Improved Bounds for the Firing
Synchronization Problem

A. Settle
DePaul University & University of Chicago, USA

J. Simon
University of Chicago, USA

Abstract

In this paper we present improved bounds on the complexity of solutions
to the ¢ring synchronization problem. In the ¢ ring synchronization problem
we consider a one-dimensional array of nidentical ¢nite automata. Initially
all automata are in the same state except for one automaton which is desig-
nated as the initiator for the synchronization. Our results hold for the origi-
nal problem, where the initiator may be located at either endpoint, and for the
variantwhere any one of the automata may be the initiator, called the general-
ized problem. In both cases, the goal isto de¢ne the set of states andtransition
rules for the automata so thatall machines enter a special ¢ re state simultane-
ously and for the ¢rst time during the ¢ nal round of the computation. In our
work we improve the construction for the best known minimal-time solution
to the generalized problem by reducing the number of states needed and give
non-minimal time solutions to the original and generalized problem which
use fewer states than the corresponding minimal-time solutions.

Keywords: cellular automata, ¢ring squad synchronization problem

1 Introduction

In the ¢ring synchronization problem we consider a one-dimensional array of n
identical ¢ nite automata. Initially all automata are in the same state exceptforone
automaton, which is designated as the initiator for the synchronization. The ma-
chines operate in lock-step, and the transitions of each automaton depend on the
states of the automaton and its neighbors. The goal isto de¢ ne the set of states and
transition rules for the automata so that all machines enter a special ¢ re state for
the ¢ rst time and simultaneously during the ¢ nal round of the computation.
Synchronizing a set of processes is an important problem in distributed algo-
rithms and the ¢ring synchronization problem is one of the simplest and oldest

1

2 Sirocco '98

formalizations of this problem. By studying this fundamental and elegant ques-
tion we hope to gain insightinto other such problems and develop techniques and
intuitions that will be useful for generalizations of the problem. For example, solu-
tions to more general versions of the ¢ ring synchronization problem, in which the
underlying network is an undirected or strongly-connected directed graph, work
by reducing the graph to simpler structures which are synchronized by solutions
to the one-dimensional problem [Kob78 NH81, ELW97, OW 95.

Two obvious criteria for ranking solutions are the speed of the solution, namely
the time needed to synchronize, and the complexity of the solution, measured by
the number of states of the automaton.

It is easy to show that in the original problem an array of n automata cannot
synchronize before time step 2n j 2[Moo64. This is the minimal amount of time
for the initiator to send a message to the far end automaton and get a message back.
A minimal-time solution is a set of states and transition rules for which synchro-
nization occurs after exactly 2n j 2 time steps, whereas a non-minimal time so-
lution is one where synchronization takes more than 2n j 2time steps. The same
notions can also be de¢ned for the generalized version of the problem, and there
is a similar bound on the number of time steps necessary for synchronization.

In this paperweimprove the bounds on the complexity of solutions to the ¢ ring
synchronization problem. We give a 9-state minimal-time automaton for a gener-
alized version of the problem. This improves on the best previously known con-
struction, an automaton using 10 states, which appeared in a paper by Szwerin-
ski [Szw89. We give a 6-state non-minimal time automaton for the original prob-
lem where the initiator may be located at either endpoint. This automaton uses two
fewer states than the best known minimal-time automaton for the same problem
[Bal67]. We also present a 7-state non-minimal time solution to the generalized
problem which uses 2 fewer states than the best known minimal-time automaton
mentioned above. Both of our non-minimal time automata are based on a 6-state
solution to a restricted version of the problem produced by Mazoyer [Maz87. We
also have a proof of correctness for each of our non-minimal time automata.

1.1 Previous Work

The ¢ring synchronization problem has a long history. Initially proposed by My-
hill, the ¢rst published solution is by McCarthy and Minsky [Min72]. Their au-
tomaton uses a divide and conquer algorithm and takes 3n steps to synchronize.
The ¢ rst minimal-time automaton for the original problem was produced by Goto,
who gave a solution with over 1000 states in 1962 [Got63, and work in the area
quicklyfocused on ¢,nding minimal-time solutions using fewer states. In 1966 Waks-
man [Wak6§ gave a 16-state minimal-time solution, and Balzer [Bal67] indepen-
dently produced an 8-state solution using the same ideas. Balzer also showed, us-
ing a heuristic search algorithm, that there is no 4-state minimal-time solution to
the original problem. (See also Sanders' paper [San94 for a recent result con-

Improved Bounds for the Firing Synchronization Problem 3

¢rming the bound). In 1987 Mazoyer [Maz87] produced a 6-state solution to a re-
stricted version of the problem in which the initiator is located at the left endpoint
of the array.

