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Abstract

We present two solutions to the firing synchronization problem on
the ring, an 8-state minimal-time solution and a 6-state non-minimal-
time solution. Both solutions use fewer states than the previous best-
known minimal-time automaton, a 16-state solution due to Culik. We
also give the first lower bounds on the number of states needed for
solutions to the ring firing synchronization problem. We show that
there is no 3-state solution and no 4-state, symmetric, minimal-time
solution for the ring.
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1 Introduction

In the original firing synchronization problem we consider a one-dimensional
array of n identical finite automata. Initially all automata are in the same
state except for one automaton that is designated as the initiator for the
synchronization. The machines operate in lock-step, and the transitions of
each automaton depend on the state of the automaton and the states of
its neighbors. The goal is to define the set of states and transition rules
for the automata so that all machines enter a special fire state for the first
time and simultaneously during the final round of the computation. A great
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deal of work has been done on the original firing synchronization problem
[1, 6, 10, 11, 12, 14]. It is interesting to note that the vast majority of this
work has focused on finding solutions to the problem and that few lower
bounds on the number of states needed for solutions to the original problem
are known.

There are many variations of the firing synchronization problem that
involve networks of automata other than the one-dimensional array [4, 5,
7, 8, 9, 12, 13]. We consider the problem of synchronizing rings of finite
automata. In this problem each automaton has exactly two neighbors and
there are no endpoints in the system. The goal is the same as the original
problem, namely the synchronization of all automata in the final round of
the computation.

Initial work on the ring variant of the firing synchronization problem
focused on finding correct solutions to the problem without considering the
number of states or even the minimal-time required to solve the problem [4,
5, 8, 9]. The main reason for this is that the solutions to the ring were given
as an initial step in solving a more general problem, that of synchronizing
connected graphs. The solution to the ring was not the goal, but a necessary
first step.

The first work directly considering the number of states needed to solve
ring synchronization was done by Culik [3]. He established the minimal
time necessary for synchronization, n steps for a ring with n automata,
and produced a minimal-time solution using 16 states. He did so in the
context of solving a related synchronization problem in which there are
multiple initiators.

Since the original interest in the firing squad problem on the ring was in
finding solutions, little work has been done on finding state lower bounds
for the ring. We are unaware of any results giving state lower bounds for
the firing synchronization problem on the ring prior to this work.

In this paper we improve Culik’s result for the firing synchronization
problem on a ring by giving an 8-state, symmetric, minimal-time solution.
Not only does this solution use 8 fewer states than Culik’s solution, it is
symmetric, meaning that automata do not need to distinguish their left
and right neighbors when changing state. Few symmetric solutions for any
variant of the firing synchronization problem exist [13], yet symmetric so-
lutions are particularly interesting. For one, symmetric solutions eliminate
any directional information provided to the automaton, intuitively making
the problem more difficult. Symmetric solutions are also more elegant, gen-
erally producing automata with simpler and easier to understand transition
functions. We also give a 6-state, non-minimal-time solution for the ring,
the first known non-minimal-time solution for the ring. Finally, we give the
first state lower bounds known for the firing squad problem on the ring.
We show that there is no 3-state solution, regardless of the time provided
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for synchronization. We also show that no 4-state, symmetric, minimal-
time solution to the ring exists. These results are the first known state
lower bounds for the firing squad on the ring. Further, the 3-state bound
is the first lower bound result for any version of the firing squad prob-
lem that makes no assumption about the time needed for synchronization.
This provides a stronger result, since it applies to both minimal-time and
non-minimal-time solutions. The proofs of these results are also far simpler
than those for any known existing state lower bound for any variant of the
problem [1, 10, 12].

2 Preliminaries

We now outline the definitions for the ring version of the firing synchro-
nization problem, sketch the previous work done on the problem, and state
our results.

2.1 Definitions

One of the oldest variants of the firing synchronization problem is one in
which the underlying network is not a one-dimensional array but a ring. As
in the original firing squad problem there is a single initiator that may be
located anywhere in the ring. The automata change state once during each
round based on their current state and their neighbors’ current state. The
problem is to define the set of states and the transition function for the
automaton so that all machines fire for the first time and simultaneously
in some round t(n).

