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The equivalence of semantic networks with spreading activation and vector spaces with dot product is investigated under ranked retrieval. Semantic networks are viewed as networks of concepts organized in terms of abstraction and packaging relations. It is shown that the two models can be effectively constructed from each other. A formal method is suggested to analyze the models in terms of their relative performance in the same universe of objects.


1. Introduction

Ranked retrieval plays an important role in information retrieval (IR) and natural language processing (NLP). In IR, the closest match to a query is often chosen by ranking the database objects by their similarity to the query (Aalbersberg, 1994; Salton & McGill, 1983). Many IR systems retrieve objects from a universe represented as a vector space whose dimensions are the features of the retrievable objects, e.g., terms found in document collections (Salton & McGill, 1983). The ranking functions in these systems utilize feature frequency counts (Salton & Buckley, 1991), boolean feature combinations (Bradshaw, 1998), or probabilistic feature distributions (Bookstein, Klein, & Raita, 1998; Kulyukin, 1998). In NLP, the best interpretation of an input is frequently selected by ranking the interpretations induced by the input in the available knowledge base (Riesbeck, 1983; Norvig, 1986; Martin, 1993; Kulyukin, 1998). Many NLP systems retrieve objects from a universe represented as a semantic network (Quillian, 1969). The ranking functions in these systems utilize numerical spreading activation levels (Charniak, 1983), shapes of activation paths (Quillian, 1969; Norvig, 1986), or node activation sequences (Martin, 1993; Fitzgerald, 1995). 

The rapid proliferation of electronic data prompted numerous empirical comparisons of semantic networks and vector spaces under ranked retrieval. However, the existing empirical results are frequently inconsistent with each other. While some studies show semantic networks outperforming vector spaces (Chakravarthy & Haase, 1995), other studies argue the opposite (Salton & Buckley, 1991). While some studies find that combining vector spaces with semantic networks leads to improved performance (Kulyukin, 1998; Kulyukin, 1999), others either claim that performance worsens (Voorhees, 1994) or report no significant differences (Ruge, 1995).

Since in many empirical investigations performance takes priority over deliberation and analysis, little light is shed on the fundamental retrieval capabilities of semantic networks and vector spaces under ranked retrieval. The focus on performance leads to the treatment of both models as black boxes mapping inputs to outputs. Consequently, it is hard to decide whether a given difference in performance is attributable to a property of one model and lack thereof in the other or to a property of the evaluation data sets and relevance judgments.

To complement the results of empirical studies, the authors have developed a framework for analyzing the fundamental capabilities of retrieval models under ranked retrieval. The framework is presented in four steps. First, a formalism is presented for ranked retrieval from a universe of objects. Second, the formalism is applied to the semantic network model with spreading activation and the vector space model with dot product. Third, it is shown that the two types of models can be effectively constructed from each other in the same universe of objects. Fourth, a formal method is suggested to analyze the two models in terms of their relative performance in the same universe of objects.

2. Formalism


In this section, a formalism is presented for ranked retrieval from a universe of objects. The presentation is arranged as a sequence of definitions so that the reader, if necessary, can come back to this section in order to clarify statements in the subsequent sections of the paper.

2.1. Basic definitions

Let ( and ( denote real and natural numbers, respectively.  All subscripts are in (, unless otherwise specified. 

If S is a set, 2S denotes its power set, i.e., the set of all subsets of S, and |S| denotes its cardinality. The subset relationship is denoted by (. The logical if is denoted by (; the logical if and only if is denoted by ( or iff. 

If V is a vector space, dim(V) denotes the dimension of V. For example, if V is a plane, dim(V) = 2.

Elements forming a sequence are written inside a pair of matching square brackets: [e0, ..., en]. The empty sequence is written as []. 

Elements forming a set are written inside curly braces: {e0,...,en}. The empty set is written as {} or (. 

Elements forming a vector are written inside angular brackets: <e0,...,en>. 

Thus, [0,1,2], {0,1,2}, <0,1,2> denote a sequence, a set, and a vector, respectively.  

If v is a variable, {v}, [v], 
[image: image1.wmf]v

r

, v denote that v is bound to a set, a sequence, a vector, and an element, respectively.  For example, {v} = {0,1,2}; [v] = [0,1,2]; 
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= <0,1,2>; v = 1. Furthermore, {vi} denotes a set of one element vi; {v}i denotes the i-th set of elements; [vi] denotes a sequence with one element vi; [v]i denotes the i-th sequence of elements. 

If S is a set, [S] is the set of all possible sequences over S such that no sequence in [S] contains duplicate elements.  For example, if S = {0, 1}, [S] = {[0], [1], [0, 1], [1, 0]}. The sequences [0, 0] and [1, 1] are not in the set, because they contain duplicates. If S is finite, the length of the longest sequences is equal to |S|. If S is infinite, each sequence in [S] is still finite. In other words, [S] contains all sequences of length 1, 2, 3, etc.

If S is a set, [S]+ is the set of all possible sequences over S. The difference between [S] and [S]+ is that the latter contains sequences with duplicates, while the former does not.
A sequence [s]0   completes another sequence [s]1  =    [e0, ..., en]  iff   [s]0   = [v]0   + [e0] +  [v]1  + [e1 ] +    … + [v]n  +  [en]  + [v]n+1, where [v]j are subsequences of [s]0, where 0 ( j ( n+1 and the + operator denotes string concatenation. For example, if [s]0   = [e0, e1, e2, e3],  [s]1  = [e0, e2], and [s]2  = [e2, e1], then [s]0   completes [s]1, but does not complete [s]2.