Mazoyersuggested that all solutions with few states must necessarily be minimal-
time, a conjecture based on the idea that the simplest solution will naturally be the
fastest. Yunhs [Yun94] contested the conjecture! in 1994 by giving an implemen-
tation of McCarthy and Minsky's solution that requires only 13 states and time
t(n) =3n8 £,logn+ C,where 0 - £, <1 and by producing a 7-state so-
lution that uses time t(n) = 3n 8 2£, logn + C, where 0 - £, < 1. Both
automata solve the restricted version of the original problem which requires that
the initiator be located at the left endpoint.

Moore and Langdon introduced ageneralization of the original problem in 1968
[ML68]. They also considered a one-dimensional array of ¢ nite automata but al-
lowed the initiator to be located anywhere in the array. In their paper, Moore and
Langdon gave a 17-state minimal-time solution for the generalized problem. Var-
shavsky, Marakkovsky and Peschansky [VMP70]improved this result, producing
a 10-state minimal-time solution.

Further work on the generalized problem was done in 1982 by Szwerinski [Szw83.
Szwerinski considered symmetric solutions. A symmetric solution is one in which
an automaton cannot distinguish between its left and right neighbors. Szwerinski
gave a 10-state, symmetric, minimal-time solution.

To the best of our knowledge, non-minimal time solutions to the generalized
problem have not been studied previously.

1.2 Lower versus Upper Bounds

Despite its long history, there are many important open problems remaining for
the ¢ring synchronization problem. One of the most fundamental is determining
precisely how many states an automaton solving the problem requires.

Balzer has shown that no 4-state minimal-time automaton for the restricted
version of the original problem exists. In each variant of the problemthis leaves a
gap between the lower bound and the best known minimal-time solutions. For the
unrestricted original problem this gap is 4 states. Any lower bound for the original
problem also applies to the generalized problem since the original problem must
be solved as a subcase. Thus the gap forthe generalized problem is 6 states.

Work on non-minimal time solutions has been even more limited. The only
known lower bound for non-minimal automata is a 3-state bound on solutions to
the original ¢ring synchronization problem [SS9§. This leaves a gap of 4 states
between the best known solution to the original problem and the lower bound. As
stated before there were no known non-minimal time solutions to the generalized
problem prior to this work.

1Recall that the exact size of the optimal minimal-time automaton is not known.

4 Sirocco '98

1.3 Our Contributions

In Section 3 we present a 9-state minimal-time symmetric solution to the gen-
eralized ¢ ring synchronization problem. Its transition function may be found in
Appendix A. The automaton contains within it an 8-state symmetric solution to
the original problem. The 9-state automaton has the fewest states of any known
minimal-time solution to the generalized problem.

We present in Section 4.1 a 6-state non-minimal time solution to the original
problem which allows the initiator to be located at either the left or the right end-
point of the array. The transition function for the automaton may be in found in
Appendix A. This automaton has 2 fewer states than Balzer's 8-state minimal-
time automaton [Bal67]. We also have a proof of correctness for the solution which
shows that for any n 2 N -2 the solution synchronizes a one-dimensional array of
nautomatain 2n j 1 stepsif the initiator is located at the left endpoint of the array
or 3n + 1 time steps if the initiator is located at the right endpoint. The details of
the proof are not given here but may be found in the technical report [SS97.

Finally in Section 4.2 we present a 7-state non-minimal time solution to the
generalized problem mentioned above, where the initiator can be anywhere in the
array. The transition function for the automaton may also be found in Appendix A.
This automaton has the fewest states of any known solution to this problem, and
requires 2 fewer states than our minimal-time automaton. We also have a proof
of correctness for the 7-state solution which shows that the solution synchronizes
a one-dimensional array of n automata with initiator located in position k of the
array in 2n j 2 + k time steps for any n 2 N -2. Again the details of the proof
are omitted but may be found in the technical report [SS9T.