The transition function for each automaton can be given as a set of
4-tuples. The 4-tuple (X,Y,Z,W) represents the rule that an automaton
currently in state Y, with left neighbor in state X and right neighbor in
state Z will enter state W at the next time step. We will denote this by
XYZ → W. By definition automata solving the firing synchronization prob-
lem are deterministic so there is at most one 4-tuple (X,Y,Z,W) for any
triple of states X,Y,Z.

A symmetric automaton is one which has a symmetric transition func-
tion, that is, whenever a transition XYZ → W is defined, the transition
ZYX → W must also be defined. This means that the automata do not
need to distinguish their left and right neighbors. As mentioned before,
symmetric solutions are intuitively more difficult to produce since direc-
tional information cannot be used.
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2.2 Previous work

As we have said, initial work on the synchronization of the ring was done
while developing solutions for connected graphs [4, 5, 8, 9]. Note that in
none of the work cited do the authors consider the number of states needed
to synchronize the ring. The solutions are given at a high level, and tran-
sition functions are not provided.

The first work directly considering the number of states needed to solve
ring synchronization was done by Culik [3]. In his paper Culik consid-
ered a variation of the firing synchronization problem in which there are
multiple initiators. He showed that any solution to the problem for the
one-dimensional array of length n with two initiators located at the end-
points requires n−1 steps to synchronize. The following theorem is a direct
corollary of this result.

Theorem 2.1 (Culik) Any solution to the firing synchronization problem
for the ring with n automata requires n time steps to synchronize.

If we take an array of length n+ 1 with two initiators at the endpoints
and consider it as a ring with a single initiator we obtain Theorem 2.1. It
should be noted that Culik incorrectly gave a time bound of n − 1 time
steps in his paper, as he neglected to account for the fact that the length of
the ring is shorter by one than the equivalent array since the two initiators
are merged into one.

We will call any solution that synchronizes a ring of n automata in
t(n) = n time steps a minimal-time solution. Any solution that requires
t(n) > n time steps to synchronize will be called a non-minimal-time solu-
tion.

In addition to giving a time bound, Culik also described a minimal-time
solution to the ring version of the problem. He used a modified version of
Waksman’s solution [14], producing an automaton that uses 16 states. To
our knowledge, no prior work has been done on improving the number of
states used by Culik’s solution.

In understanding the history of work on lower bounds for the ring firing
synchronization problem, it is instructive to consider state lower bounds
for the firing synchronization problem on the array. Despite the large body
of work that exists for the firing synchronization problem, very little work
has been done on finding lower bounds for the problem. The only known
state lower bound for the problem was claimed in 1967 by Balzer [1] and
confirmed in 1994 by Sanders [10]. Sanders showed that there is no 4-state
minimal-time solution to the restricted original problem, the problem where
the initiator must be located at the right endpoint of the array.

The technique used for finding the state lower bound was a modified
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exhaustive search. Balzer wrote a simulation program that examined all
possible 4-state solutions in an attempt to demonstrate that none of the so-
lutions correctly solve the firing synchronization problem. Sanders showed
that Balzer’s program was incomplete but was able to write a correct imple-
mentation of the program to confirm the 4-state lower bound. It is crucial
for both programs that only minimal-time solutions are examined. This is
because the assumption allows the programs to discard any solution that
uses more than 2n-2 rounds for synchronize an array of n automata, making
the search feasible.

Disappointingly, Sanders showed that this technique of exhaustive search
does not scale. In particular, it cannot be used to determine if there is a
5-state solution to the firing synchronization problem on the array, as the
search space grows too quickly. This leaves a gap between the best known
solution, a 6-state automaton by Mazoyer [6], and the best known lower
bound of 4-states. This problem has remained open for nearly 20 years.

In an attempt to tackle this long-standing open problem, we consider
the number of states needed to solve the ring variant of the firing squad
problem. It is our hope that by gaining insight into state lower bounds for
the ring, progress can be made in finding lower bounds on the number of
states needed for the original problem. Finding a relationship between the
structure of solutions for the ring and solutions for the array may aid us
in producing the long-sought lower bound. To the best of our knowledge
this avenue of research has not been explored, and no state lower bounds
for the ring firing synchronization problem exist.