2.2 Ranked retrieval definitions

An object is a 2-tuple [oi, 
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], where oi ( I = {oj | j ( (} is the object's unique id, and
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 is the object's set of representations. The definition of representation depends on specific retrieval tasks. For example, objects can be represented as vectors of reals or as nodes in a semantic network. 

A retrieval model M operates in a universe of objects. The universe is the set of all objects, and is denoted by (. 

M's primitives are called tokens. The definition of token is context-sensitive.  For example, tokens can be keywords, keyword collocations, or nodes in a semantic network. The set of all possible tokens is denoted by (.  

M's representation function is a one-to-one function (: I x 2T ( 2R, where R is M's set of representations.  It is certainly possible to define many-to-one representation functions
. For example, in the vector space context, one can define functions that map several different document identifiers to the same vector of weights constructed from the documents’ texts. Such many-to-one representational functions can be used in, for example, document clustering. However, many-to-one functions are not suited for ranked retrieval due to the representational ambiguity they generate. For, if several documents are mapped into the same representation, there is no principled way to rank the documents in response to a given query that matches the shared representation. 

Formally, one can ensure that M’s representation function is one-to-one through the uniqueness of object ids, i.e., elements of I. Given a representation function (1, it is possible to define a one-to-one representation function (2 such that (1 and (2 are representationally equivalent, i.e., they map the same object ids to the same representations. The construction is suggested in the following lemma.

Lemma. Let (1 be a representation function. There exists a one-to-one function (2 representationally equivalent to (1.

Proof. Let oi ( I and P ( T. Let (1(oi, P) = S ( R. Define (2: I x 2T ( I x 2R such that 

(2(oi, P) = [oi , S]. By definition, (2 is one-to-one, and is representationally equivalent to (1. (
The finite set of objects retrievable by M is denoted by ( ( (.  Formally, ( = {[oi, S] | ((oi, T) = S, S ( R}. When the second element of every object in ( is a singleton, i.e., a set of one element, the set notation is dropped for the sake of simplicity.  Thus, ( = {[oi, r] | ((oi, T) = r}.  

While an object's id is unique in the universe, the object's representation is unique only within a model. Two different models may represent the same object differently.  

Let (I = {oi | [oi, ri] ( (}. Since there is a bijection between ( and (I, ( and (I are used interchangeably, and the objects are referred to by their ids, i.e., the elements of (I. 

The token weight function w: I x I ( T ( ( assigns weights to tokens in objects.

 The object similarity function (: ( x ( ( ( computes the similarity between two objects in (. The object similarity function operates on the representations of objects. For example, when two different retrieval models receive a free-text input, they use their representation function to construct the representation of the input and to match that representation against the representations of the retrievable objects.

The rank function (: ( x ( ( ( imposes an ordering on ('s objects. The rank of oi ( ( with respect to oq ( ( is denoted by ((oi, oq).   

An object ok has a smaller rank than an object oi with respect to a query object oq if either the similarity between ok and oq is greater than the similarity between oi and oq or if the similarities between oi and oq and ok and oq are the same, but k is less than i.  Formally, if ((oi, oq) = x ( (, then ( ok ( ( {{((ok, oq) < x} ( {((ok,oq) > ((oi,oq)} ( {((ok,oq) = ((oi,oq) ( k < i}}, and ( oj ( ( {{((oj, oq) > x} ( {((oj,oq) < ((oi,oq)} ( {((oj,oq) = ((oi,oq) ( i < j}.  Thus, the ranking of the objects in ( is determined by (, i.e., their similarity to the query object oq, and their initial ordering in (.  Note that, since ( ( (, the definition of the rank function does not assume that the query object comes from the same set as the retrievable objects being ranked with respect to it. The set of query objects and the set of retrievable objects may overlap, but they are not the same. 

Given the above definitions, the formal definition of the retrieval model M is as follows: M = [(, (, T, (, w, (].

N-ary relations on objects are represented as n-dimensional bit arrays. For example, a binary relation is represented as a matrix whose rows and columns are objects and whose entries are 0's and 1's, depending on whether the relation holds between a given pair of objects.

A retrieval sequence returned by M in response to oq ( ( is denoted by M(oq),  and is a permutation [
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] of the ids of objects in ( such that ((i) < ( (j) ( ((oi, oq) < ( (oj, oq).  

Two retrieval models M0 = [(0, T0, (0, w0, (0] and M1 = [(1, T1, (1, w1, (1] are comparable iff (0 = (1 and T0 = T1. Otherwise, M0 and M1 are incomparable.   

The intuition behind the requirements (0 = (1 and T0 = T1 is best explained with an example. Suppose one wishes to compare two implemented retrieval models under ranked retrieval. A commonly accepted way of comparison is to select a database of retrievable objects, e.g., documents or images, and to compare the performance of the two models on the same set of query objects (Harman, 1993). The requirement (0 = (1 ensures that the models retrieve from the same set of retrievable objects. The requirement T0 = T1 ensures that the models operate on the same set of tokens, e.g., terms found in the database documents. The models will, of course, build different representations from the same token set. One model may, for example, eliminate from consideration all tokens found on a precompiled stoplist, while the other model may eliminate tokens on the basis of their frequencies or distribution patterns in a given collection. Furthermore, both models can, through their representation functions, extend the original set of tokens with additional tokens, e.g., phrases or term collocations found in the test documents. However, these extensions do not change the fact that both models are exposed to the same token set both when building representations for retrievable objects and when matching query objects against those representations. To summarize, comparisons of different models are meaningful only when made with respect to the same universe over the same inputs.  

