

For many students, applying the KLM is their �rst experience at rigorously decomposing user
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Table 3: Example Keystroke Level Analysis for the Unit Converter
Select length in Property selection box

M Prepare for property selection
H Move hand from keyboard to mouse

P Move mouse to selection tab

K Click on selection tab

P Move mouse to Length

K Click on Length

Select meters in From selection box

M Prepare for selecting meters

P Move mouse to selection tab

K Click on selection tab

P Move mouse to Meters

K Click on Meters

Select yards in To selection box

M Prepare for selecting yards

P Move mouse to selection tab

K Click on selection tab

P Move mouse to Yards
K Click on Yards

Key in the number of units

M Prepare for entering units
P Move mouse to text �eld

K Click mouse to activate text �eld

H Move hand from mouse to keyboard

K Type `1'

K Type `2'

K Type `.'

K Type `3'

Press convert button

H Move hand from keyboard to mouse

P Move mouse to button

K Click on button

Calculation to predict task completion time:

12 * K + 8 * P + 2 * H + 4 * M

= 12 * 0.2 + 8 * 1.1 + 2 * 0.4 + 4 * 1.35

= 17.4 sec
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Figure 1: Simple interface for converting units

commands. They are often surprised at the number of small steps that are needed to complete

even the most basic GUI tasks. Yet, after an initial exposure, students experience little diÆculty

in fully listing the physical operators.

DiÆculty and variation of interpretation come with placing and removing the mental operators.

Students need to carefully consider how commands are segmented, what constitutes a \cognitive

unit", and whether a keystroke is a terminator. Grouping the operators into sets of abstract

commands is useful and presents some guidance for applying the rules, but, as Card, Moran and

Newell note, these decisions require some judgment from the practitioner and may depend on the

user. Here some discussion is useful and presents an opportunity to apply some concepts from
cognitive psychology. Discussing the size of the cognitive unit motivates teaching memory chunks

and how their size increases with learning (Simon, 1974).

I typically assign a KLM problem to students working in groups of three. This arrangement

allows students to discuss the rules and often requires them to explain to others why they think a

certain rule applies. Generally a group of three can �nish a KLM analysis on a 30 second task in

a half hour and almost always within an hour.

Comparing theory to actual results

Once students have added up the times of the operators and have arrived at a prediction, they
are asked to collect actual times of users performing the tasks. While not necessary, I ask student

groups to \contract out" the data collection to another group. In this way, each group of students

perform a KLM analysis and then collect timings on a di�erent task for a di�erent group. One
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Table 4: Summary of student results in one class

Number KLM Con�dence Interval Number of

in group Type of Task Prediction from Timings Timings

3 Currency conversion 13.0 8.7 | 21.2 12

3 Course scheduling 29.9 12.3 | 45.7 13

3 Airline ticket purchase 31.5 17.5 | 28.5 18

4 Currency conversion 37.1 17.3 | 24.7 13

3 Currency conversion 10.7 22.4 | 32.0 13
Prediction and con�dence interval times are presented in seconds.

advantage of asking a di�erent group is that it requires the �rst group to successfully specify the

task and its circumstances.

To collect timings, students run informal usability tests. The preparation involves writing

instructions and setting up the computer for the task. Because the KLM analysis makes predictions

for expert users, I advise students to incorporate some initial practice time before the participant

performs the timed task. I supply stopwatches and lab sheets for collecting the timings. Students

take turns administrating the tests and acting as participants for other tasks. They can easily

collect 15 timings within an hour.

Using statistical software, students type in the times to calculate the average and a 95% con�-

dence interval for the average. Even though they are required to have taken statistics course before,

I review what a con�dence interval means. Among other things, the con�dence interval emphasizes

the existence of error that comes from a sample of collected times.

Table 4 presents a set of student results from one class.1 The KLM predictions are those

prepared by students for the �rst time and without the bene�t of knowing the empirical results.

Since students were asked to specify the task, the actual tasks varied even for those of the same

type. For example, a currency conversion task might require the user to specify a credit card rate

instead of a cash rate. Except for one group of four, most KLM analyses were done in student

groups of three. The �rst two groups have KLM predictions that fall well within the con�dence

interval calculated from the set of actual timings. The third group is just outside of the range. The
fourth and �fth groups fall substantially outside of the range by respectively over-predicting and

under-predicting the collected timings.

The results from this class are consistent with my experience in previous classes, where roughly

half the student predictions fall within the con�dence interval. While it is gratifying when the

theory's predictions match the empirical �ndings, there is perhaps more pedagogical utility in asking

students to account for discrepancies between the empirical result and the model's prediction. With

as little prompting from me as possible, I ask students to think of reasons why the predicted time

and the collected average time might di�er. Here are some possibilities:

� Because they are being timed, some participants race through the test faster than

their typical pace. Possible remedies include altering the instructions to inform the participant

1Thanks to Peter Wiemer-Hastings, who shared these �gures from his HCI class at DePaul University. He followed

the procedure I have outlined in this paper.
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that the test is not a race and that he or she should perform the test at their typical pace.

� Some participants did not receive enough practice before completing the task. In

these cases, the participants were not yet experts and probably spent more timing thinking their

way through the task than users who are well practiced with the task. When discussing this

possibility, it is important to remind students that the KLM is meant for predicting times of

expert usage. An instructor may want to prescribe a training regiment before each participant

is timed on the actual task. Card, Moran and Newell (1983) note that their participants were at

ease with the task after three or four practice trials.