2.3 Our contributions

We present a 8-state, symmetric, minimal-time solution to the firing syn-
chronization problem on the ring. This solution is adapted from Szwerin-
ski’s solution to the original firing synchronization problem [13]. To syn-
chronize an array of length n the ring solution requires time n. It uses 8
fewer states than the best-known existing solution for the ring, and it is
the first symmetric solution for the ring.

We also give a 6-state, non-minimal-time solution for ring synchroniza-
tion. This solution is an extension of Mazoyer’s solution to the original prob-
lem [6]. It requires 2n − 2 steps to synchronize an array with n automata.
This is the first non-minimal-time solution for the firing synchronization
problem on the ring, and it uses 2 fewer states that our minimal-time so-
lution and 10 fewer states than Culik’s solution.

We also give the first known state lower bounds for the firing synchro-
nization problem on the ring. These are the first state lower bounds for any
variant of the firing synchronization problem that do not use exhaustive
search. Our first state lower bound is the following theorem:
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Theorem 2.2 There is no 3-state solution to the firing synchronization
problem for the ring.

As noted in the previous section, this is the first known state lower
bound for the firing synchronization problem that places no restrictions on
the time required to synchronize. Such a result would not have been possible
using previously existing techniques, as the exhaustive search programs
depend on the fact that solutions requiring more than the minimal time
can be discarded.

With two additional conditions, we can extend the theorem to the fol-
lowing:

Theorem 2.3 There is no 4-state, symmetric, minimal-time solution to
the firing synchronization problem for the ring.

The ring provides an inherently symmetric setting, as the endpoints
in the array are frequently the place where asymmetries are introduced in
existing solutions to the firing synchronization problem. The simplest solu-
tions to the ring synchronization problem are often symmetric. In fact, we
conjecture that if an asymmetric, minimal-time solution exists for the ring,
then there is a symmetric, minimal-time solution using the same number
of states.

It should be noted that both of our theorems assume that a correct
solution to the firing synchronization problem must synchronize all rings
of length greater than or equal to 2. This assumption is motivated by the
existing work on state lower bounds for the original firing synchronization
problem. In fact, there are solutions to the firing squad problem on the
array using only 4 states that work for small arrays. These semi-solutions
synchronize arrays with 10 or fewer automata but fail to synchronize arrays
of larger lengths [10]. Automata that do not synchronize all arrays of length
greater than or equal to 2 are not considered genuine solutions.

3 The minimal-time solution

Our 8-state, minimal-time solution is adapted from Szwerinski’s 8-state,
symmetric solution to the firing synchronization problem on the one-dimensional
array [13]. The construction of the solution requires the addition of some
transitions to the solution, as well as the removal of transitions that are
not needed for the ring, but the solution behaves in the same manner as
Szwerinski’s.

In Szwerinski’s solution, the array is repeatedly subdivided into halves
as new initiators are placed in the center(s) of each of the intervals. The
simulation ends when all automata become initiators and then fire. The
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synchronization begins when the first initiator sends out a signal, the pur-
pose of which is to produce a second initiator when it reaches the opposite
end of the array. What is meant by the term signal is a state that tends to
propagate toward neighboring automata and whose purpose it is to carry
information from one part of the array to another. When this wake-up sig-
nal is reflected back by the new initiator, it intersects with markers created
in the wake of the first signal and produces a third initiator (or pair of ini-
tiators depending on the parity of the original array) located at the center
of the array. The term marker indicates a state that remains stationary
until it comes into contact with certain signals and whose purpose it is to
indicate significant positions in the array. This division of the array into
halves continues until every other automaton is an initiator. At the next
step in the simulation every automaton becomes an initiator, and at the
next time step all automata fire. For a more detailed description of Szw-
erinski’s solution, see his paper [13]. Important here is that the initiator
state is G, Q and P serve as parity markers, B is a marker used to create
new initiators, R is the state used to create and advance the B markers,
Z is the quiescent state, and A serves as both the wake-up signal and the
state that interacts with automata in state B to produce new initiators.