Let M0 = [(0, T0, (0, w0, (0] and M1 = [(1, T1, (1, w1,  (1].  M0 and M1 are equivalent under ranked retrieval, M0 
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 M1, iff they are comparable and ( oq ( ( {M0(oq) = M1(oq)}. In other words, two models defined over the same set of objects and tokens are equivalent under ranked retrieval if and only if they retrieve identical sequences of objects in response to every query. Since the standard precision and recall metrics are functions of the ranked retrieval lists, the definition of model equivalence implies that equivalent models have the same precision and recall.

A common evaluation technique used on implemented retrieval models is the retrieval time over a given test collection. However, the retrieval time is a derivative of a particular implementation, and, as a consequence, is not a good measure of model equivalence. Retrieval models can be implemented in different ways and on different hardware platforms. While the retrieval times of different implementations may well vary, the fundamental retrieval capabilities of the models realized in the implementations will remain the same under ranked retrieval.

M0  supersedes M1 under ranked retrieval, M0 > M1, iff (i ( q such that (0(oi, oq) > 0 but (1(oi, oq) = 0, where oi (  (. Intuitively, for each object oi in the set of retrievable objects, there is a query object oq such that M0 retrieves oi in response to oq with a nonzero score, but M1 does not. Hence, assuming that only the objects with nonzero similarity scores are retrieved, the number of objects retrievable by M0   is greater than the number of objects retrievable by M1. 

M0  and M1  are mutually superseding under ranked retrieval, M0  <> M1, iff  M0  < M1  and  M1  > M0.   To put it differently, two models are mutually superseding under ranked retrieval if and only if for every retrievable object there exist queries that retrieve that object with a nonzero score in one model but not in the other, and vice versa.

3. Retrieval Models

In this section, the presented formalism is applied to the semantic network model with spreading activation and to the vector space model with dot product.

3.1. Semantic networks

Let M = [(, (, T, (, w, (] be a semantic network retrieval model. The set ( consists of objects each of which is a node in a directed graph G with two types of arcs: isa and partof. An isa-arc denotes the subclass-superclass relation (abstraction) between the nodes it connects; a partof-arc denotes the part-whole relation (packaging) between the nodes (Fitzgerald, 1995). The isa and partof relations have become the standard for abstraction and packaging (Miller, 1995; Martin, 1993). 

Let A0 be the |(| x |(| matrix such that A0[i, j] = 1 if there is an isa-arc from oi ( ( and oj ((, and A0[i, j] = 0, if there is no such arc. Let A1 be a similar matrix for the partof-relation. Note that part-of-relation is just one of the packaging relations. Other packaging relations exist (Norvig, 1986; Miller, 1995), and can be added as necessary. 

An object oi abstracts an object oj iff G has a path of isa-arcs from oj to oi. When oi abstracts oj, oi is said to be an abstraction of oj. 

An object oi specializes an object oj iff G has a path of isa-arcs from oi to oj. Thus, oi abstracts oj iff oj specializes oi. When oi specializes oj, oi is said to be a specialization of  oj.

Associated with each node is a single set of labels. A label [x] = [e0, ..., en] is a sequence of elements such that for all i, 0 ( i ( n, ei ( T ( I.  Thus, labels may contain not only tokens but also object ids.  If oi ( (, then Xi is the set of labels associated with oi.  If oi ( (, and [x]i = [e0, ..., en] ( Xi, g(oi, [x]i) = [w(e0, oi), ..., w(en, oi)], i.e., g: ( x [T  ( I] ( [(]+.  

An expectation is a 3-tuple [oi, [x]i, [v]j] such that [x]i = [v]k + [v]j, for some k. Intuitively, an expectation reflects how completed a label is with respect to an object. For example, if [x]i = [0, 1, 2], then [oi, [x]i, [0, 1, 2]], [oi, [x]i, [1, 2]], [oi, [x]i, [2]], and [oi, [x]i, []] are expectations. Only the last expectation from the previous list is completed. If z is an expectation [oi, [x]i, [v]j], then eobj(z) = oi, eseq(z) = [x]i, ecseq(z) = [v]j, and key(z) = head(ecseq(z)), where the function head returns the first element of the sequence. For example, if z = [o10, [0, 1, 2], [1, 2]], then eobj(z) = o10, eseq(z) = [0, 1, 2], ecseq(z) = [1, 2], and key(z) = head(ecseq(z)) = 1.

The representation of an object in the semantic network consists of the labels associated with the object and the object’s abstractions and packages. Formally, ((oi, T) = [Xi, L0, L1], where Xi is the set of labels associated with oi, L0 = {oj | oj ( ( ( A0[i, j] = 1}, and L1 = {oj | oj ( ( ( A1[i, j] = 1}. If an object is not in the set of retrievable objects, both L0 and L1 are empty. In other words, if oq ( ( - (, ((oq, T) = [Xq, {}, {}].  