Few researchersin thisareahave provided correctness proofs for their automata.
Indeed, as far as we know, prior to this work only Balzer [Bal67] and Mazoyer
[Maz87 have published proofs of correctness.

Our work provides additional evidence that Mazoyer's conjecture does not hold
by giving non-minimal time solutions to both the original and generalized ver-
sions of the ¢ring synchronization problem which require fewer states than the
best known minimal-time solutions. Indeed optimal non-minimal time solutions
may use even fewer states than our constructions, as our automata are built on top
of minimal-time solutions to restricted versions of the problem.

2 The Firing Synchronization Problem

The ¢ring synchronization problem, sometimes also called the ¢ ring squad prob-
lem, is a classical problem of synchronization. Consider a one-dimensional array
of n ¢ nite automata in which all automata are identical except the ones on either
end of the array. The machines work synchronously, and the state of an automaton
attime tonly depends onits and its neighbors' states attime tj 1. Inround 0 of the
computation all automata are in a special quiescent state except for one automaton

Improved Bounds for the Firing Synchronization Problem 5

which is designated as the initiator for the synchronization. The problem is to de-
¢ ne the setof states and transition rules for the automata so that all machines enter
a special ¢ re state simultaneously and for the ¢ rst time at some time t(n).

The transition function for each automaton can be given as a set of 4-tuples.
The 4-tuple (X,Y,Z,W) represents the rule that an automaton currently in state Y,
with left neighbor in state X and right neighbor in state Z will enter state W atthe
next time step. We will denote thisby XYZ ¥ W. By de¢ nition automata solving
the ¢ring synchronization problem are deterministic so that there is at most one
tuple (X,Y,Z,W) for any triple of states X,Y,Z.

It is easy to show that t(n) _ 2n j 2 [Moo64. This is the minimal amount of
time for the initiator to send a message to the far end automaton and get a message
back.

A minimal-time solution is a set of states and transition rules for which t(n) =
2n j 2, whereas a non-minimal time solution is one for which t(n) > 2n j 2.

An N -state solution of the problem is one in which each automaton has N states,
including the quiescent and ¢ re states.

A symmetric automaton is one which has a symmetric transition function, that
is, whenever a transition XYZ ¥ W is de¢ned, the transition ZYX ¥ W must
alsobe de¢ ned. This means that the automata cannot distinguish theirleft and right
neighbors.

A generalization of the original problem introduced by Moore and Langdon
[ML68] allows the initiator to be located anywhere in the one-dimensional array
of ¢ nite automata. Let k denote the position of the initiator in the array, where 1 -

k - nyandletm=minfk j 1;nj kg. Moore and Langdon showed that2nj m j 2
is the minimal ¢ ring time for the generalized problem.

3 The Minimal-Time Solution

In this section we describe the 9-state minimal-time solution to the generalized
¢ring synchronization problem. The 9-state automaton is a modi¢ cation of Szw-
erinski's 10-state solution.

The strategy for Szwerinski's automaton, like all other known solutions to the
generalized problem [ML68, VMP7(Q], is to reduce the synchronization of the gen-
eralized problem to the original problem. Once this has been completed, the syn-
chronization is ¢ nished by a solution to the original problem contained within the
transition function for the generalized solution. For this reason, Szwerinski's so-
lution works in two phases, the ¢rst of which accomplishes the reduction to the
original problem, and the second which completes the synchronization using the
underlying original solution.

Szwerinski's 10-state automaton contains an 8-state solution to the original
problem and uses two additional states for the ¢ rst phase of the synchronization.
The 9-state automaton also contains the 8-state original solution, but uses only one

6 Sirocco '98

additional state for the ¢ rst phase.

In the remainder of the section, we describe at a high level how the 9-state
automaton works. We then give a detailed explanation of the underlying 8-state
solution to the original problem and ¢ nally explain how the two phases work in
the 9-state automaton.

3.1 AHigh-Level Description

In the 9-state minimal-time solution, the line is repeatedly divided into halves as
new initiators are placed in the center of each of the intervals. The simulation ends
when all automata become initiators and ¢ re at the next time step.