� The KLM time constants do not match the skill level of the users. For example,

the keystroke rate assumes that of an average skilled typist. Some users, including some of the

students, may not be skilled at typing. Note that the KLM analysis can account for users at

varying levels of typing skill through the use of di�erent time constants. However, the analysis

assumes expert usage in the sense that the user knows the correct sequence of operators for

accomplishing the task.

� The rules for the M operator were not judiciously followed. In my experience, stu-
dents tend to err on the side of not removing enough M operators and produce predictions that

overestimate the actual times. Some instructors may choose to restructure the mental operator

rules so that they are easier to remember. For example, it might be reasonable to organize steps

3 through 7 as special examples of an automatic sequence, whose physical operators are not

interrupted by an mental operators.

� The task is poorly de�ned. Sometimes the analysis group does a poor job specifying the
task to the test group. The actual start of the task may not be clear. Sometimes it is not clear

whether the time of the computer's response should be included.

In the case of the collected results shown in Table 4, a look at the students' KLM analysis reveals

that the fourth group did not remove enough M operators because they missed some cognitive

chunks. In contrast, the �fth group had removed all M operators, which may not be justi�ed given

the number of high-level steps needed to complete the task. In my experience, the actions of the

fourth group is common whereas it is more unusual for students to over-apply the rules for removing

M operators.

Asking students to explain discrepancies forces them to scrutinize both the model and the

empirical data collection. They discover limitations of both. At �rst pass, it may seem that the

KLM only addresses a narrow range of usability concerns. To be sure, it only applies to expert
usage and only addresses one dimension of usability, that of eÆciency as measured in terms of task

completion time. Yet, by applying the model and comparing it to collected results, some principal

ideas in HCI are addressed. For example, students learn that empirical tests critically depend

on how speci�c the instructions are, which participants are selected, and how many of them are

tested. For applying theoretical models, students learn to assess whether model assumptions are

valid for the situation. Because the keystroke analysis gives students the language for explaining

the consequences of these issues, they are more likely to retain the concepts (see Chi et al., 1989,

for a review of how explanation bene�ts learning).

The KLM also opens the discussion on trade-o�s between interaction styles. Because the point-

ing operator requires 1.1 seconds compared to 0.2 seconds for the keystroke operator, keying is

identi�ed as a more eÆcient means for entering information to a computer. At �rst, this obser-
vation comes to a surprise to students who think that command-line interfaces are harder to use.

With some discussion, students learn that keying may provide a more eÆcient means for specifying
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commands, but it has a learnability cost for novice users, who have yet to learn the commands. It

may be worth pointing out that many interface designers resolve the trade-o� between eÆciency

and learnability by providing users with alternate means of selecting commands: by mouse-driven

menu selection and by keyboard shortcuts (also called accelerators).

My students use stopwatches for collecting task completion times. Their use provides a quick

and easy method for collecting times in any computer lab. Also, because the times represent a
simple quantitative measure of eÆciency, descriptive statistics (e.g. mean and variance) provide an

easy means for summarizing a number of trials. However, an instructor may choose to have students

further explore discrepancies between the KLM analysis and the collected timings. In this case, the

instructor would need a method for collecting richer data. Software that captures keystrokes and

their times would allow students to determine average times for each of the component actions.

Screen capture software could also be used to analyze user actions as well as review user comments

for those packages that record audio. Use of these methods may also motivate a discussion on the

trade-o�s between quantitative measures and rich qualitative data.

Discussion

The Keystroke Level Model may be the best model for applying a theory and comparing its

precise predictions to actual results, but there are other theories and practices that make testable

claims which could be compared to actual results. Fitts's law (MacKenzie, 1992) for mouse pointing

times and Hick's law (Card et al., 1983) for menu decision times both make precise predictions that

could be compared to collected times. Collecting data for these laws would require keystroke-

capture software to automatically record selection times since the user event happens so quickly

(on the order of 1 second).

It is also possible to look at practices that make qualitative claims instead of precise quantitative

predictions. For example, card sorting is often prescribed as a means for hierarchically organizing
a Web site (see Brink, Gergle & Wood, 2002, for a description of its use). Comparing the resulting

structure with alternate structures in usability tests would be useful for critically evaluating the

assumptions and bene�ts of the practice. As another example, I have students �rst apply inspection

methods for identifying potential usability problems. Later they perform usability tests and can

check whether the predicted problems actually occur in the tests. Unfortunately these practices

with qualitative claims lack precision and theory. While re
ecting on comparable results from

independent methods has pedagogical value, the discrepancies between predictions and empirical

results are not always so evident and, when they are noticed, they do not o�er a rich language in

which to explain the discrepancies. However, as HCI evolves as a discipline, we may be able to

increasingly use new, more precise theories in our courses.

As we look to new theories, we may want to introduce them using the same methods that we

are increasingly using to teach computer science concepts. That is, we ask students to apply a
theory, compare the theoretical predictions to collected data, and account for any discrepancies.

Both theory application and empirical data collection have their limitations. Perhaps by unifying

the discussion of these methods using concepts from HCI and traditional computer science, we can

produce a more integrated program of study.
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