Let [x] be a label associated with a node oi. The token closure of [x], denoted [x]*, is the set of all token sequences specified in the network that complete [x]. For example, let o0 and o1 be two nodes such that X0 = {[t1, t2], [t25]} and X1 = {[o0, t4, t5]}, where all ti ( T. Then [o0, t4, t5]* = {[s]0 = [t1, t2, t4, t5], [s]1 = [t25, t4, t5]}. Intuitively, the token closure of a label is the set of all token sequences specified in the network through which the label can be completed, and, consequently, the label's node activated. For example, one of the expectations associated with o1  is z = [o1, [o0, t4, t5], []]. The first two elements of [s]0 complete [t1, t2] from X0, thus activating o0. After o0 is activated, [o0, t4, t5] is advanced one element to the right and z becomes [o1, [t4, t5], [o0]]. When the rest of the label, i.e., [t4, t5] is completed by the last two elements of [s]0, o1  is activated. 

The token closure of a node oi, [oi]* = 
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, is the union of the token closures of its labels. Thus, the token closure of a node is the set of all token sequences specified in the network that can possibly activate the node. It is also the smallest set of token sequences, each of which activates the node. That is the case because any sequence that activates the node either must be in the node’s token closure or, if it is not, must complete at least one sequence in the node’s token closure. Thus, any sequence that activates a node must contain as a subsequence at least one of the sequences in the node's token closure. The union of the token closures of nodes in ( is called (-closure. Formally, (-closure = 
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The asymptotic analysis of the token closure given in the Appendix is O(n2), where n is the number of objects in the semantic network. Since in an average semantic network, node connectivity tends to be sparse (Quillian, 1969; Riesbeck, 1983; Norvig, 1986; Martin, 1993; Fitzgerald, 1995), i.e., each node is connected to only a small fraction of the other nodes, it is reasonable to conjecture that the average computational time is likely to be less than quadratic and close to linear. 

Let oq ( ( and oi ( ( and let f: [(]+ x [(]+ ( (.  The object similarity between oi and oq is ((oi, oq) = max {f(g(oi, [x]i), g(oq, [x]q))}, where [x]i ( [oi]*, [x]q ( [oq]*, and [x]q completes [x]i. In the maximization, the ranges of i and q in [x]i and [x]q are 0 ( i ( |[oi]*| and 0 ( q ( |[oq]*|.  If there is no [x]i ( Xi such that [x]q completes [x]i, then ((oi,oq) = 0. 

The completion requirement is necessary, because, in semantic networks, the order in which tokens occur in object representations, i.e., labels, matters. Two objects defined in terms of the same set of tokens may have nothing to do with each other if the order of the tokens in their representations is different. For example, an object represented in terms of a label [garden, rose] is likely to have a different denotation than an object represented in terms of a label [rose, garden]. The first object denotes a type of plant, i.e., rose. The second object denotes a place, i.e., garden, where certain plants, i.e., roses, are grown.

An object oq activates an object oi iff there exists a label [x]q ( [oq]* and a label [x]i ( [oi]* such that [x]q completes [x]i.   

This formalization of spreading activation both generalizes and makes rigorous the node activation sequence approach outlined in Martin (1993) and Fitzgerald (1995). It also subsumes the spreading activation level approach discussed in Charniak (1983) and the activation path shape approach outlined in Quillian (1969) and Norvig (1986). The former is subsumed insomuch as the activation level of a node, the so called “zorch,” becomes a function of ('s values. The latter is subsumed insomuch as the node activation paths are determined by the labels associated with the nodes.
3.2. Vector spaces

Let M = [(, (, T, (, w, (] be a vector space retrieval model. The set T = [e0, ..., en] specifies the dimensions of the vector space V such that dim(V)=|T|, and each object in ( is a vector in V. Formally, if oi ( (, then ( (oi, T) = 
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 = <w(oi, e0), ..., w(oi, en)>.  For example, w can be defined as tfidf (Salton & McGill, 1983), i.e., w(oi, ej) = f(oi, ej)(1 + log(|(|/Oj)), where f(oi, ej) is the frequency of ej in oi and Oj is the number of objects where ej occurs at least once. The function ( can be defined as dot product, i.e., the sum of the pairwise products of the corresponding weights in the objects' vector representations.  
4. Equivalence of Models
Let M0 be a retrieval model embedded in a universe of objects. To show that there exists a different retrieval model M1 equivalent to M0 under ranked retrieval from the same universe requires two steps. First, a mapping must be specified from M0 to M1. Second, it must be argued that M0 and M1 are, indeed, equivalent under ranked retrieval. 

This section gives mappings from vector spaces to semantic networks and vice versa.  The intuitions behind the mappings are discussed, and each mapping is illustrated with an example.  These examples serve to motivate the formal results stated in the theorems.  It should also be noted that the proofs of the theorems are constructive, because they specify algorithms for the suggested computations.

4.1. Vector spaces to semantic networks

Let M0 = [(, (0, T0, (0, w0, (0] be a vector space retrieval model where (0 is dot product. The objective is to construct a semantic network model with spreading activation M1 equivalent to M0. Consider a vector space retrieval model with T = {e0, e1, e2} and ( = {o0 = (1,1,0(, o1 = (0,1,1(, o2 = (1,0,1(} depicted in Figure 1.


The construction of an equivalent semantic network retrieval model requires that each object in the vector space be used to construct an object in a semantic network.  In doing so, only the nonzero dimensions of each object are considered, since these are the dimensions that contribute to the object’s ranking during the retrieval in the vector space model.   In this case, the nonzero dimensions of o0 are e0 and e1, the nonzero dimensions of o1 are e1 and e2, and the nonzero dimensions of o2 are e0 and e2.  