The transition function for the 9-state automaton is given in Appendix A. Itcan
be seen from the transition function that there are several states which propagate
toward neighboring automata. We call these states signals, since their purpose is to
carryinformation from one part of the array to another. Other states remain station-
ary until they come into contact with certain signals. We call these states markers.
They act as placeholders indicating signi¢, cant positions in the array, such as the
center of the line.

In order to understand how the division of the array is performed, consider
what happens when the initiator is located at either end. A simulation for this case
can be found in Appendix B. The time steps given below refer to the simulation
in that section.

This case is simply the original problem and is handled by the underlying 8-
state automaton. The initiator sends out a signal which produces a second initiator
when it reaches the opposite end of the line. In the sample simulation this occurs
between time steps 0 and 16. When this wake-up signal is reA ected back by the
new initiator, it intersects with markers created in the wake of the ¢ rst signal and
produces a third initiator (or pair of initiators depending on the parity of the orig-
inal line) located at the center of the array. This occurs at time step 24 of the sam-
ple simulation. This division of the line continues until every other automaton is
an initiator, which occurs at time step 30. At the next time step in the simulation
every automaton becomes an initiator, and at the following time step all automata
ore.

In the case where the initiator is located somewhere in the middle ofthe array;,
the goalistoreducethe problem to the original problem. To achieve this reduction,
a new initiator is produced at the center of the array attime n j m + b3c. The
simulation then continues from that point as if the ¢ rst initiator had been located
at one of the endpoints. An extra state is used to achieve this ¢rst subdivision, but
after the central initiator is created, the remainder of the simulation is handled by
the subset of states corresponding to the 8-state solution and the extra state does
not appear.

Improved Bounds for the Firing Synchronization Problem 7
3.2 The Underlying 8-State Solution to the Original Problem

In order to explain in some detail how the 9-state solution works, we ¢rst present
the 8-state solution to the original problem. Recall that the original problem re-
quires that the ¢rst initiator be located at one of the endpoints of the array of au-
tomata. The 8-state solution is derived from the 9-state solution to the generalized
problem by deleting all occurrences of the state D. The time steps given below
refer to the simulation found in Appendix B. The solution works as follows.

The ¢rstinitiator in state G sends out an A-signal to the other end of the line. In
the simulation the A-signalis produced attime step 1. The A-signal moves ata rate
of one automaton per time step. As the A-signal advances away from an automa-
ton, itleaves the automaton in one of two states, either R or P. An R is produced at
all even time steps and a P atall odd time steps. Thus the parity of the line segment
the A-signal crosses can be determined by the state appearing behind the A-signal
once it reaches the end of the line.

The R moves back in the direction from which the A-signal came at the rate of
one automaton per time step. The ¢rst R-signal is produced at time step 2 of the
sample simulation. When the R-signal collides with the initiator at the other end
it produces a B-marker. This occurs in the simulation at time step 3. The new B-
marker moves away from the initiator one position each time it encounters a new
R-signal. For example, the ¢ rst B-markeradvances at time step 6 of the simulation.
This ¢ rst marker will be the one that will mark the center(s) where the next initia-
tor(s) should be produced. In order to mark the %, %, .11, positions in the array,
where the next initiator(s) need to be placed, additional B-markers need to be pro-
duced. This is done by allowing the R-signal to continue past a B-marker every
other time a B-marker advances. The R-signal can then produce and/or advance
other B-marker(s). The state of the automaton behind the B-marker determines
whether the R-signal advances. If the state of the automaton behind the B-marker
is a P, then the R-signal will regenerate behind the B-marker after advancing it. An
example of this can be seen at time steps 11, 12 and 13 of the simulation. On the
other hand, if the B-marker is followed by an automaton in state Z, the R-signal
will vanish after moving the B-marker forward. This case can be seen attime steps
14 and 15.

As the A-signal hits the end of the array, itis reA ected back. In the sample sim-
ulation this occurs at time steps 15, 16 and 17. Depending on the parity of the ar-
ray, one of two state con¢,gurations will be produced behind the A-signal asit ad-
vances. Ifthe line is of odd length, the A-signal will be followed at alternating time
steps by an Ror P, as with the ¢rst A-signal. If the array has even length, then the
A will be followed by a Z which is alternately followed by an R or P. The sample
simulation has 17 automata so that the former case holds.