Because the eight-state solution is symmetric, it can be adapted to the
ring in a straightforward manner. Instead of a single wake-up signal, two
signals are sent from the initiator. These intersect on the opposite side of
the ring, creating either one or two new initiators depending on the parity
of the ring. The process then continues as described above until every
automaton becomes an initiator and fires.

To understand the process in more detail, consider a simulation of the
8-state solution for a ring with length n = 17 where the initiator is lo-
cated in position 10. A simulation for such a ring is given below. Note that
synchronization occurs at time step 17, that the time step is listed in the
leftmost column, and that the automaton in the first position is assumed
to be adjacent to the one in the 17th position.
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0 : Z Z Z Z Z Z Z Z Z G Z Z Z Z Z Z Z
1 : Z Z Z Z Z Z Z Z A G A Z Z Z Z Z Z
2 : Z Z Z Z Z Z Z A R G R A Z Z Z Z Z
3 : Z Z Z Z Z Z A P B G B P A Z Z Z Z
4 : Z Z Z Z Z A R P B G B P R A Z Z Z
5 : Z Z Z Z A P Q R B G B R Q P A Z Z
6 : Z Z Z A R P Z B B G B B Z P R A Z
7 : Z Z A P Q R Z B B G B B Z R Q P A
8 : A A R P Z Q R B B G B B R Q Z P R
9 : G G Q R Z Z B P B G B P B Z Z R Q
10 : G G A Q R Z B P B G B P B Z R Q A
11 : G G R A Q R B P B G B P B R Q A R
12 : G G B P A B Q P B G B P Q B A P B
13 : G G B P R G Q R B G B R Q G R P B
14 : G G B R A G A B B G B B A G A R B
15 : G G B G R G R G B G B G R G R G B
16 : G G G G G G G G G G G G G G G G G
17 : F F F F F F F F F F F F F F F F F

In the following description, all time steps refer to the above simulation.
The first initiator in state G sends out two A-signals to the other side of the
ring. These signals serve as a wake-up for the remaining automata. In the
simulation the A-signals are produced at time step 1. Each A-signal moves
at a rate of one automaton per time step. As an A-signal advances away
from an automaton, it leaves the automaton in one of two states, either R
or P. An R is produced at all even time steps and a P at all odd time steps.
Thus the parity of the ring segment the A-signal crosses can be determined
by the state appearing behind the A-signal.

The R-signals produced by automata in state A move back in the direc-
tion from which the A-signal came at the rate of one automaton per time
step. The first R-signals are produced at time step 2 of the sample simula-
tion. When an R-signal collides with an initiator it produces a B-marker.
This occurs in the simulation on both sides of the initiator at time step 3.
The new B-marker moves away from the initiator one position each time
it encounters a new R-signal. For example, the first B-marker advances at
time step 6 of the simulation.

The first new initiator is produced when the A-signals meet opposite the
original initiator. In the sample simulation this occurs at time step 8. There
are two possible outcomes for this collision. If the A-signals are separated
by one automaton when they reach the opposite side of the ring, the ring
has odd length and can be split into two equal pieces. In this case, a single
new initiator opposite the original will be produced. If, on the other hand,
the A-signals directly meet, then this means that the ring has odd length
and cannot be split into two equal pieces. In this case, two initiators will
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be produced opposite the original initiator. Since n = 17 in the simulation,
the latter case occurs at time step 9.

Additional initiators are produced by the interaction of A-signals and B-
markers. When an A-signal reaches a B-marker, it produces a new initiator.
A single new initiator is produced if the state behind the A-signal is a
P since this indicates that the segment traversed by the A-signal is odd
and can be split into two pieces. Two new initiators are produced if the
automaton behind the A-signal is in state R since in this case the segment
is even and there are two central positions. The former case is true in the
simulation and the production of the third set of initiators can be seen at
time step 13.

This process of recursively dividing the ring continues until the point at
which every other automaton is an initiator. This occurs in the simulation
at time step 15. At the next time step every automaton becomes an initiator
and at the next time step firing occurs.