Let Zi be the power set of the nonzero dimensions for oi in the vector space, excluding the empty set. The label for oi in the semantic network is the set of all possible sequences over each set in Zi, excluding the sequences with duplicates. Thus, the semantic network contains three objects o0, o1, and o2 with labels X0 = {[e0], [e1], [e0, e1], [e1, eo]}, X1 = {[e1], [e2], [e1, e2], [e2, e1]}, and X2 = {[e0], [e2], [e0, e2], [e2, e0]}.  The resulting semantic network has a single root node R. Each constructed object is connected to the root node via a partof-link.  The constructed semantic network is depicted in Figure 2. 


Consider a query object oq = (0,0,1(.  In the vector space model, the similarity between oq and the objects o0, o1, and o2 is the dot product, which is 0, 1, 1 respectively.  Thus, the ranking of the objects with respect to oq is o1, o2, o0.  The equivalent query object in the semantic network has a label Xq = {[e2]} and will result in objects o1 and o2 being activated.  By definition of the similarity function for the semantic network model in section 3.1, this produces a ranking of o1, o2, o0, an identical result to the ranking for the vector space.

Theorem 1 formalizes the claim that the above construction produces two models that are equivalent under ranked retrieval.

Theorem 1. Let M0 = [(, (0, T0, (0, w0, (0] be a vector space retrieval model, where (0 is dot product.  There exists a semantic network model with spreading activation M1 = [(, (1, T1, (1, w1, (1] such that M0 
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 M1.

Proof. Let (1 = {R} ( (0, T1 = T0, and w1 = w0.  Let V be M0's vector space such that dim(V) = n+1, n (0. Let the dimensions of V be e0, ..., en, i.e., T0 = {e0, ..., en}. Let Wi = 
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{ej | w0(oi, ej) > 0}.  In other words, Wi includes all of V's dimensions along which oi has non-zero weights in V. Let Zi = 
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[z].  Let f compute the dot product of two real sequences of the same length. Let [x]i ( Xi. Put g(oi,[x]i) = [r0, ..., rn], where rj = w0(oi, ej), if ej ( [x]i; otherwise, rj = 0.

Let oq ( (. Define (1(oi,oq) = max {f(g(oi,[x]i), g(oq,[x]q))}, where [x]i ( Xi, [x]q ( [oq]* , and [x]q completes [x]i. If there is no [x]i such that some [x]q completes [x]i, (1(oi,oq) = 0.

Let oi ( (0 = (1.  Let E be the set of V's dimensions for which oi and oq both have nonzero weights. Either E is empty or E = {
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}, where ij ( [0, n]. If E is not empty, (0(oi, oq) = 
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.  By definition of (1, both Xi and [oq]* contain all permutations of E and its subsets. Hence (0(oi, oq) = (1(oi, oq).  If E is empty, none of the labels in [oq]* completes any label in Xi.  Hence, (0(oi, oq) = (1(oi, oq) = 0.


Conversely, let (1(oi, oq) = 0. Either there exist [x]q ( [oq]*  and [x]i ( Xi such that [x]q  completes [x]i  and f(g(oi, [x]i), g(oq, [x]q)) = 0 or no label in [oq]*  completes any label in Xi. In either case, E is empty. Hence, (0(oi, oq) = 0.  If (1(oi, oq) > 0, then, by construction, there exists at least one pair of labels [x]q  and [x]i such that [x]q  completes [x]i  and E is the union of the labels' elements and (1(oi, oq) = f(g(oi, [x]i), g(oq, [x]q)). Hence, (0(oi, oq) = 
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= f(g(oi, [x]i), g(oq, [x]q)) = (1(oi, oq).  (
The construction of Theorem 1 highlights an important difference between vector spaces and semantic networks. The vector space model is nondeterministic to the extent that the order of the tokens in the inputs has no effect on the ranking of the retrieved objects. For example, a token sequence [e0, e1] causes the retrieval of the same objects as the sequence [e1, e0]. In the semantic network model, on the other hand, the ordering of tokens in a label determines the set of completed labels and, consequently, the set of activated nodes. This explains why for each object in the vector space one must compute the permutations of its nonzero dimensions in order to construct the object’s representation in an equivalent semantic network model.
4.2. Semantic networks to vector spaces
Let M0 = [(, (0, T0, (0, w0, (0] be a semantic network retrieval model with spreading activation.  The objective is to construct an equivalent vector space model M1. To develop the intuition behind the construction, consider a semantic network model with T = {e0, e1, e2} and ( = {o0, o1, o2}, where X0 = {[e1], [e2], [e1, e2], [e2, e1]}, X1 = {[e0], [e2], [e0, e2], [e2, e0]}, and X2 = {[e0], [e1], [e0, e1], [e1, e0]}. 

Similar to the construction of Theorem 1, each retrievable object in the semantic network is mapped to a retrievable object in the vector space.  To do this, the token closure of each object is taken.  In this example, since the labels for each object do not include any object names, the token closure of each label is the label itself.  Hence, the (-closure = {[e0], [e1], [e2], [e0, e1], [e0, e2], [e1, e0], [e1, e2], [e2, e0], [e2, e1]}. Each sequence in the (-closure is one dimension of the constructed vector space. A similar idea is found in the discrimination value analysis (Salton, Yang, & Yu , 1975), where individual terms are combined into indexing phrases, thus creating new dimensions each of which is a term collocation. 