By thetime the A-signal is reA ected back, it has sent enough R-signals to bring
the B-marker to the middle of the line. This is because the A-signal produces an
R-signal every other time step, creating half as many R-signals as the length of the

8 Sirocco '98

array. Because the leading B-marker moves one position each time it encounters
one of these R-signals, it will have moved to the center of the array once all of
the R-signals reach it. This happens before the reA ected A-signal can reach the B-
marker.

When the A-signal reaches the B-marker it produces the new initiator(s). In
the simulation this occurs at time step 24. A single new initiator is produced if the
line has odd length, since in that case there is a middle point of the array. This is
true if the A-signal reaches the B-marker with the automaton behind it in state P.
If the line length has even parity then two new initiators need to be produced since
there are two central positions in the array. This occurs when the A-signal reaches
the B-marker with the automaton behind itin state Z. Again, because there are 17
automata in the simulation, the former case holds.

The new initiator(s) now begins to recursively subdivide the array. A-signals
are sent out toward each end of the array. These will intersect the remaining B-
markers produced in the wake of the ¢ rst A-signal and the reA ected A-signal to
produce the initiators at the quarter positions. This process continues until every
other automaton is an initiator. At that point all automata become initiators and
then ¢re at the next time step.

3.3 The 9-state Automaton

The 9-state solution to the generalized problem works in a manner similar to the
8-state automaton. The additional state D is used as the state for the ¢ rstinitiator.
If this initiator is at the end of the line, it sends an A-signal toward the other end
of the array and enters state G. The rest of the algorithm is then the same as the
8-state automaton described above.

In the case where the ¢rstinitiator is located somewhere in the middle of the
array, the goal is to reduce the synchronization task to the original problem. The
¢Jrstinitiator begins this process by sending out A-signals in both directions. The
R-signals produced in the wake of the A-signals meet at the initiator and disap-
pear. The A-signals will create new initiators as they reach the end of the line and
are reA ected back toward the middle. If the array is of odd length and the initia-
tor is located at the center point, then the A-signals will meet back at the original
initiator, putting it into state G. If the initiator is not located at the center point of
the array, then the A-signal sent to the closer end returns to the initiator ¢ rst. Ifthe
length of the shorter segment is even, a D-marker is produced when the A-signal
reaches the initiator. If the shorter segment has odd parity, then the A-signal creates
a B-marker when it reaches the initiator. These markers now advance in response
to the R-signals sent by the A-signhal on the opposite side and move to the center
of the array. There they are met by the reA ected A-signal and create initiator(s) in
state G. Whether a single initiator or two initiators are produced is determined by
the parity of both the short and long line segments, which is encoded both by the
marker state and the state of the automaton behind the A-signal.

Improved Bounds for the Firing Synchronization Problem 9

Once the central initiator(s) are created, the remainder of the simulation is per-
formedby the 8-state automaton, as described inthe previous subsection. The state
D does not appear after this point.

4 The Non-minimal Time Automata

4.1 A 6-state Automaton for the Original Problem

The 6-state automaton is based on Mazoyer's 6-state solution to the restricted ver-
sionoftheoriginal ¢, ring synchronization problem. Recall thatMazoyer's minimal-
time automaton requires the initiator to be located at the left endpoint of the array.
Mazoyer's solution works by dividing the line of automata into unequal parts, one
of length 4n and the other of length £n. An initiator is placed at the left endpoint of
the shorter segment, and each segment is then recursively subdivided. After every
automaton becomes an initiator, the automata ¢ re and the synchronization ends.
For a detailed description of that solution see Mazoyer's paper [Maz87).

Unlike Mazoyer's solution, the initial con¢,gurationforour 6-state non-minimal
time automaton allows the initiator to be located at either the left or right endpoint
of the array. In either case the goal of the non-minimal time automaton is to pro-
duce the initial con¢ guration necessary for Mazoyer's solution. The synchroniza-
tion of the array is then completed by the minimal-time automaton.

4.1.1 The Description of the Solution

The behavior of our 6-state automaton is as follows. The state B is used as the
state for the ¢rstinitiator. If the initiator is located at the left endpoint in the ini-
tial con¢ guration, the automaton simply enters the state G at the next time step.
This puts the array in the con¢, guration necessary for the minimal-time automaton,
which then synchronizes the line. The entire process takes one additional step be-
yond the time for the minimal-time synchronization, and the line is synchronized
intime 2n j 1.