To produce the above solution for the ring, two types of changes to
Szwerinski’s 8-state solution to the original problem had to be made. First,
all unnecessary transitions were eliminated. A transition is unnecessary if it
involves a triple that does not appear in any simulation. Clearly, any tran-
sition involving the end marker is unnecessary, as the end marker is used
in solutions to the original problem to indicate the end of the array. The
marker allows the definition of a single transition function instead of three
different types of transition functions, one for the central automata and one
for each of the left and right end machines. Since there are no endpoints
in the ring, these transitions can be removed. In addition, the transitions
ARA → Q, PRQ → Q, QRP → Q, and QRQ → Q were eliminated. Each
corresponds to a configuration produced only for arrays.

Next, additional transitions had to be defined for configurations that
appeared in simulations on the ring but did not appear in any simulations
in the array. These transitions are AZA → G, AAR → G, RAA → G,
AAP → G, PAA → G, AAG → G, GAA → G, QGG → G, and GGQ → G.
These configurations are of two types. The first type is triples produced
immediately following the creation of the center initiator or initiators, and
the second is triples that occur just prior to synchronization. The state A
is used in Szwerinski’s solution as a pseudo-initiator to break symmetry in
these places in the simulation. Because the ring produces more symmetric
behavior than the array, more transitions designed for this purpose were
needed.

Table 1 shows the transition function for the 8-state automaton. The
state of an automaton at the next time step can be found by looking at the
entry in the column corresponding to the automaton’s present state and
the row corresponding to the states of its neighbors. Since the automaton
is symmetric, the orientation of the neighbors is irrelevant.
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present state
neighbors’

states Z A B R P Q G
Z–Z Z Z B G
Z–A A Z G A
Z–B Z G B P
Z–R R P P Q R Z G
Z–P Z R B Q
Z–Q Z B Q R
Z–G A R B A G
A–A G G G
A–B A G G G P
A–R P G A
A–P R G G Q
A–Q A G P
A–G R G G B G
B–B Z P G

present state
neighbors’

states Z A B R P Q G
B–R R P P R Z G
B–P Z R Q
B–Q Z B R
B–G A R B A G
R–R P G
R–P R Q Z
R–Q P Z G
R–G R B A A G
P–P A
P–Q Z R Z
P–G B A A A
Q–G A R A G
G–G G G G F

Table 1: The transition function for the 8-state automaton

4 A non-minimal-time solution

The 6-state, non-minimal-time ring solution is an extension of Mazoyer’s
6-state solution to the restricted firing synchronization problem [6]. The
restricted version of the problem requires that the initiator to be located
at the left endpoint of the array. The construction of a ring solution requires
a slight modification of the transition function, but the solution behaves
in the same manner as Mazoyer’s. Since it was adapted from Mazoyer’s
solution, our solution requires 2n − 2 rounds to synchronize a ring of n
automata.

Mazoyer’s solution works by dividing the line of n automata into un-
equal parts, one of length 2

3n and the other of length 1
3n. An initiator is

placed at the left end of the shorter segment, and each segment is then
recursively subdivided. After every automaton becomes an initiator, the
automata fire and the synchronization ends. For a detailed description of
the solution see Mazoyer’s paper [6].

In order to extend Mazoyer’s solution to the ring, two types of changes
had to be made. First, all transitions involving the end marker were elim-
inated, as in with the 8-state solution described above. Then transitions
were added to preserve the behavior of Mazoyer’s solution. These transi-
tions prevent the wake-up signal from propagating to the left of the first
initiator and keep all of the initiators to the left of the first initiator quies-
cent.

Table 2 gives the transition function for the 6-state non-minimal-time
automata. The state of an automaton at the next time step can be found
by looking at the table corresponding to the automaton’s present state.
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A Z A B C G
Z A Z G
A A A B C B
B G G C C
C A A
G C C

B Z A B C G
Z G B Z B
A G B B Z
B G A B C B
C Z A Z
G C C B G

C Z A B C G
Z C A G C G
A B B B
B C C G
C C A B C B
G B B B

Z Z A B C G
Z Z Z Z Z Z
A G Z Z Z C
B Z Z Z Z Z
C A Z Z Z G
G C Z Z Z A

G Z A B C G
Z A G G G
A B G G
B B G G G
C A G G A
G B G G F

Table 2: The transition function for the 6-state automaton

The state that the automaton should enter at the next time step is the
one in the row and column corresponding to the states of its left and right
neighbors respectively.