An object oi in the vector space has a 1 in a dimension if and only if the sequence corresponding to that dimension is found in the object’s token closure.  Thus, the objects in the vector space model for the example are o0 = (0,1,1,0,0,0,1,0,1(, o1 = (1,0,1,0,1,0,0,1,0(, and o2 = (1,1,0,1,0,1,0,0,0(. 

Consider a query object oq with a label Xq = {[e2]}.  This query activates o0 and o1.  Thus, the ranking of the objects with respect to oq is o0, o1, o2.  The equivalent query object in the vector space is (0,0,1,0,0,0,0,0,0(.  Taking the dot product of this vector with each of o0, o1, and o2 produces 1, 1, and 0 respectively.  Hence, the ranking of the objects in the vector space is also o0, o1, o2.

Theorem 2 formalizes the claim that the above construction produces two models equivalent under ranked retrieval.

Theorem 2. Let M0 = [(, (0, T0, (0, w0, (0] be a semantic network retrieval model with spreading activation.  Let f: [(]+ x [(]+ ( (. Let g(oi, [x]i) = [w0(e0, oi), ..., w0(en, oi)], where oi ( (0, and [x]i = [e0, ..., en] ( Xi.  Let (0(oi, oq) = max {f(g(oi, [x]i), g(oq, [x]q))}, where [x]i ( [oi]*, [x]q ( [oq]*, and [x]q completes [x]i. Let (0(oi, oq) = 0, if no [x]q completes any [x]i. There exists a vector space retrieval model M1 = [(, (1, T1, (1, w1, (1] such that M0 
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Proof. Let (1 =  (0, T1  = T0.  Let (0-closure = {[x]0, ..., [x]n}. Let oi ( (1. Put (1(oi, T1) = 
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= <w1(oi, [x]0), ..., w1(oi, [x]n)>, where w1([x]i, oi) is 1 if [x]i ( [oi]*, and is 0, otherwise. Let oq( (. Put (1(oi, oq) = max {f(g(oi, [x]i), g(oq, [x]i)) ( w1(oi, [x]i) ( w1(oq, [x]i)}, 0 ( i ( n. Observe that (1(oi, oq) = 0 iff w1(oi, [x]i) ( w1(oq, [x]i) = 0, for all  0 ( i ( n iff [oi]* ( [oq]* = ( iff (0(oi, oq) = 0.  Otherwise, (1(oi, oq) = r ( R, r > 0, iff for some 0 ( i ( n, w1(oi, [x]i) ( w1(oq, [x]i) = 1 iff (0(oi, oq) = r.

The construction of Theorem 2 ignores the abstraction and packaging relations among objects in the semantic network, because the ultimate objective is to produce a vector space model equivalent to the semantic network model under ranked retrieval. The a priori ontological commitments of the semantic network turn out to be irrelevant. Theorem 2 also suggests that two different retrieval models may exhibit the exact same behavior even when they have very different representations of the universe in which they operate (Kulyukin and Settle, 1999).

4.3. Comparison of models

The two previous theorems specify algorithms to effectively construct one model from the other.  With these constructions in place, one can address the problem of comparing retrieval models independently built for the same universe of objects. Since comprehensive performance tests frequently depend on accurate relevance judgements and representative query samples, both of which may be hard to obtain, a formal method of predicting certain aspects of the relative performance of models has a practical value. Theorem 3 suggests one such method. The key intuition behind the method is that the comparison of models can be made through an intermediate model constructed from one model and then compared to the other one.

Theorem 3. Let Mvs = [(, (0, T0, (0, w0, (0] be a vector space retrieval model and Msn = [(, (1, T1, (1, w1, (1] be a semantic network retrieval model.  Suppose that Mvs and Msn are comparable and that w0 = w1. Let 
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Mvs. Then the following statements are true:

1. Mvs 
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Msn iff the token closure of every object in Msn is identical to its token closure in 
[image: image30.wmf]sn

M

¢

;

2. Mvs > Msn iff the token closure of every object in Msn is a proper subset of its token closure in 
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3. Mvs < Msn iff the token closure of every object in Msn is a proper superset of its token closure in 
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Proof. For the first statement, one has Mvs 
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Msn iff the token closure of every object in Msn is identical to its token closure in 
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.  For the second statement, one has Mvs > Msn iff (i ( q such that (0(oi, oq) > 0 but (1(oi, oq) = 0, where oi ( ( and  (0 and (1 are the similarity functions of Mvs and Msn, respectively. This is possible iff oq's representation in Mvs has nonzero weights assigned only to those tokens that have nonzero weights in oi's representation in Mvs but none of whose permutations are in oi's token closure in Msn. But, since 
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Mvs, this relationship between oi and oq in Mvs and Msn holds iff the token closure of every object in Msn is a proper subset of its token closure in 
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.  The argument for the third statement is identical. (
Theorem 3 suggests that, given two comparable models with identical token weight functions, it is possible to decide if they are equivalent, superseding, or mutually superseding under ranked retrieval. One question that Theorem 3 raises is about the necessity of the requirement that the token weight functions be identical. Classical semantic networks operate on the binary principle. Given an input, a node is either activated by it or it is not. The conditions under which a node is activated are described in the labels associated with it. Since a token either is or is not in a label, the requirement that the token weight functions be the same captures a natural correspondence between classical semantic networks and binary vector spaces. Some semantic networks use information theoretic measures to assign weights to tokens in labels (Fitzgerald 1995). Since, given a token weight function, a classical semantic network is easily converted into a semantic network with weighted tokens, the requirement captures the situation when one wants to compare a nonbinary vector space with a classical semantic network, provided that the token weight function of the vector space is known. In the case when one model supersedes the other, Theorem 3 suggests that it is possible to enumerate some queries that retrieve each object in one model but not in the other by looking at the token closures of the object in 
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4. Future Work

The authors intend to focus their future research on the following three areas: modification of object representations through token closures, relevance feedback in semantic networks, and canonical representations of semantic networks with spreading activation.