If the initiator is located at the right endpoint when the synchronization begins,

a signal is sent toward the left endpoint. The purpose of this signal is to produce
aninitiator in state G at the left end of the array, leaving the rest of the automata in
the quiescent state L as the signal passes. This puts the array inthe con¢ guration
necessary for the minimal-time solution, which then completes the synchroniza-
tion.

The signal which produces the initiator at the left endpoint consists of four
states, AACB. The Binitiator enters state A attime step 1, and the Athenadvances
left, producing the rest of the signal behind it during time steps 2 through 4. The
signal then moves at a rate of one automaton per time step toward the left. As the
signal moves, the automata behind itare once again putinto the quiescent state L.
When the signalreaches the leftend of the array, the signal collapses, leaving only

10 Sirocco '98

the last two states in the signal. At the next time step the G initiator is produced
and the minimal-time synchronization takes place.

One step is necessary to produce the lead state A in the signal. Another n time
steps are required for the A to reach the left endpoint. It then takes an additional
two time steps for the ¢ rst two states of the signal to vanish and create the G ini-
tiator. The minimal-time automaton then ¢nishes the synchronization. Thus the
whole process takes time 1+n+ 2+ (2n j 2) =3n+ 1.

The transition function for the 6-state automaton may be found in Appendix A.
The proof of correctness for the automaton proceeds by induction on the time step
of the synchronization. The details are omitted but may be found in the technical
report [SS97.

4.2 The 7-State Solution to the Generalized Problem

The 7-state automaton, like the 6-state solution to the original problem, is based on
Mazoyer's 6-state minimal-time solution, which was brieA y described in the pre-
vious section. It allows the ¢rst initiator to be located anywhere in the array and
works by sending a signal from the ¢rstinitiator back toward the left endpoint.
When the signal reaches the end of the line, ittransforms into the initiator for Ma-
zoyer's 6-state solution, and the minimal-time synchronization begins.

In order to allow the ¢rstinitiator to be located anywhere in the array, a new
state D is added to Mazoyer's automaton. D is used both for the ¢ rst initiator state
and as the state for the signal that moves leftward. This results in the D migrating
across the line of automata until it reaches the end. Once the D signal reaches the
left endpoint, it puts the leftmost automaton in state G, the initiator state for Ma-
zoyer's automaton. The synchronization is then completed by the 6-state minimal-
time solution.

If the ¢rst initiator is located in position k of the array, it takes k j 1 steps
for the D signal to reach the left endpoint. At the next time step the D transforms
into a G and the minimal-time synchronization begins. This means thatthe entire
synchronization takes time 2n j 2 + k time steps.

The transition function for the 7-state automaton can be found in Appendix A.
The proof of correctness for the automaton proceeds by induction on the time step
of the synchronization. The details are omitted but may be found in the technical
report [SS97.

5 Conclusion

In this paperwe presented improved bounds on the complexity of one-dimensional
variants of the ¢ring synchronization problem. We gave a 9-state minimal-time
automaton for a generalized version of the problem, which has the fewest states

Improved Bounds for the Firing Synchronization Problem 11

used by any minimal-time automaton solving that variant. We gave a 6-state non-
minimal time automaton for the original problem which allows the initiator to be
located at either endpoint. We also presented a 7-state non-minimal time solution
to the generalized problem, the only known non-minimal time solution for the gen-
eralized problem. We also have a proof that each of the non-minimal time automata
correctly solve the ¢ ring synchronization problem.

This work narrows the gaps between the upper and lower bounds on the num-
ber of states required for an automaton solving the ¢ ring synchronization problem.
The 6-state non-minimal time automaton for the unrestricted original problem pre-
sented here uses 2 fewer states than the best known minimal-time automaton solv-
ing the same problem and uses only 3 states more than the lower bound on non-
minimal time solutions to the problem.

Progress is also made in the generalized case. The lower bound for minimal-
time solutions to the original problem applies to the generalized problem. We give
a 9-state minimal-time solution and a 7-state non-minimal time automaton for the
generalized problem. In this case, the minimal-time solution uses 5 states more
than the lower bound and the non-minimal time solution uses only 4 states more
than the lower bound on non-minimal time automata.