The fact that a solution to the restricted firing synchronization problem
could be adapted to work on a ring is remarkable. Particularly interesting in
this case is that Mazoyer’s solution is distinctly non-symmetric. He relied
on asymmetry to help him reduce the number of states needed for the
solution, which is why the solution only works for the restricted version
of the original problem. Despite this, the solution could be modified to
work on the ring where symmetry is inherent. We conjecture that this
is a consequence of the structure of Mazoyer’s solution, and that not all
asymmetric solutions can be modified for the ring.

5 Lower bounds

As mentioned previously, there are no known lower bounds for the firing
synchronization problem on a ring. In this section we show that there is
no 3-state solution to ring synchronization. We also show that there is no
4-state, symmetric, minimal-time solution.
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5.1 Three-state bound

We now prove Theorem 2.2, a result stating that there is no 3-state solution
to the firing synchronization problem on the ring.

Proof. Denote the three states by G, Z, and F. Assume that F is the
firing state, G is the initiator state, and Z is the quiescent state. Since there
are only three states for the solution and the fire state cannot be used prior
to the final round, there are only eight possible triples of states that may
be used prior to the last round. These are: ZZZ, GZZ, ZGZ, ZZG, GZG,
GGZ, ZGG, and GGG. We know that ZZZ → Z must be defined by the
definition of the firing synchronization problem. We partition the triples
into four classes, based on the number of initiators.

Class 0 ZZZ
Class 1 GZZ, ZGZ, ZZG
Class 2 GGZ, GZG, ZGG
Class 3 GGG

Consider the ring of length 3. By assumption, the initial configuration is
ZGZ. In order to produce the next configuration we must apply three class
1 rules. The next configuration, however, must have at least two initiators,
since otherwise it would duplicate the initial configuration.

This means that there are two cases to consider:

1. Class 1 rules have all G’s on the right hand side, or

2. Exactly two of the class 1 rules have a G on the right hand side.

In the first case, we must have GGG→ F. This yields a contradiction for
the ring of length four, where after one round we produce the configuration
GGGZ.

In the second case, we must have all class 2 triples defined to have G
on the right hand side, or we produce an infinite loop for the length three
ring. This is because in the length three ring, the first configuration has
two Z’s and the second configuration has one Z. Since it is not possible by
the definition of the problem to have three Z’s, the next configuration must
have no Z’s.

So in the case where exactly two of the class 1 triples are defined to
transition to G, all class 2 rules must use G on the right hand side. Further,
we must define GGG → F, since it is the only remaining undefined triple.
Consider the ring of length five. ZZZGZ yields ZZs, where s is a string with
2 initiators. If the initiators are adjacent in s, then we are done since in
the next round we get the triple GGG from the triples ZGG, GGZ, and
either ZZG or GZZ since two out of three of the class 1 triples are defined
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to transition to G. This produces a firing prior to the final round. If the
string s is of the form GZG, so that the length 5 ring in round 2 looks like
ZZGZG, we must have had ZGZ → Z, ZZG → G, and GZZ → G. This
produces the configuration GGZGZ and then GGGZG, causing a partial
firing of the ring contrary to the definition of the problem. ✷

5.2 Four state bound

Recall that Theorem 2.3 states that there is no 4-state, symmetric, minimal-
time solution to the ring synchronization problem. We now give the proof
of the theorem.

Proof of Theorem 2.3

This result follows from the result due to Balzer [1] and Sanders [10]
that there is no 4-state minimal-time solution to the firing synchronization
problem on an array, and the following lemma:

Lemma 1 If there exists a symmetric, minimal-time k-state solution to
the firing squad problem on a ring with 2n− 2 automata, then there exists
a symmetric, minimal-time k-state solution to the firing squad problem on
an array of n automata.