As suggested in Theorem 3, token closures can be used to enumerate queries that retrieve an object in one model, but not in the other. An implication of this possibility worth further investigation is the automated modification of object representations prior to actual retrieval. For example, if a query is found not to retrieve an object in a given model, the object’s representation in the model is modified so that the query retrieves the object with a given score. If such modifications are possible, two models can be made equivalent under ranked retrieval with respect to a given query set.

Relevance feedback has been a major research topic in the vector space model for over three decades (Aalbersberg, 1992; Braun, 1971; Rocchio, 1971). The situation is very different with semantic networks. The concept of semantic networks was introduced by Quillian in his seminal paper on the Teachable Language Comprehender system (Quillian, 1969). Quillian proposed a model of language understanding that consisted of a network of concepts connected to each other with different relations and a spreading activation algorithm that related textual inputs to certain concepts in the network. Quillian also argued for the gradual modification of the system’s knowledge through user feedback. Unfortunately, this suggestion was swallowed by the sands of time. Subsequent research on semantic networks focused almost exclusively on knowledge representation (Norvig, 1986; Fitzgerald, 1995; Miller, 1995) and spreading activation algorithms (Charniak, 1983; Norvig, 1986; Martin, 1993; Kulyukin, 1998). 

Yet relevance feedback may still be a promising area of research in the context of semantic networks. If elements of token sequences are assigned discrete or continuous weights, the weights can be modified on the basis of user feedback. The modification of weights can be done both on queries and object representations. The latter modification is especially interesting, because, if relevance judgments are consistent, each object in the semantic network will gradually come to be represented in terms of elements reflecting its content. 

Another possibility for relevance feedback is the acquisition of spreading activation paths. A typical spreading activation algorithm relates textual inputs to certain concepts in the network by spreading activation from the concepts directly detected in the input to the concepts in the network. Users’ relevance judgments can be used to detect spreading activation paths that are likely to retrieve relevant concepts. 

Knowledge representation formalisms used in semantic networks exhibit a great degree of variance. While some formalisms have only two relations, i.e., abstraction and packaging (Martin, 1993; Fitzgerald, 1995), other formalisms have many more (Norvig, 1986; Miller, 1995). A similar variability is seen in the spreading activation algorithms (Charniak, 1983; Norvig, 1986; Martin, 1993; Kulyukin, 1998). Perhaps there exists a canonical representation of semantic networks with spreading activation equivalent to the existing semantic network models under ranked retrieval. The existence of such a representation, if proved constructively, would greatly simplify comparisons of different semantic network models with each other and with the vector space model. 

6. Conclusion
The growing quantities of online data raise the demand for better retrieval models. To meet this demand, researchers and developers have started to adopt the following methodology: implement, test, and compare the results with those of the other systems (Chakravarthy & Haase, 1995; Fitzgerald, 1995; Bradshaw, 1998; Kulyukin, 1998). Valuable as it may be for practical insights, this methodology is based on rigorous post-hoc evaluations of completed retrieval models. Since the models are treated as input-output devices, little attention is paid to what goes on inside them. Hence, the causes of a particular success or failure are hard to explain.

This study complements the results of empirical evaluations and presents a framework for analyzing the properties of retrieval models under ranked retrieval.  The formalism is applied to two retrieval models: semantic networks and vector spaces. It is shown that the two models can be effectively constructed from each other. In particular, given either a semantic network or a vector space, an equivalent retrieval model can be effectively constructed. Furthermore, a formal method is suggested to analyze certain aspects the relative performance of the two models independently built for the same universe of objects.

The study suggests that semantic networks and vectors spaces are similar as models of ranked retrieval. Thus, while performance tests comparing the two models fluctuate in favor of one or the other, the fluctuations may have less to do with the models themselves and more with the differences in evaluation data sets and relevance judgments.
7. Appendix
The appendix contains the pseudocode and the complexity analysis of several semantic network algorithms mentioned in the paper.

7.1. Listing 0
Let M be a semantic network retrieval model. Let o be an input object with X as its set of labels. 

Let T be a table mapping the ids of objects in ( to the scores representing their similarity with the query object, i.e., reals. Initially, T maps each id to 0. 

Let V be the vector representation of T, i.e., V = <[o0, s0], ..., [on, sn]>, where {oi ( (} ( {si = ((o, oi)} for all i, 0 ( i ( n. 

Let E be a table mapping expectations to tokens. If e is an expectation, then key(e, E) denotes the token to which E maps e. 

The procedure retrieve returns M(o). The procedure spread activates nodes with at least one completed sequence. The procedures f and g compute the functions f and g, respectively, that are defined as follows. If oi ( (, and [x]i = [e0, ..., en] ( [oi]*, g(oi, [x]i) = [w(e0, oi), ..., w(en, oi)], i.e., g: ( x [T  ( I] ( [(]+. Let oq ( ( and oi ( ( and let f: [(]+ x [(]+ ( (. 