6 Acknowledgments

We are indebted to Sophie Laplante for many productive discussions about these
results and for her suggestions on improvements to drafts of the work. We would
also like to thank Andri Berthiaume and Marcus Schdfer for their comments on
earlier drafts of this paper.

References

[Bal67] R.Balzer. An 8-state minimal time solution to the ¢ ring squad synchro-
nization problem. Information and Control, 10:2242, 1967.

[ELW97] S.Even, A. Litman, and P. Winkler. Computing with snakes in directed
networks of automata. Journal of Algorithms, 24(1):158170, 1997.

[Got62] E.Goto. Aminimum time solution of the ¢ ring squad problem. Course
Notes for Applied Mathematics 298, Harvard University, 1962.

[Kob78] K. Kobayashi. The ¢ring squad synchronization problem for a class
of polyautomata networks. Journal of Computer and System Sciences,
17(3):300318, 1978.

[Maz87] J.Mazoyer. Asix-state minimal time solution to the ¢ ring synchroniza-
tion problem. Theoretical Computer Science, 50:183238, 1987.

12

Min72]

[ML68]

[Moo64]

[NH81]

[OW95]

[San94]

[Set97]

[SS97]

[SS98]

[Szw82]

VMP70]

[Wak66]

[Yun94]

Sirocco '98

M. Minsky. Computation: Finite and In¢ nite Machines. Prentice Hall,
1972.

F. R. Moore and G. G. Langdon. A generalized ¢ring squad problem.
Information and Control, 12:212220, 1968.

E. F. Moore. The ¢ring squad synchronization problem. In Sequential
Machines - Selected Papers, pages 213214. Addison-Wesley, 1964.

Y. Nishitani and N. Honda. The ¢ring squad synchronization problem
for graphs. Theoretical Computer Science, 14(1):3961, 1981.

R. Ostrovsky and D. Wilkerson. Faster computation on directed net-
works of automata. In Proceedings of 14th Annual ACM Symposium
on Principles of Distributed Computing, pages 3846, 1995.

P. Sanders. Massively parallel search for transition-tables of polyau-
tomata. In C. Jesshope, V. Jossifov, and W. Wilhelmi, editors, Pro-
ceedings of the VI International Workshop on Parallel Processing by
Cellular Automata and Arrays, pages 99108. Akademie, 1994.

A. Settle. A symmetric nine-state automaton for the generalized ¢ -
ing synchronization problem. Technical Report 9703, University of
Chicago Department of Computer Science, 1997.

A. Settle and J. Simon. Non-minimal time solutions for the ¢ring syn-
chronization problem. Technical Report 9708, University of Chicago
Department of Computer Science, 1997.

A. Settle and J. Simon. A non-minimal time lower bound for the ¢ring
synchronization problem. Unpublished manuscript, 1998.

H. Szwerinski. Time-optimal solution of the ¢ring-squad-

synchronization-problem for n-dimensional rectangles with the
general at an arbitrary position. Theoretical Computer Science,
19:305320, 1982.

V. I. Varshavsky, V. B. Marakhovsky, and V. A. Peschansky. Synchro-
nization of interacting automata. Mathematical Systems Theory, 4:212,
230, 1970.

A. Waksman. An optimum solution to the ¢ ring squad synchronization
problem. Information and Control, 9:6678, 1966.

J. B. Yunhs. Seven-state solutions to the ¢ ring squad synchronization
problem. Theoretical Computer Science, 127:313332, 1994.

Improved Bounds for the Firing Synchronization Problem 13

A The Transition Functions

Table 1 shows the transition function for the 9-state automaton. The state of an au-
tomaton at the next time step can be found by looking at the entry in the column
corresponding to the automaton's present state and the row corresponding to the
states of its neighbors. Since the automaton is symmetric, the orientation of the
neighbors is irrelevant. The ? is used to indicate the end of the array. In order to
obtain the 8-state automaton that solves the original problem, the column corre-
sponding to D must be removed and all occurrences of D deleted in the remaining
table.