To see intuitively why this lemma is true, we describe the special case
of how to construct a simulation of an array of n = 6 automata from a
simulation on a ring of 2n− 2 = 10 automata. We first run a simulation on
the ring, using the symmetric, minimal-time k-state solution to the firing
synchronization problem on a ring:

0 G Z Z Z Z Z Z Z Z Z
1 ? ? Z Z Z Z Z Z Z ?
2 ? ? ? Z Z Z Z Z ? ?
3 ? ? ? ? Z Z Z ? ? ?
4 ? ? ? ? ? Z ? ? ? ?
5 ? ? ? ? ? ? ? ? ? ?
6 ? ? ? ? ? ? ? ? ? ?
7 ? ? ? ? ? ? ? ? ? ?
8 ? ? ? ? ? ? ? ? ? ?
9 ? ? ? ? ? ? ? ? ? ?
10 F F F F F F F F F F

We obtain the simulation on an array of n = 6 automata by simply
removing the last four columns.

In the arguments below, we will assume that 2n − 2 automata on a
ring are numbered 1 through 2n − 2 in counter-clockwise order, with the
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initiator being numbered 1. Before we formally prove Lemma 1, we first
show the following holds:

Claim 1 Suppose we run a simulation of a symmetric solution on a ring
of 2n− 2 automata. Then, in any round r, automata i and 2n− i must be
in the same state, for i = 2, 3, ..., n − 1.

Proof. We use induction on r. If r = 0, the claim holds trivially since
all relevant automata are quiescent. Consider now round r ≥ 1 and choose
some i between 2 and n − 1. By induction, automata i − 1 and 2n − i + 1
(or 1 if i = 2) are in the same state in round r − 1, as are automata i and
2n− i, and automata i+1 and 2n− i− 1. Since the solution is symmetric,
this implies that automata i and 2n− i must be in the same state in round
r. This is true for any i between 2 and n−1, which completes the induction
step. ✷

We are now ready to complete the proof of Lemma 1.

Proof. From our example, it should be clear that all we need to do is
define the additional transitions for the array solution that involve the left
or right end markers. Let δ1 be the set of all the transitions of the k-state,
symmetric, minimal-time ring solution that are used by automaton 1 in a
ring of size 2n − 2, for any n ≥ 2. Each transition in δ1 must be of the
form XY X → W , since automata 2 and 2n − 2 are always in the same
state, by the above claim. For each such transition, we define a new, array
transition ∗Y X → W . Next, we consider the set δn of transitions of the
k-state, symmetric, minimal-time ring solution that are used by automaton
n in a ring of size 2n − 2, for any n ≥ 2. Each transition in δn is also of
the form XY X → W . For each such transition, we define a new array
transition XY ∗ → W . ✷

It should be noted that the requirement of symmetry in Theorem 2.3
and Lemma 1 is stronger than necessary. In the proof of Lemma 1, all we
really used is that the following two conditions are satisfied by the k-state,
minimal-time solution for the firing synchronization problem on a ring:

1. For any simulation on a ring of even length 2n − 2, automaton 1
does not use two transitions X1Y Z → W1 and X2Y Z → W2 where
X1 �= X2 and W1 �= W2.

2. For any simulation on a ring of even length 2n − 2, automaton n
does not use two transitions XY Z1 → W1 and XY Z2 → W2 where
Z1 �= Z2 and W1 �= W2.



Berthiaume et al.: New Bounds for the Firing Squad Problem 15

6 Conclusion

In this paper we presented improved bounds on the complexity of solutions
to the firing synchronization problem on the ring. We gave a symmetric,
minimal-time solution and a non-minimal-time solution to the firing syn-
chronization problem on the ring, both of which use fewer states than the
only known ring solution by Culik [3]. We also gave the first lower bounds
for the synchronization of the ring. These results are the first lower bounds
for any variant of the firing synchronization problem that do not rely on ex-
haustive search. The fact that the proofs are straightforward is a surprising
bonus.

This work leaves a gap between the best-known upper bounds and lower
bounds for ring synchronization. For minimal-time solutions this gap is 4
states in the symmetric case and 5 states in general. For non-minimal-time
solutions the gap is only 3 states. Reducing this gap, either by producing
a smaller solution for the ring or by improving the lower bounds, is an
important direction for future work.
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