The procedures head and tail return the first element of a sequence and the rest of a sequence, respectively. For example, head([a,  b, c]) = a; tail([a, b, c]) = [b, c]; head([]) = tail([]) = []. 

The pseudocode for the retrieve procedure is as follows.

0 procedure retrieve(o, M, T)

1  for each [s] in X

2   T = spread(o, [s], T);

3  convert T to V;

4  sort V's entries by similarity

5       in nonincreasing order;

6  sort V's entries with equal similarity

7       by id in increasing order;

8  return the sequence of ids as they occur

9       in V from left to right;

10 procedure spread(o, [s], T)

11  w = g([s],o)

12  for each e in [s]

13   activate(e, T, w);

14  return T;

15 procedure activate(e, T, w)

16  for each abstraction a of e

17   for each expectation e keyed on a

18    advance(e, T, w);

19 procedure advance(x, T, w)

20  if null(ecseq(x))

21   then

22    y = f(w, g(eseq(x), eobj(x)));

23    if ( T[eobj(x)] < y )

24     then T[eobj(x)] = y;

25    activate(eobj(x));

26   else

27    [v] = tail(ecseq(x));

28    ne  = newexp(eobj(x), eseq(x), [v]);

29    key(ne, E) = head([v]);

30 procedure newexp(o, [x], [v])

31  return a new expectation [o, [x], [v]];
The asymptotic analysis of this procedure is as follows. The case where an object o is activated while spread(o) is being called is ruled out.  This corresponds to a cycle in the references between objects, and, although legal under the definitions, a semantic network that allows such cycles is not guaranteed to be settled in a finite number of steps.

Let n be the number of objects in the semantic network M.  Let t be the maximum size of the table T. By definition t ( n.  Let Cseq be the maximum length of any label, let Nabs be the maximum number of abstractions of a node, and let Cx be the maximum number of labels of a node. Note that Cseq and Cx are constants. There are at most Cx(n-1) expectations keyed on any node e since, in the worst case, every label for the other nodes in the network will be keyed on e.  

The mutually recursive functions activate and advance are analyzed together.  Consider a call to activate(e,T,w).  At most Cx(n-1) nodes are activated by this call since this is the maximum number of expectations keyed on e. Each of these nodes causes at most Cx(n-1)Nabs other nodes to be activated, because each node activated by e can itself activate at most Cx(n-1) nodes, and there are at most Nabs nodes that are abstractions of e.  Thus, activate and advance stop after Cx2(n-1)2Nabs calls.  Since the work done outside the recursive calls is O(Cseq), activate and advance take time O(Cseq(Cx2 n2 Nabs + Cseq) = O(n2 Nabs).  Hence, a call to spread(o,[s],T) takes time O(Cseq n2 Nabs) = O(n2 Nabs), since it makes a call to activate for each node in [s].

The time needed for the function retrieve outside of any calls to spread is O(tlgt). For each label of o, retrieve also makes a call to spread(o,[s],T).  Thus, retrieve requires O(tlgt + Cx n2 Nabs) = O(n2 Nabs) time, since o has at most Cx labels.

7.2. Listing 1
Let [x] be a label. The procedure conc adds its first argument to the beginning of the sequence given as its second argument. The procedure apnd splices its first argument, a sequence, at the beginning of its second argument, which is another sequence. For example, conc(a, [b, c]) = [a, b, c]; conc([a, b], [c, d]) = [[a, b], c, d]; apnd([a, b], [c, d]) =  [a, b, c, d]. 

The pseudocode for the tclose procedure that computes the token closure of a label is as follows.

0 procedure tclose([x])

1  if head([x]) is not an object id

2   then

3    tail    = tclose(tail([x]));

4    closure = [];

5    for t in tail

6     closure = conc(conc(head([x]), t),

7                    closure);

8    return closure;

9   else

10   closure = [];

11   for h in tclose(head([x]))

12    for t in tclose(tail([x])

13     closure = conc(apnd(h, t),

14                    closure);

15   return closure;
The asymptotic analysis of tclose is as follows. Let Cdup be the maximum number of duplicate items allowed in a label. Let Cx be the maximum number of labels of a node.  Let ( = |T|. Note that Cdup and Cx are constants.

Suppose that if a label [x] contains k object ids, then any label for the nodes corresponding to one of those object ids must contain no more than k-1 object ids. Let T(k) be the number of sequences in the closure of such a label [x].  

Consider the node corresponding to an object id in one such label.  By assumption, each of its labels has at most k-1 object ids.  Thus, the number of token sequences in the closure for each of these objects is at most CxT(k-1).  Since there are k such objects in [x], the closure of [x] contains at most k Cx T(k-1) sequences. Hence T(k) = Cx k T(k-1).  Iterating this recurrence yields T(k) ( O(k2).  In the worst case, k = n, i.e., the number of objects in the network, so that T(k) is O(n2).  This bounds the for-loops on lines 5-7 and 11-14.  Since the body of each for-loop takes constant time, the function tclose requires time O(n2).

In a more general case with no restrictions placed on the structure of labels, the closure of any label [x] is a sequence of token sequences.  Since there can be no more than Cdup duplicates in any of the token sequences, the length of each sequence is bounded by Cdup(.  Hence, there are (Cdup()! possible token sequences of length

Cdup(.  Thus, tclose can take no more than (Cdup()! time.
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