Table 2 and Table 3 give the transition functions for the non-minimal time au-
tomata. The state of an automaton at the next time step can be found by looking
at the table corresponding to the automaton's present state. The state that the au-
tomaton should enter at the next time step isthe one in the row and column corre-
sponding to the states of its left and right neighbors respectively. As in Table 1, ?
is used to denote the end of the array.

| present state | present state

neighbors’ | neighbors'
states Z AB DRPQG states |Z A B D R P Q G
Y4 Z Z B R Q G BQ z P B R P
ZA | A Z G A D BG A R B A A G
ZB |z GBP P B? G
ZD | ARDG P Z DR R Q G z z
ZR |[RPPDQRZG DP G R Q
ZP Z R B D Q DQ z G B P
ZQ |ZRBDOQR DG B B B
26 | AR BA G D? G
72 z G G RR P D Z D G
AA G GQ GG RP R QD OQ zZ A
AB |AGG G P RQ R P D R Z G
AD D RG R B A G
AR P G A R? G
AP | R G GQ D PP Q A
AQ A Z GBAP PQ Z R z
AG |RGG B G PG B A A A
A? G G G p? A
BB z P PP G QQ Q A
BD | z G P QG A R B A A G
BR R PP PBR ZG GG G G F
BP |z R R Q G? G F

Table 1: The Transition Function for the 9-state Automaton

Sirocco '98

14

20

OO0 a0

B

B C G L

Al A

C G

B| A

maoOm
40O m4
m m m
m<<OO

<m OO

Lo O

<O<

nO O

O 000

m O —

< < <u

<O O g

B C G

clA

nO0OO0OmO

nOmmO

OO0 0O

m nmO

< <

< OO

B

B C D G

L] A

C G

G|A

o<

[ORONCRORORV]

[ORONCRORORV]
]

<O O g

OO a4

O 1O a4

Qa0 < 4

— -

<o OO0 ago

Table 2: The Transition Function for the 7-state Automaton

B C G L 2

Al A

24 0<
OO0 O
ma0ma

10 MmO

< OO

Lo 0O
<O <

O 0O<
(ON©] [GXONG]
m O -

< < <

< OO

NCC<OO0m

?

B

C|A

-0 O [aa]

nmOO0OmO

mOmomO

oo O

moomOO

< <

<M OO Jo-

B C G L *? G|A B C G
C G C

L|A

OO0 1

noon<<m <

o<

[CNORURORONO]

[CNORUNORONO]

O

<O O g

240 < 4
[L © o |
40 < om
N R R R |
N R R R |

a0 a0<m

<O O g

Table 3: The Transition Function for the 6-state Automaton

Improved Bounds for the Firing Synchronization Problem 15
B Sample Simulation

The following is a simulation of the underlying 8-state solution to the original
problem contained within the 9-state automaton. The length of the array is 17 and
the ¢rstinitiator is located in position 1. The synchronization begins at time step
0and ¢ring occurs at time step 32. The current time step is given to the left of the
array.

0:GZ2222222222222222Z
1:GAZ222222222222222Z
2:GRAZ22272222222222Z
3:GBPAZZ2272222222222Z
4:GBPRAZ2722222222272Z
5:GBRQPAZZ2222222222Z
6:GBBZPRAZZ22222222Z
7:GBBZRQPAZZ22272727222Z
8:GBBRQZPRAZZ2272222Z
9:GBPBZZRQPAZZZ2727222Z
10:GBPBZRQZPRAZZZ22272Z
11: GBPBRQZZRQPAZZZ2ZZ
12:GBPQBZZRQZPRAZZZZ
13: GBRQBZRQZZRQPAZZZ
14:GBBZBRQZZRQZPRAZZ
15:GBBZPBZZRQZZRQPAZ
16:GBBZPBZRQZZRQZPRG
17:GBBZPBRQZZRQZZRAG
18:GBBZPQBZZRQZZRARG
19:GBBZRQBZRQZZRAPBG
200 GBBRQZBRQZZRARPBG
21: GBPBZZPBZZRAPQRBG
22:GBPBZZPBZRARPZBBG
23: GBPBZZPBRAPQRZBBG
24:GBPBZZPQGRPZQRBBG
25:GBPBZZRAGARZZBPBG
26:GBPBZRARGRARZBPBG

27:GBPBRAPBGBPARBPBG
28:GBPQGRPBGBPRGQPBG
29:GBRAGARBGBRAGARBG
30: GBGRGRGBGBGRGRGBG
31: GGGGGGGGGGGGGGGGG
32:FFFFFFFFFFFFFFFFF

